
Strategic Oil & Gas Ltd.

Work Order-Ref #: 19131

Vapor Intrusion Assessment (VIA) Soils Outside Casing (AGM)

Strategic et al Cameron
H-03

September 11 & 12, 2019

GCHEM Ltd.

BAY #1
4810-62ND AVE.
LLOYDMINSTER, AB
T9V 2E9
(780) 871-4668
www.gchem.ca
info@gchem.ca

FORENSIC SOLUTIONS FOR ENERGY CHALLENGES

Table of Contents

1.0	Executive Summary	4
2.0	Vapor Intrusions Assessment (VIA) Summary	6
2.1	Production Casing Assessment Summary	6
2.2	Surface Casing Vent Flow (SCVF) Assessment Summary	6
2.3	Soils Outside Casing (AGM) Assessment Summary	7
2.4	Interpreted Source of Migrating Gases	8
3.0	Background of Vapor Intrusion Assessments (VIA) at Resource Wells and Tracing Gas contents in the Environment using Energy Forensics	9
3.1	Biogenically Derived Methane Gas	10
3.2	Thermogenic Methane Gas	10
3.3	Classification, Characterization, and Geologic Origins of Combustible Gases in the Environment	10
4.0	Methods and Results	12
4.1	Field Assessment Methods	12
4.1.1	Non-Intrusive Vapor Intrusion Assessment	12
4.1.2	Intrusive Vapor Intrusion	14
4.1.3	Soil Vapor-Flux Measurements	16
4.2	Analytical Methods	21
5.0	Geochemical Measurements- Laboratory Results	22
5.1	Gases Obtained from Soil Vapor Probes (SVPs)	22
6.0	Conclusions	28

List of Tables

Table 1	AGM Non-Intrusive Surface PMD	13
Table 2	Intrusive AGM-Soil Vapor Probes (SVPs)	15
Table 3	Non-Intrusive Soil CH ₄ Levels enclosed Soil Vapor Flux Chamber (SV-FC)	18
Table 4	Calculated venting CH ₄ gas FLUX & speciated flux rate & volume measured at anomalous AGM site W3m	20
Table 5	Gas components, isotopic compositions measured and the analytical error of measurements at GCHEM'S Analytical Laboratory	21
Table 6	High resolution molecular and stable carbon compositions of gases collected during this investigation	23

List of Figures

Figure 1	Non-Intrusive Surface Methane Scan (PMD)	13
Figure 2	Intrusive Methane Readings from Soil Vapor Probes	15
Figure 3	CH ₄ gas levels vs. Test time (SV-FC W3m)	19
Figure 4	ΣC_{2+} vs Methane	24
Figure 5	ΣC_{6+} vs Ethane	25
Figure 6	CH ₄ / ΣC_{2+} vs $\delta^{13}\text{C}$ CH ₄	26
Figure 7	$\delta^{13}\text{C}$ CO ₂ vs $\delta^{13}\text{C}$ CH ₄	27

List of Attachments

Attachment 1	Well Site Photographs	29
Attachment 2	Chain of Custody	34
Attachment 3	Gas Sample Container Photographs	36
Attachment 4	Gas Analysis Data Sheets (GADS)	40

1.0 Executive Summary

On September 11-12, 2019m Strategic et al Cameron Hills H-03 was investigated for natural gas leakage in soils outside of casing. Total combustible gas (%LEL) and H₂S field instruments were used to measure gas levels and types at soil test sites. Gas samples were collected, contained and preserved from soils outside casing (AGM) and for baseline comparison, background locations, ~30m away from the wellbore were also assessed.

A 115 site non-intrusive surface CH₄ scan was conducted in soils outside casing and at 3 background locations (N30m, W30m and E30m). Six sites (N3m, S3m-W4m, W3m, W4m-N3m, W3m-N5m and W2m-N5m) contained elevated (17, 22, 86, 10, 8, and 8 ppm v/v, respectively) above background methane levels (4 ppm v/v). All other sites tested near the wellbore contained CH₄ levels ranging from 2 to 4 ppm v/v and were similar to the BKG test sites.

A soil vapor gas flux test using GCHEM's Soil Vapor-Flux Chamber (SV-FC) was conducted at the highest non-intrusive surface methane reading (W3m) and indicate low combustible gas flow rates to surface (0.001319 m³/day volumetric calculation).

A total of 13 soil sites outside casing were assessed for gas leakage using an intrusive methodology where 5 cm vapor test holes were augered into soils and Soil Vapor Probes (SVPs) were inserted into each test hole. Of the 13 soil vapor test sites outside casing, 11 sites (N2m 212 ppm v/v, N4m 187 ppm v/v, NE2m 136 ppm v/v, E1m 132 ppm v/v, E3m 1179 ppm v/v, E5m 5050 ppm v/v, SE2m 13 ppm v/v, SW2m 52 ppm v/v, SW4m 62 ppm v/v, SW4m 62 ppm v/v, W2m 13 ppm v/v and NW2m 4164 ppm v/v) contained elevated, above background (BKG N30m 4 ppm v/v) levels of CH₄ gas contents. SOG selected two soil sites (E3m and NW2m) to measure chemical and δ¹³C isotopic compositions to aid in classifying combustible gas contents. The 2-sites contained high levels of CH₄ gas and low, similar to background levels of associated ΣC₂₊ gas. Methane index values suggest that elevated %LEL values measured at the 2-soil sites are high (dry gas) that suggest biogenic in origins for CH₄ gas. δ¹³C CH₄ and CO₂ values for gas obtained from the test site while the gases obtained from test E3m have been significantly altered by bacterial oxidation processes. However, low associated ΣC₂₊ gas levels support bacterial fermentation origins for CH₄ gas. ΣC₂₊ gas levels in soils outside casing at test sites E3m and NW2M are low, similar to background and is the result of natural movement of light hydrocarbon gases from reservoirs at depth,

upward through subsurface fractures and micro-fractures to surface. This is naturally occurring process in all hydrocarbon sedimentary basins in the world.

With information available to date, soil vapor test sites E3m and NW2m would be classified as 'Biogenic-Naturally Occurring CH₄-Non-Impacted'.

2.0 Vapor Intrusion Assessment Summary

Operating Company: Strategic Oil & Gas Ltd.
Well Name: Strategic et al Cameron H-03
UWI: 300H036010117300

License Number: 001940
Test Date September 11-12, 2019
GCHEM Project Number 19131

2.1 Production Casing Test Summary

Combustible Gas (CH₄) ([%LEL])	nm		
Hydrogen Sulphide (H₂S) Gas (ppm v/v)	nm		
PC Flow Rate (m³/day)	nm		
P-T Date Logger Installed	nm		
P-T Data Logger Removed	nm		
P-T Data Logger Test Duration	nm		
MAX Pressure (kPa)	nm		
Gas Spls. Collection-Measurement	Total Collected	Analysis Requested*	Classification**
PC Samples (Total)	0		
PC Combustible Gas Class. Level-1 (Chemical)		NA	NA
PC Combustible Gas Class. Level-2 (¹³C)		NA	NA
PC Combustible Gas Class. Level-3 (⁸D)		NA	NA
PC Combustible Gas Class. Level-4 (¹⁴C)		NA	NA

2.2 Surface Casing Vent Flow (SCVF) Test Summary

SCV Ten-Minute Bubble Test Result	nm		
SCV Flow Rate (m³/day)	nm		
SCVF Pressure-Temp Logger Installed	nm		
SCV Pressure-Temp Data Logger Removed	nm		
SCV Shut-In Time (hrs)	nm		
SCV MAX-Recorded Build Up Pressure (kPa)	nm		
SCV Stabilized Build-up Pressure (kPa):	nm		
SCV Stabilized Build-up Time (hours)	nm		
SCV Standpipe Max CH₄ Content (% LEL):	nm		
SCV Standpipe Max H₂S Content	nm		
SCV Gas Spls. Collection-Measurement	Total Collected	Analysis Requested*	Classification**
SCV Samples (Total)	0		
SCV Combustible Gas Class. Level-1 (Chemical)		NA	NA
SCV Combustible Gas Class. Level-2 (¹³C)		NA	NA
SCV Combustible Gas Class. Level-3 (⁸D)		NA	NA
SCV Combustible Gas Class. Level-4 (¹⁴C)		NA	NA

2.3 Soil Gas Migration Test – Soils Outside Casing (AGM) Summary Tables

A) Non-Intrusive CH₄ Surface Soil Scan (PMD) (Figure 1 and Table 1)

Well Casing Surface CH ₄ Test Sites	115
MAX Surface CH ₄ Reading	86
MAX H ₂ S Well Soil Reading (ppm v/v)	<1
Number of Background Sites	3
MAX Background CH ₄ (ppm v/v)	4
Max H ₂ S BKG Soil Reading (ppm v/v)	<1
Surface CH ₄ -PMD Gas Classification	

B) Non-Intrusive Surface Enclosed Soil Vapor FLUX Chamber Test

Surface SV-FC CH ₄ Test Sites	1		
MAX SV-FC CH ₄ Reading	86		
SV-FC Gas Spls. Collection-Measurement	Total Collected	Analysis Requested*	Test Site
SV-FC Samples (Total)	2		Soil Vapor Flux not requested
SV-FC Combustible Gas Class. Level-1 (Chemical)		NA	NA
SV-FCs Requested for Level-1 Analysis			NA
SV-FC Combustible Gas Class. Level-2 ($\delta^{13}\text{C}$)		NA	NA
SV-FCs Requested for Level-2 Analysis			NA
SV-FC Combustible Gas Class. Level-3 (δD)		NA	NA
SV-FCs Requested for Level-3 Analysis			NA
SV-FC Combustible Gas Class. Level-4 (^{14}C)		NA	NA
SV-FCs Requested for Level-4 Analysis			NA

C) Intrusive Auger Test Holes with Soil Vapor Probes (Figure 2 and Table 2)

Number Soil Vapor Probe (SVP) Test Sites	13		
MAX SVP CH ₄ Reading (%LEL)	10.1		
Max H ₂ S SVP Field Reading (ppm v/v)	<1		
Number SVP BKG Test Sites	3		
MAX SVP CH ₄ BKG Test Sites (ppm v/v)	4		
SVPs Gas Spl. Collection & Measurement	Total Collected	Analysis Requested*	Test Site
Soil Vapor Probes (SVPs) AGM (Total)	4		
SVP Combustible Gas Class. Level-1 (Chemical)		2	E3m, NW2m
SVPs Requested for Level-1 Analysis			Biogenic, Non-Impacted
SVP Combustible Gas Class. Level-2 ($\delta^{13}\text{C}$)		2	E3m, NW2m
SVPs Requested for Level-2 Analysis			Biogenic, Non-Impacted
SVP Combustible Gas Class. Level-3 (δD)		0	NA
SVPs Requested for Level-3 Analysis			NA
SVP Combustible Gas Class. Level-4 (^{14}C)		0	NA
SVPs Requested for Level-4 Analysis			NA

BKG Gas Spl. Collection-Measurement	Total Collected	Analysis Requested*	Test Site
BKG Soil Vapor Probe (SVPs) (Total)	3		
SVPs & Sites Requested for Level-1 Analysis		1	BKG W30m
Combustible Gas Classification Level-1 (Chem.)		Biogenic, Naturally Occurring, Baseline	
SVPs & Sites Requested for Level-2 Analysis		0	
Combustible Gas Classification Level-2 ($\delta^{13}\text{C}$)			NA
SVPs & Sites Requested for Level-3 Analysis		0	
Combustible Gas Classification Level-3 (δD)			NA
SVPs & Sites Requested for Level-4 Analysis		0	
Combustible Gas Classification Level-4 ($\delta^{14}\text{C}$)			NA

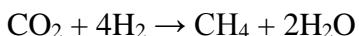
* Sample selection for chemical and isotopic analysis (geochemical analytical suite) selected by client/operator.

2.4 Interpreted Source of Migrating Gases (measured depth from KB of the well)

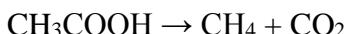
Sample Point	Geologic Formation	Depth Range	Source Depth
SVP E3m & NW2m	Near Surface Soil Respiration		Biogenic CH ₄ , Non-Impacted, Baseline

3.0 Background of Vapor Intrusion Assessments (VIA) at Resource Wells & Tracing Gas Contents in the Environment using Energy Forensics

Undesired natural gas leakage from depth to surface at resource wells is becoming increasingly recognized and is a significant financial burden to the resource industry. When high levels of natural gas are found in the surface casing vent it is termed surface casing vent flow (SCVF) and when found in soils outside casing it is termed active gas migration (AGM). Identifying the source of leaking gas, maintaining zonal isolation and eliminating gas leakage to surface has proven to be a challenging task. Industry success rates using conventional gas leakage identification tools (e.g. noise, temperature, cement bond-integrity, ultra-sonic imaging logs, etc.) to eliminate surface gas migration in the first attempt is approximately 15% to 20%. Since 1997, through collaboration with industry, government regulators and academic institutions, GCHEM Ltd. has developed ‘Energy-Forensics’ and has obtained extensive expertise in field testing, gas sampling and preservation, analytical and interpretational techniques to pinpoint the geologic source of natural gases at resource wells.


It is important to note that detection of elevated combustible gases at surface does not always mean the well is impacted with deep sourced natural gas (thermogenic). Accurate gas characterization at well sites is critical as elevated CH₄ (%LEL) contents measured at or near surface may not indicate it is leaking or impacted (false-positive) but rather the combustible gases present are the result of biogenic activity or hydrocarbon contamination (or a combination of).

Thermogenic hydrocarbon gases have unique chemical and isotopic signatures based on many variables including the starting organic material they are produced from, the chemical processes from organic origin to current form, interaction with surrounding formation rock and fluids, and effects from migrating from origin to current trap. For example, molecular and isotopic composition ($\delta^{13}\text{C}$ and $\delta^2\text{H}$) of a low temperature, shallow sourced natural gas is significantly different with respect to those of a high temperature deep sourced natural gas. This principle allows the geologic source of leaking natural gas at a wellbore to be determined.


3.1 Biogenically Derived Methane Gas

As a normal part of soil respiration, methane may be generated via two biotic pathways (depending on substrate availability):

CO₂ reduction reaction

Fermentation Process

Biogenic methane gas may be further oxidized by bacteria. Oxidizing bacteria in soils preferentially consume ¹²C over ¹³C resulting the residual gas enriched in ¹³C (i.e. $\delta^{13}\text{C}$ values become less negative) with respect to the biogenic gas (isotope enriching effect). Therefore, biogenic oxidization may provide the false signature of a ‘mixture of biogenic and thermogenic methane’ or ‘thermogenic’ gas (GCHEM in prep). Biogenic CH₄ is generally prevalent in landfill or swamp gas.

3.2 Thermogenic Methane Gas

Methane gas can be generated by abiotic processes such as the thermo-degradation of organic matter at high pressure and temperature (thermogenesis). During thermogenic CH₄ generation, pending organic matter content, pressure and temperature, associated C₂+ gases may also be formed. Thermogenic CH₄ and C₂+ gases contain enriched $\delta^{13}\text{C}$ and δD values pending gas maturity, mixing and alteration and torturous pathway from source to trap.

3.3 Classification, Characterization and Geological Origins of Combustible Gases in the Environment.

Combustible gases in soils outside casing maybe classified and characterized (biogenic, thermogenic or mixed) using chemical, carbon and hydrogen and isotopic measurements and ¹⁴C concentrations. Leaking thermogenic natural gas in soils outside casing is easier to scientifically prove than biogenic methane sources. Elevated %LEL measured in AGM (on location) maybe the result of naturally occurring biogenic processes, anthropogenic leaking thermogenic natural gases and mixtures of both. A systematic 4-level approach can be used to determine the origins (biogenic-thermogenic or mixed) combustible gas contents and include:

1) Level-1 Characterization**High Resolution Compositional-Chemical Measurements.**

Permanent, inert and CH₄ to n-C₅H₁₂ & C₆+

See NGGC-1 CH₄ vs ΣC₂+ (Szatkowski et al 2000 & 2001).

See NGGC-2 C₂H₆ vs. C₆+ (Szatkowski et al 2000 & 2001).

2) Level-2 Characterization**Stable Carbon Isotope Measurements (δ¹³C).**

δ¹³C CH₄ to n-C₅H₁₂ & CO₂ (pending concentrations-gas levels).

See NGGC-3 CH₄/ΣC₂+ vs. δ¹³C CH₄ (Bernard 1978).

See NGGC-4 δ¹³C CO₂ vs. δ¹³C CH₄ (Whiticar 1993).

3) Level-3 Characterization**Hydrogen in Methane (δD).**

δD CH₄ to dD C₄H₁₂ (pending concentrations-gas levels).

See NGGC-5 δ¹³C CH₄ vs δD CH₄ (Coleman 1993).

4) Level-4 Characterization**¹⁴C pMC concentrations (radioactive ½ life of 5750 yr).**

Pending concentrations-gas levels.

¹⁴C reveals the age of the organic matter source from which CH₄ was generated but not the time of methanogenesis.

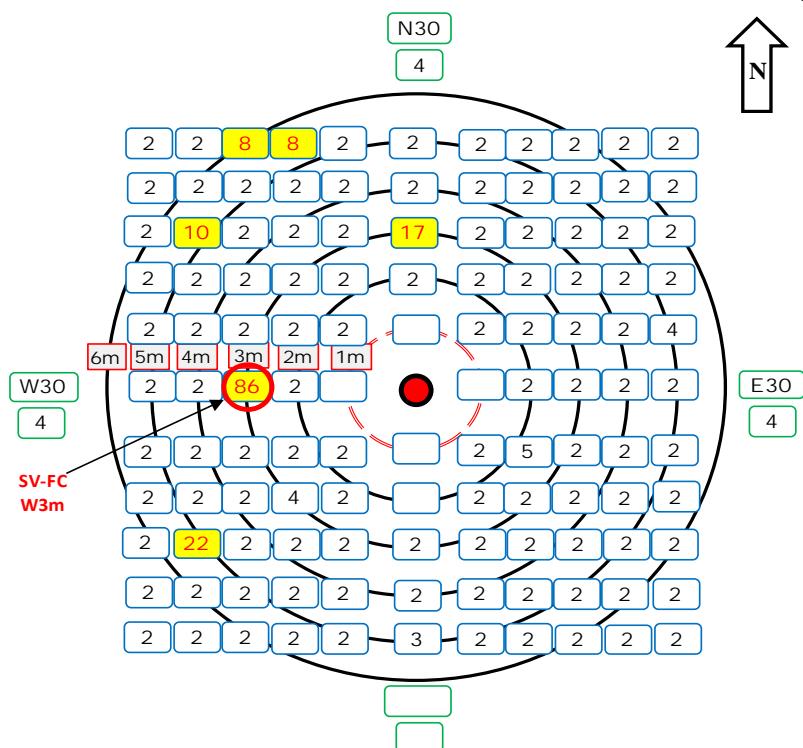
To determine the geological origins of leaking thermogenic natural gas contents, a series of plots developed by GCHEM Ltd are used and include.

1) Chemical & Isotopic Gas Field Diagram	C ₂ H ₆ /ΣC ₃ + vs δ ¹³ C C ₂ H ₆ (Szatkowski et al 2000, 2001).
2) Isotopic Gas Field Diagram	δ ¹³ C C ₂ H ₆ vs. δ ¹³ C C ₃ H ₈ (Szatkowski et al 2000, 2001).
3) Modified Chung Plot	δ ¹³ C vs 1/n (carbon & hydrogen number) (Chung 1988, and GCHEM Ltd. Unpublished).

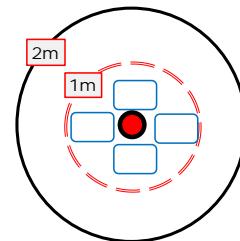
Additional chemical and stable carbon and hydrogen isotopic plots have been developed to aid in determining the geological origins of natural gas found in the environment however, GCHEM has not published these novel and new correlations and relationships and they will not be shown or discussed in detail at this time (GCHEM Unpublished Internal Research).

4.0 Methods and Results

4.1 Field Assessment Methods and Results


4.1.1 Non-Intrusive Vapor Intrusion Assessment

On September 11, 2019, GCHEM conducted a surface soil methane scan using a Sensit PMD (Figure 1). Surface soil CH₄ levels were measured at 118 locations on a grid pattern (1m x 1m) covering approximately an 10m x 10m square area around the marked wellbore.


To establish background surface CH₄ gas levels a distance away from the wellbore, three locations (30m north, 30m west and 30m east of the wellbore) were also assessed. To enhance results of the surface methane scan and reduce potential effects from industrial contamination, at each test site, an atmospheric CH₄ gas level was recorded, the PMD gas sampling wand was coupled to the surface soils and the CH₄ level was recorded for that specific test site. Atmospheric CH₄ level was subtracted from the CH₄ level measured after ground coupling to derive a surface soil CH₄ level at that point of the grid.

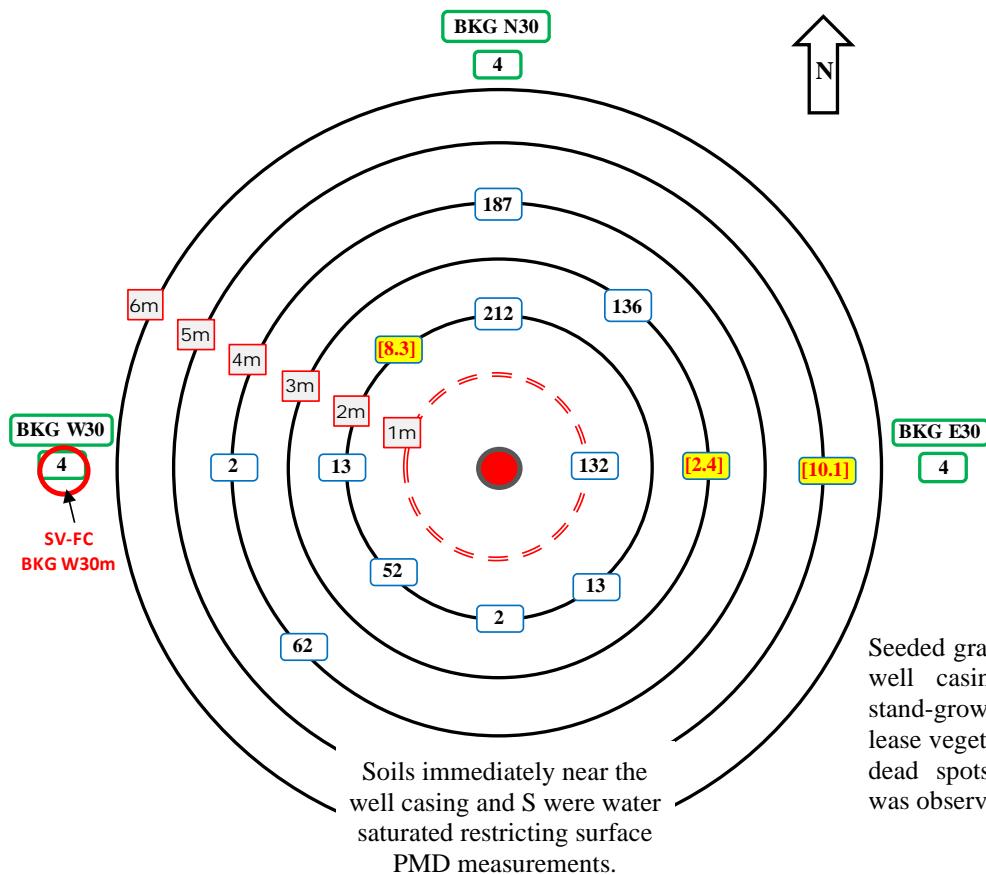
Six surface PMD sites (N3m, S3m-W4m, W3m, W4m-N3m, W3m-N5m and W2m-N5m) contained elevated (17, 22, 86, 10, 8, and 8 ppm v/v, respectively) above background (W30m 4 ppm v/v) CH₄ levels. All other surface sites assessed near the wellbore contained CH₄ levels that ranged from 2 to 4 ppm v/v that were similar to the BKG sites

Figure 1. AGM Non-Intrusive Surface PMD

Figure-1A. NON-Intrusive CH₄ Surface Scan Well Casing Detail VIEW

Seeded grass surrounding the well casing is of similar stand-growth to surrounding lease vegetation. No stressed dead spots or discoloration was observed.

Table 1. AGM Non-Intrusive Surface PMD


WELL CASING (AGM) Non-Intrusive Surface PMD (CH ₄) Soil Scan							
Test Site (m)	PMD CH ₄ (ppm v/v)	Test Site (m)	PMD CH ₄ (ppm v/v)	Test Site (m)	PMD CH ₄ (ppm v/v)	Test Site (m)	PMD CH ₄ (ppm v/v)
(% Vol)	(% Vol)	(% Vol)	(% Vol)	(% Vol)	(% Vol)	(% Vol)	(% Vol)
N.5		E.5		S.5		W.5	
N1		E1		S1		W1	
N2	2	E2	2	S2		W2	2
N3	17	E3	2	S3	2	W3	86
N4	2	E4	2	S4	2	W4	2
N5	2	E5	2	S5	3	W5	2
N5-E1	2	E5-S1	2	S5-W1	2	W5-N1	2
N4-E1	2	E5-S2	2	S4-W1	2	W5-N2	2
N3-E1	2	E5-S3	2	S3-W1	2	W5-N3	2
N2-E1	2	E5-S4	2	S2-W1	2	W5-N4	2
N1-E1	2	E5-S5	2	S1-W1	2	W5-N5	2
N1-E2	2	E4-S5	2	S1-W2	2	W4-N5	2
N2-E2	2	E4-S4	2	S2-W2	4	W4-N4	2
N3-E2	2	E4-S3	2	S3-W2	2	W4-N3	10
N4-E2	2	E4-S2	2	S4-W2	2	W4-N2	2
N5-E2	2	E4-S1	2	S5-W2	2	W4-N1	2
N5-E3	2	E3-S1	2	S5-W3	2	W3-N1	2
N4-E3	2	E3-S2	2	S4-W3	2	W3-N2	2
N3-E3	2	E3-S3	2	S3-W3	2	W3-N3	2
N2-E3	2	E3-S4	2	S2-W3	2	W3-N4	2
N1-E3	2	E3-S5	2	S1-W3	2	W3-N5	8
N1-E4	2	E2-S5	2	S1-W4	2	W2-N5	8
N2-E4	2	E2-S4	2	S2-W4	2	W2-N4	2
N3-E4	2	E2-S3	2	S3-W4	22	W2-N3	2
N4-E4	2	E2-S2	2	S4-W4	2	W2-N2	2
N5-E4	2	E2-S1	5	S5-W4	2	W2-N1	2
N5-E5	2	E1-S1	2	S5-W5	2	W1-N1	2
N4-E5	2	E1-S2	2	S4-W5	2	W1-N2	2
N3-E5	2	E1-S3	2	S3-W5	2	W1-N3	2
N2-E5	2	E1-S4	2	S2-W5	2	W1-N4	2
N1-E5	4	E1-S5	2	S1-W5	2	W1-N5	2

BACKGROUND Non-Intrusive Surface PMD (CH_4) Soil Scan

Test	PMD CH ₄										
Site (m)	(ppm v/v)	(%)									
N30	4		E30	4					W30	4	

4.1.2 Intrusive Vapor Intrusion Assessment

A total of 13 soil sites outside casing were assessed for gas leakage using an intrusive methodology where 5 cm vapor test holes were augered into soils and Soil Vapor Probes (SVPs) were inserted into each test hole. The SVPs were allowed to stabilize for approximately 30 minutes prior to combustible gas content measurement with the PMD (Figure 2). Of the 13 soil vapor test sites outside casing, 11 sites (N2m 212 ppm v/v, N4m 187 ppm v/v, NE2m 136 ppm v/v, E1m 132 ppm v/v, E3m 1179 ppm v/v, E5m 5050 ppm v/v, SE2m 13 ppm v/v, SW2m 52 ppm v/v, SW4m 62 ppm v/v, W2m 13 ppm v/v and NW2m 4164 ppm v/v) contained elevated, above background (BKG N30m 4 ppm v/v) methane contents.

Figure 2. AGM Intrusive SVPs

Seeded grass surrounding the well casing is of similar stand-growth to surrounding lease vegetation. No stressed dead spots or discoloration was observed.

Table 2. AGM Intrusive SVPs

Test Site (m)	Intrusive AGM - Hand Auger-Test Hole-Install Soil Vapor Probes (SVPs) ATM-Isolated			Soil Parameters		Gas Sample (Y-N)	Site Assessment Comments
	Soil Vapor Probes	IR-CH ₄ (ppm v/v)	H ₂ S (ppm v/v)	Type	Moist. (1D-5W)	HC-CONT (Y-N)	
N2	212		<1.0	Si	5	No	
N4	187		<1.0	Si	5	No	
NE2	136		<1.0	Si	5	No	
E1	132		<1.0	Si	5	No	
E3	1179	[2.4]	<1.0	Si	5	No	Yes
E5	5050	[10.1]	<1.0	Si	5	No	Yes
SE2	13		<1.0	Si	5	No	
S2	2		<1.0	Si	5	No	
S4							Final-SVP Watered-Out
S5							
SW2	52		<1.0	Si	5	No	
SW4	62		<1.0	Si	5	No	
W2	13		<1.0	Si	5	No	
W4	2		<1.0	Si	5	No	
NW2	4164	[8.3]	<1.0	Si	5	No	
Test Site (m)	Soil Vapor Probes			Soil Parameters		Gas Sample (Y-N)	Site Assessment Comments
	IR-CH ₄ (ppm v/v)	% Vol	H ₂ S (ppm v/v)	Type	Moist. (1-5)	HC-CONT (Y-N)	
BKG N30	4		<1.0	Si	5	No	Yes
BKG E30	4		<1.0	Si	5	No	Yes
BKG W30	4		<1.0	Si	5	No	Yes

4.1.3 Soil Vapor Flux Measurements

Soil vapor flux measurements can be conducted in soils to establish the rate and volume of gas leakage at surface. The soil vapor flux methodology utilizes an enclosed chamber (known internal volume and surface soil area) with three gas ports: gas-in, gas-out and a pressure release valve. Gases are cycled from the gas-out port to a PMD and re-injected or cycled back into the flux chamber. The atmospheric pressure release valve allows leaking gas from soils to enter the chamber and displace atmospheric gas contents within the chamber.

Pristine, naturally occurring gas venting from soils as a result of natural movement of light hydrocarbons from reservoirs at depth, upward through subsurface fractures or micro-fractures to surface combined with soil respiration processes is a naturally occurring process prevalent in all sedimentary basins (i.e. hydrocarbon surface seeps). These soil gases are usually comprised of low, but variable, levels of CH₄ and CO₂ with low-to-trace levels of associated C₂₊ thermogenic natural gases that cannot be generated by bacterial processes in great quantities. Soils influenced by anthropogenic process (i.e. natural gas leakage at a wellbore from natural gas reservoirs at depth, upwards through compromised cement sheaths securing production casing to formation rock to surface) usually contain highly elevated, above background levels of CH₄ (thermogenic, biogenic and/or mixtures) and associated C₂₊ thermogenic gases.

CH₄ gas contents in the flux chamber were monitored and data logged using a PMD. Soil gas flux volumes and rates in soils can be calculated either volumetrically or gravimetrically considering the following relationship:

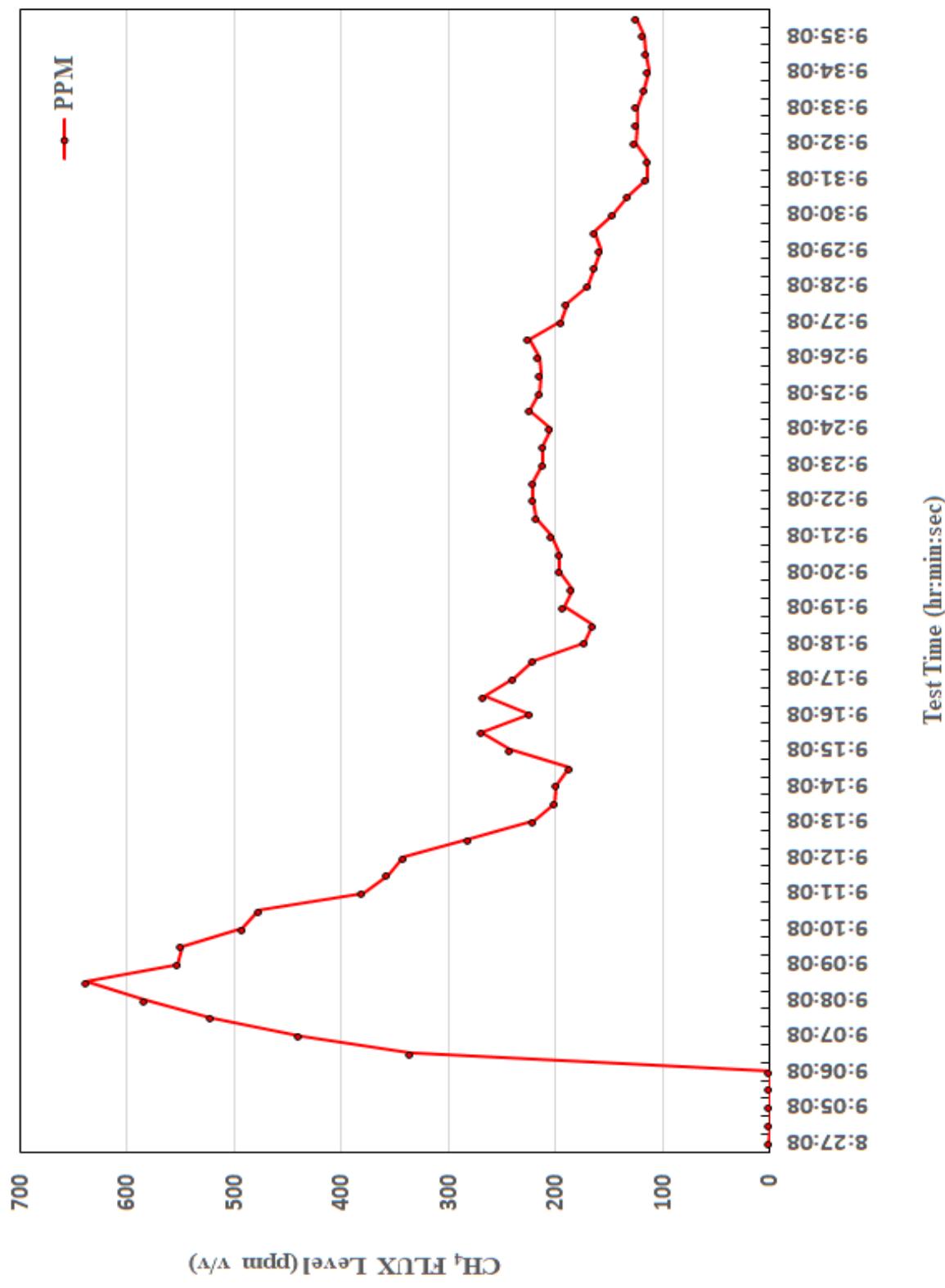
$$\text{Flux (F)} = (\text{dC}/\text{dt}) * (\text{volume}) / (\text{area})$$

Where:

C = concentration

t = time

dC/dt = change in concentration with time (the slope of a *concentration versus elapsed time* plot).


The volumetric flux is calculated from ppm v/v units (10⁻⁶ m³ light alkanes/ m³ air) and the gravimetric flux is calculated by converting ppm v/v to g/m³ of air using the ideal gas law (PV = nRT) with P = 1 atmosphere and T = 25°C.

On September 10, 2019 the highest methane reading observed during the non-intrusive surface scan was at W3m (86 ppm v/v methane). A GCHEM soil vapour-flux chamber (SV-FC) was installed at W3m and a 29-minute flux was conducted (Figure-3, Table-3). At the start of the flux the combustible gas reading was 1 ppm v/v methane and increased to 638 ppm v/v after 9 minutes and 30 seconds. The combustible gas reading gradually decreased after 9 minutes and 30 seconds to 125 ppm v/v after a 24-minute test. Gas samples were collected from the flux chamber at 09:10.

Strategic et al Cameron H-03 Soil Vapor Flux Field CH ₄ Test Time & Levels Site – W3m											
Test-Time	PPM	%LEL	%V/V	Test-Time	PPM	%LEL	%V/V	Test-Time	PPM	%LEL	%V/V
8:27:08	1	0	0	9:15:08	243	0.4	0.02	9:26:08	216	0.4	0.02
9:04:38	0	0	0	9:15:38	269	0.5	0.02	9:26:38	225	0.4	0.02
9:05:08	0	0	0	9:16:08	224	0.4	0.02	9:27:08	195	0.3	0.01
9:05:38	0	0	0	9:16:38	267	0.5	0.02	9:27:38	189	0.3	0.01
9:06:08	0	0	0	9:17:08	239	0.4	0.02	9:28:08	170	0.3	0.01
9:06:38	336	0.6	0.03	9:17:38	221	0.4	0.02	9:28:38	164	0.3	0.01
9:07:08	439	0.8	0.04	9:18:08	173	0.3	0.01	9:29:08	158	0.3	0.01
9:07:38	522	1.0	0.05	9:18:38	165	0.3	0.01	9:29:38	164	0.3	0.01
9:08:08	584	1.1	0.05	9:19:08	192	0.3	0.01	9:30:08	147	0.2	0.01
9:08:38	638	1.2	0.06	9:19:38	185	0.3	0.01	9:30:38	133	0.2	0.01
9:09:08	553	1.1	0.05	9:20:08	196	0.3	0.01	9:31:08	115	0.2	0.01
9:09:38	549	1.0	0.05	9:20:38	196	0.3	0.01	9:31:38	114	0.2	0.01
9:10:08	492	0.9	0.04	9:21:08	204	0.4	0.02	9:32:08	126	0.2	0.01
9:10:38	477	0.9	0.04	9:21:38	218	0.4	0.02	9:32:38	124	0.2	0.01
9:11:08	380	0.7	0.03	9:22:08	221	0.4	0.02	9:33:08	124	0.2	0.01
9:11:38	357	0.7	0.03	9:22:38	221	0.4	0.02	9:33:38	117	0.2	0.01
9:12:08	342	0.6	0.03	9:23:08	212	0.4	0.02	9:34:08	113	0.2	0.01
9:12:38	281	0.5	0.02	9:23:38	212	0.4	0.02	9:34:38	116	0.2	0.01
9:13:08	220	0.4	0.02	9:24:08	205	0.4	0.02	9:35:08	118	0.2	0.01
9:13:38	201	0.4	0.02	9:24:38	224	0.4	0.02	9:35:38	125	0.2	0.01
9:14:08	199	0.3	0.01	9:25:08	215	0.4	0.02				
9:14:38	187	0.3	0.01	9:25:38	214	0.4	0.02				

Table 3. Non-Intrusive Soil CH₄ Levels Enclosed Soil Vapour Flux Chamber (SV-FC). CH₄ levels vs. Test recorded in the Soil Vapor-Flux Chamber (SV-FC) located at AGM Site W3m at Strategic et al Cameron H-03.

Strategic et al Cameron H-03
 Soil Vapor Flux Chamber (SV-FC)
 Site W3m September 11-2019

Figure-3. CH₄ Gas Levels vs. Test Time measured by the PMD in the FLUX Chamber at AGM Sites W3m from the well head at Strategic et al Cameron H-03.

Field PMD CH ₄ Values			
Venting Gas Volume Calculation Type	Gas Component	Volumetric FLUX (m ³ /m ² /day)	Gravimetric FLUX (g/m ² /day)
CH ₄ Gas FLUX Volume	Methane (CH ₄)	0.001319241	0.861699781
Laboratory Chemical Compositions			
	Gas Component	Volumetric FLUX (m ³ /m ² /day)	Gravimetric FLUX (g/m ² /day)
Speciated LHG & CO ₂ Gas FLUX Volume	Methane (CH ₄) Ethane (C ₂ H ₆) Propane (C ₃ H ₈) n-Butane (n-C ₄ H ₁₀) Carbon Dioxide (CO ₂)		

Table-4. Calculated venting CH₄ (methane) gas FLUX & Speciated FLUX Rate-Volume measured at anomalous AGM Site W3m from the well head at Strategic et al Cameron H-03. A speciated light hydrocarbon venting gas flux rate-volume (methane, ethane, propane, butane) and carbon dioxide was not calculated.

4.2 Analytical Methods

- a. High Resolution Compositional Analysis (HRCA).
 - i. He, H₂, O₂, N₂, CO₂, CH₄ to n-C₅H₁₂ & C₆+
- b. Stable Carbon ($\delta^{13}\text{C}$) and Hydrogen (δD) Isotopic Analysis.
 - i. $\delta^{13}\text{C}$ CH₄ to n-C₅H₁₂ and CO₂, and δD CH₄ to n-C₅H₁₂

Compositional (molecular) analyses were conducted at GCHEM's Analytical Laboratory using Hewlett Packard 5890 and Agilent 7890 Gas Chromatographs (GCs) configured for low (ppb v/v to ppm v/v) to high (vol. %) level detection of light alkane/alkene gases and atmospheric gas components. Chemical analysis of gases measured, and analytical error are shown in Table-1.

Stable carbon ($\delta^{13}\text{C}$) isotope ratios of light hydrocarbon gases (LHG) and carbon dioxide and hydrogen isotope ratios (δD) of LHG were also measured at GCHEM's Analytical Laboratory on a Thermo-Scientific MAT-253 Gas Chromatograph-Combustion-Continuous Flow-Isotope Ratio Mass Spectrometer (GC-C-CF-IRMS). Carbon isotope ratios are reported in delta (δ) notation and per mil (‰, parts per thousand) with respect to VPDB (Vienna Pee Dee Belemnite). Hydrogen isotope ratios are reported in delta (δ) notation and per mil (‰) with respect to VSMOW (Vienna Standard Mean Ocean Water).

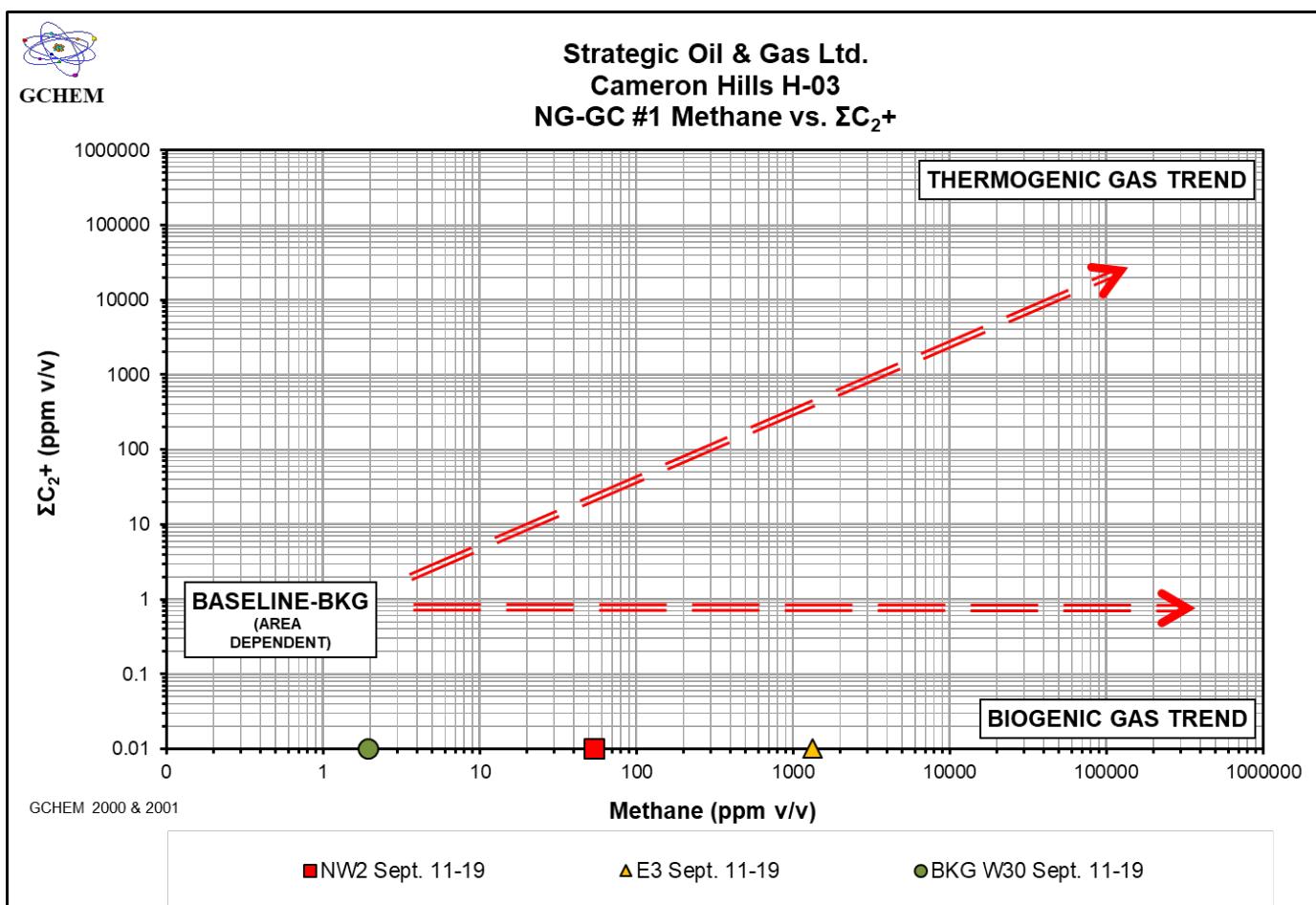
Gas Component (ppmv)	Molecular Formula	Analytical Error (%)	Stable Carbon Isotopic Composition ($\delta^{13}\text{C}$)	Analytical Error (‰ VPDB)	Hydrogen Isotopic Composition (δD)	Analytical Error (‰ VSMOW)
Hydrogen	H ₂	±7%	-	-	$\delta\text{D H}_2$	±10
Helium	He	±7%	-	-	-	-
Nitrogen	N ₂	±7%	-	-	-	-
Oxygen	O ₂	±7%	-	-	-	-
Carbon Dioxide	CO ₂	±7%	$\delta^{13}\text{C CO}_2$	±0.2	-	-
Hydrogen Sulphide	H ₂ S	±7%	-	-	-	-
Methyl Mercaptan	CH ₄ S	±7%	-	-	-	-
Ethyl Mercaptan	C ₂ H ₆ S	±7%	-	-	-	-
Thiophene	C ₄ H ₄ S	±7%	-	-	-	-
Dimethyl Disulfide	C ₂ H ₆ S ₂	±7%	-	-	-	-
Methane	CH ₄	±7%	$\delta^{13}\text{C CH}_4$	±0.1	$\delta\text{D CH}_4$	±10
Ethane	C ₂ H ₆	±7%	$\delta^{13}\text{C C}_2\text{H}_6$	±0.2	$\delta\text{D C}_2\text{H}_6$	±10
Ethene	C ₂ H ₄	±7%	$\delta^{13}\text{C C}_2\text{H}_4$	±0.2	$\delta\text{D C}_2\text{H}_4$	±10
Propane	C ₃ H ₈	±7%	$\delta^{13}\text{C C}_3\text{H}_8$	±0.2	$\delta\text{D C}_3\text{H}_8$	±10
Propene	C ₃ H ₆	±7%	$\delta^{13}\text{C C}_3\text{H}_6$	±0.2	$\delta\text{D C}_3\text{H}_6$	±10
iso-Butane	i-C ₄ H ₁₀	±7%	$\delta^{13}\text{C i-C}_4\text{H}_{10}$	±0.2	$\delta\text{D i-C}_4\text{H}_{10}$	±10
normal-Butane	n-C ₄ H ₁₀	±7%	$\delta^{13}\text{C n-C}_4\text{H}_{10}$	±0.2	$\delta\text{D n-C}_4\text{H}_{10}$	±10
iso-Pentane	i-C ₅ H ₁₂	±7%	$\delta^{13}\text{C i-C}_5\text{H}_{12}$	±0.2	$\delta\text{D i-C}_5\text{H}_{12}$	±10
normal-Pentane	n-C ₅ H ₁₂	±7%	$\delta^{13}\text{C n-C}_5\text{H}_{12}$	±0.2	$\delta\text{D n-C}_5\text{H}_{12}$	±10
Hexane and higher	C ₆ +	±7%	-	-	-	-

Table 5. Gas components, isotopic compositions measured and the analytical error of the measurements at GCHEM's Analytical Laboratory.

5.0 Geochemical Measurements-Laboratory Results.

As part of this VIA (AGM), a total of 4 gas samples were collected, contained and preserved from the following locations or sample points: SVPs-soils outside casing (E5m, NW2m, W3m and E3m) and 3-BKG locations (N30m, W30m and E30m).

At the request of the Strategic Oil and Gas, chemical and $\delta^{13}\text{C}$ isotopic compositions were measured for gases obtained from two SVP test sites (E3m and NW2m) that contained elevated, above background, levels of combustible gases and chemical compositions for one BKG SVP (W30m). High Resolution chemical and $\delta^{13}\text{C}$ isotopic compositions were measured at GCHEM's Forensic Lab and are provided in Table 4.


5.1 Gases Obtained from Soil Vapor Probes (SVPs).

Gases measured in two SVPs test sites in soils near the well bore (E3m and NW2m) contain elevated above atmospheric levels of CO_2 (3329 and 9963 ppm v/v, respectively). Methane gas was elevated (1331 and 53.75 ppm v/v, respectively) when compared to background level measured at BKG W30m (1.94 ppm v/v) (Table 4 and Figure 3). C_2+ gas levels in SVPs E3m and NW2m were low (<0.01) and similar to background levels (<0.01 ppm v/v). High methane with low, associated C_2+ thermogenic gases suggests a biogenic or biotic source via CO_2 reduction or fermentation reactions for methane gas (Figures 5 and 6). C_6+ gas contents at SVPs sites E3m and NW2m were low (0.09 and 0.07 ppm v/v respectively) and suggest hydrocarbon contamination was not present at SVP test sites (Figure 4).

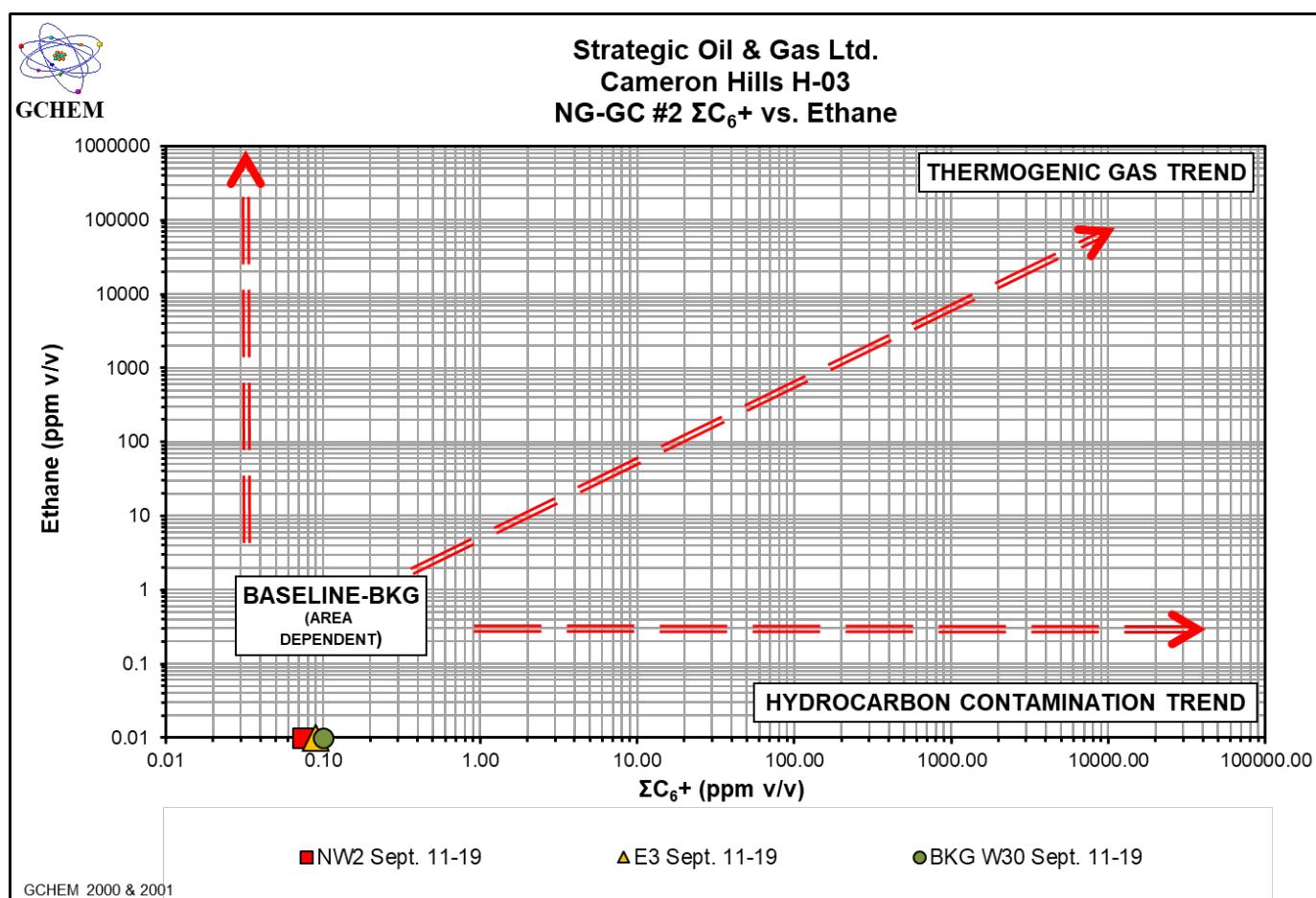
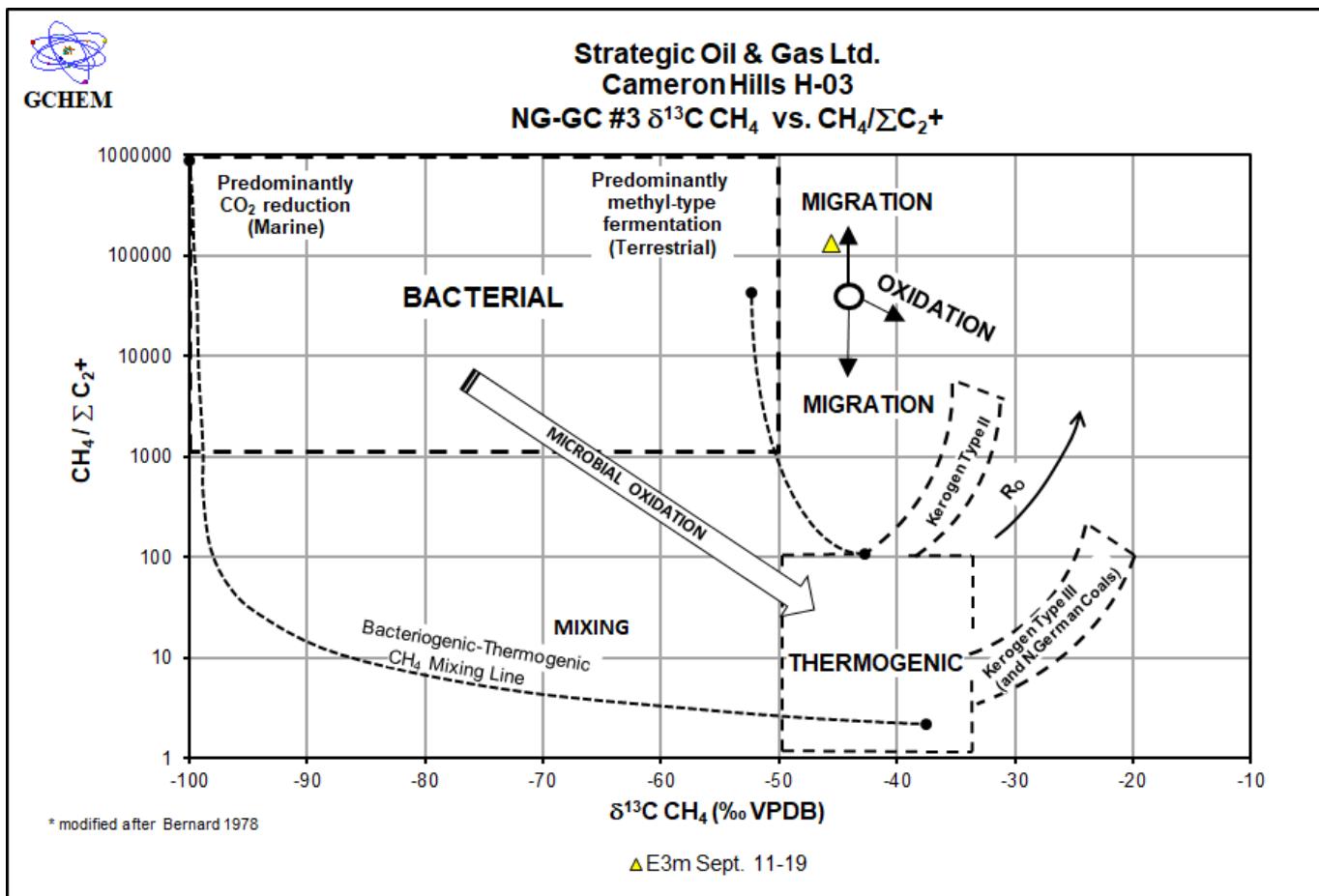

Sufficient level of CH_4 was too low to measure $\delta^{13}\text{C}$ isotopic compositions at SVP site NW2m and levels of C_2+ gases at SVP sites E3m and NW2m were too low to measure $\delta^{13}\text{C}$ isotopic compositions. $\delta^{13}\text{C}$ CH_4 and $\delta^{13}\text{C}$ CO_2 at SVP E3m was -45.61 and -13.38 ‰ VPDB, respectively. $\delta^{13}\text{C}$ CO_2 at SVP NW2m was -14.29 ‰ VPDB (Table 4). $\delta^{13}\text{C}$ CH_4 and CO_2 values for gases obtained at soil site E3m shows significant alteration by bacterial oxidation processes however, low, similar to background levels of ΣC_2+ supports a biotic source for CH_4 gas via bacterial fermentation pathways at both SVP sites E3m and NW2m (Figures 6 and 7).

Table 6. High resolution molecular and stable carbon isotopic compositions of gas samples collected as part of the VIA at Strategic et al Cameron H-03. Hydrogen isotopic compositions were not measured at the request of SOG.


Gas Component	Sample Point Date Collected	NW2 Sept. 11-19 (ppm v/v)	E3 Sept. 11-19 (ppm v/v)	BKG W Sept. 11-19 (ppm v/v)
Hydrogen		2.96	5.58	4.16
Helium		2.40	2.66	2.38
Nitrogen		776335	772574	777865
Oxygen		220278	216123	220204
Carbon Dioxide		3329	9963	1922
Methane		53.75	1331	1.94
Ethane		<0.01	<0.01	<0.01
Ethene		<0.01	<0.01	<0.01
Propane		<0.01	<0.01	<0.01
Propene		<0.01	<0.01	<0.01
iso-Butane		<0.01	<0.01	<0.01
n-Butane		<0.01	<0.01	<0.01
iso-Pentane		<0.01	<0.01	<0.01
n-Pentane		<0.01	<0.01	<0.01
C ₆ +		0.07	0.09	0.10
<hr/>				
C1 Index (C1/ΣC2+)		N/A	N/A	N/A
C2 Index (C2/ΣC3+)		N/A	N/A	N/A
C3 Index (C3/ΣC4+)		N/A	N/A	N/A
C4 Index (C4/C5)		N/A	N/A	N/A
ΣC2+		N/A	N/A	N/A
ATM Ratio (N2/O2)		3.52	3.57	3.53
Vol % CO ₂ of TG		0.33	1.00	0.19
Vol % Lt. Alk. of TG		0.01	0.13	0.00
Vol % Lt. Alk. CH ₄		100.0	100.0	100.00
Vol % Lt. Alk. C ₂ +		0.00	0.00	0.00
Vol % C ₂ + of TG		0.00	0.00	0.00
<hr/>				
Stable Carbon Isotope Compositions (‰ VPDB)				
δ ¹³ C CH ₄		nm	-45.61	nm
δ ¹³ C C ₂ H ₆		nm	nm	nm
δ ¹³ C C ₂ H ₄		nm	nm	nm
δ ¹³ C C ₃ H ₈		nm	nm	nm
δ ¹³ C C ₃ H ₆		nm	nm	nm
δ ¹³ C i-C ₄ H ₁₀		nm	nm	nm
δ ¹³ C n-C ₄ H ₁₀		nm	nm	nm
δ ¹³ C i-C ₅ H ₁₂		nm	nm	nm
δ ¹³ C n-C ₅ H ₁₂		nm	nm	nm
δ ¹³ C CO ₂		-14.29	-13.38	-16.99
<hr/>				
Stable Hydrogen Isotopic Compositions (‰ VSMOW)				
δD H ₂		nm	nm	nm
δD CH ₄		nm	nm	nm
δD C ₂ H ₆		nm	nm	nm
δD C ₃ H ₈		nm	nm	nm
δD i-C ₄ H ₁₀		nm	nm	nm
δD n-C ₄ H ₁₀		nm	nm	nm
<hr/>				
14C Concentration (pMC)		nm	nm	nm

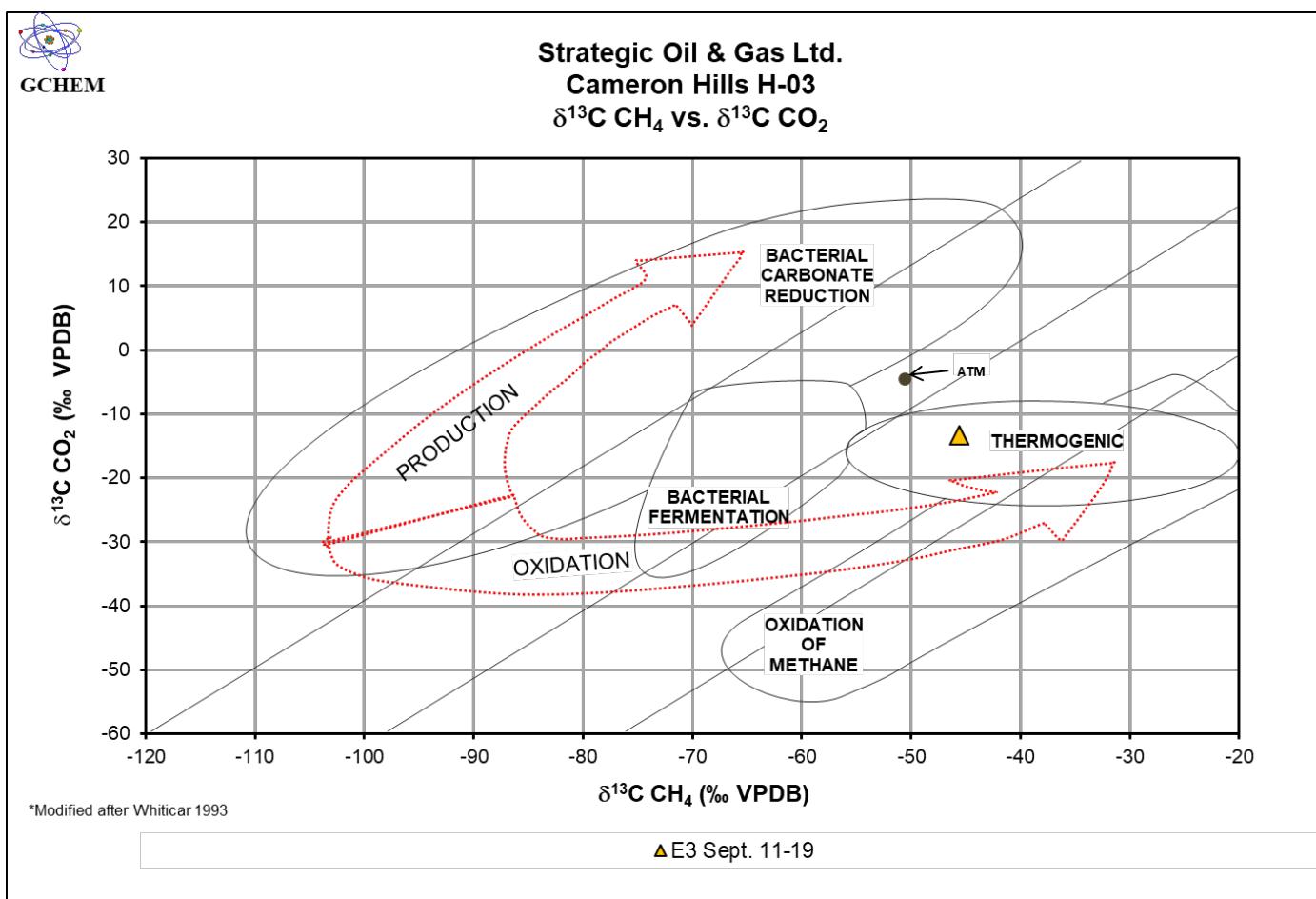

Figure-4. ΣC_2+ vs Methane. Combustible gases detected in soils and SCVs at a wellhead may result from several origins. Natural gases indicative of SCVF or AGM are thermogenic in origin (natural gas in deep reservoirs), contain high methane and C_2+ contents and plot in the Upper RH Quadrant. Low natural gas levels in background, off lease areas are naturally present in soils, vary from region to region and plot in the Lower LH Quadrant. Biogenic gases (swamp-gas) are produced by bacteria, are comprised of predominantly methane and plot in Lower RH Quadrant. Samples plotting in the Lower LH and RH do not contain SCVF or AGM and would not require down-hole remediation.

Figure 5. ΣC_6+ vs Ethane. C_6+ gases are relatively large molecules that do not readily or easily migrate in large quantities from depth upwards through subsurface fractures or micro-fractures to surface. Contamination by oil spills, fuels, and solvents is indicated by soil vapor samples that have high contents of C_6+ compounds and plot in the Lower RH Quadrant. Samples plotting in the Lower LH and RH Quadrants do not contain evidence of either SCVF or AGM and would not require downhole repair operations.

Figure 6. $\text{CH}_4 / \Sigma\text{C}_{2+}$ vs. $\delta^{13}\text{C CH}_4$. Thermogenic methane or methane generated by abiotic processes such as the thermal degradation of organic matter at high temperature and pressure (thermogenesis) contains enriched (less negative) $\delta^{13}\text{C}$ values ranging from -50 to -20‰ VPDB and methane relative to C_{2+} gas contents (gas wetness) less than 100. Methane gas can be generated by biotic processes such as the degradation of organic matter via CO_2 reduction or fermentation reactions generating biogenic methane. It should be noted that as a normal part of soil respiration, methane may be generated or destroyed by variable biotic pathways. Biogenic methane gas may be oxidized by bacteria resulting in an 'isotopic enriching effect' (i.e. $\delta^{13}\text{C}$ values become less negative as a result of oxidizing bacteria in soils that preferentially consume ^{12}C over ^{13}C , leaving the remaining gas enriched in ^{13}C). Since biogenic oxidation decreases the ratio between ^{12}C and ^{13}C , it may result in enriched $\delta^{13}\text{C CH}_4$ values that overlap with the MIXING or THERMOGENIC-GAS TREND. Biogenic methane may therefore contain $\delta^{13}\text{C}$ values greater than -50‰ VPDB (GCHEM Internal RD).

Figure 7. $\delta^{13}\text{C CO}_2$ vs. $\delta^{13}\text{C CH}_4$. Thermogenic methane or methane generated by abiotic processes such as the degradation of organic matter at high temperature and pressure contains enriched (less negative) $\delta^{13}\text{C}$ values ranging from -55 to -20‰ VPDB (or higher) and $\delta^{13}\text{C CO}_2$ values in the range of -25 to 4‰ VPDB. Methane gas may be generated by biotic processes such as the degradation of organic matter via CO_2 reduction or fermentation reactions generating biogenic methane. Biogenic methane may contain $\delta^{13}\text{C}$ values greater than -40‰ VPDB due to biogenic oxidation processes (GCHEM, in prep.).

6.0 Conclusions

Soils outside casing are wet increasing the difficulty leaking natural gas assessments. 11 of the 13 intrusive soil sites outside casing tested for combustible gas contents contained elevated methane levels that ranged from 52 to 5050 ppm v/v. H₂S was not detected (< 1.0 ppm v/v) at any of the soil test hole sites. SOG selected SVP test sites E3m (1179 ppm v/v) and NW2m (4164 ppm v/v) for high resolution chemical and stable carbon isotope measurements to classify combustible gas contents. Light hydrocarbon gases were dominated by methane gas while associated C₂+ gases were low and similar to background levels measured at test site BKG N30m. Methane index ratio (gas wetness) suggest that elevated %LEL values and associated CH₄ gas measured at the 2-soil sites are biogenic in origin. Sufficient levels of methane were available from only soil test site E3m for $\delta^{13}\text{C}$ CH₄ and $\delta^{13}\text{C}$ CO₂ isotopic measurements. Test site E3m contains enriched $\delta^{13}\text{C}$ CH₄ values. However, gases obtained from shallow soils are subject to extensive bacterial oxidization enriching effects and as such, CH₄ gas is probably the result of low temperature degradation of organic matter that has undergone primary bacterial oxidation and secondary alteration processes.

With information available to date, SVP soil test sites E3m and NW2m would be classified as ‘biogenic-baseline’ where CH₄ gas is the result of natural soil respirations processes via CO₂ reduction or fermentation processes generating biogenic CH₄. C₂+ gases in soils at these test sites are low and similar to background levels and the result of natural movement of thermogenic natural gas, from reservoirs at depth, upward through fractures and micro-fractures to surface. This is a naturally occurring process prevalent in every hydrocarbon sedimentary basin in the world.

Attachment-1

Strategic Oil & Gas Ltd.

Strategic Cameron H-03

Well Site Photographs


Strategic Oil and Gas Ltd.
Cameron Hills H-03
September 11-12, 2019

Strategic Oil and Gas Ltd.
Cameron Hills H-03
September 11-12, 2019

Strategic Oil and Gas Ltd.
Cameron Hills H-03
September 11-12, 2019

Attachment-2

Strategic Oil & Gas Ltd.

Strategic Cameron H-03

Chain of Custody (COC)

CHAIN OF CUSTODY

Sample Submission Form

Bay#1, 4810-62nd Ave, Lloydminster, Alberta T9V 2E9
 Email: info@gchem.ca
 Tel (780) 871-4668
 Fax: (780) 868-5883

GCHEM LTD.

GCHEM Ltd. Project#

Client Information

Company Strategic
 Address _____
 City, Prov. _____
 Postal Code _____
 Client Contact _____
 Phone # _____
 Fax # _____
 E-Mail _____

Billing/Report Information

 Sampled By Walker, Brian

AFE/PO #

Services Needed (TAT)

*Standard 5-7 Days
 ** Rush 48hrs. _____
 *** Priority Rush 24hrs. _____

(*) Working Days
 (**) Call for Pricing and Advance Notice

Analysis To Be Performed

IRMS $\delta^{13}\text{C}$ Analysis	IRMS $\delta^{2}\text{H}$ (D) Analysis	High Resolution Compositional Analysis
Produced Water Forensic Suite	High Resolution Compositional H ₂ S Analysis	

No.	Location	Sample Identifier	Sample Time	Date Sampled	Pressure Received	Actual Pressure	Container Type	Qty.	Sample Volume	Media Type
1	<u>H03</u>	Soil/Gas - initial	<u>Sep 11/19</u>				glass	<u>4</u>		
2		Flux Chamber - initial	<u>Sep 11/19</u>				glass	<u>2</u>		
3		Background - initial	<u>Sep 11/19</u>				glass	<u>3</u>		
4		Soil Gas - final	<u>Sep 12/19</u>				glass	<u>4</u>		
5		Background - final	<u>Sep 12/19</u>				glass	<u>1</u>		
6		Background Chamber	<u>Sep 11/19</u>				glass	<u>1</u>		
7										
8										
9										
10										

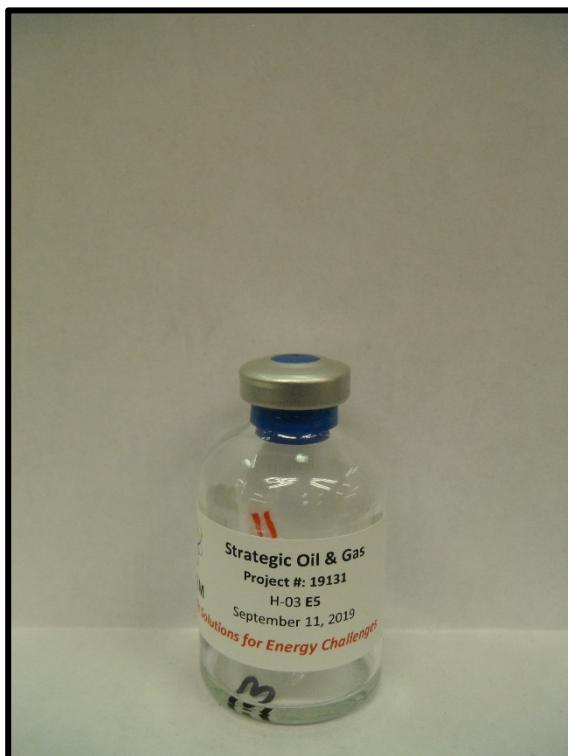
Comments

Relinquished By: John Morris Date/Time: Sep 17 Relinquished To: _____
 Relinquished By: _____ Date/Time: _____

Date/Time: _____
 Relinquished To: _____
 Date/Time: _____

Attachment-3

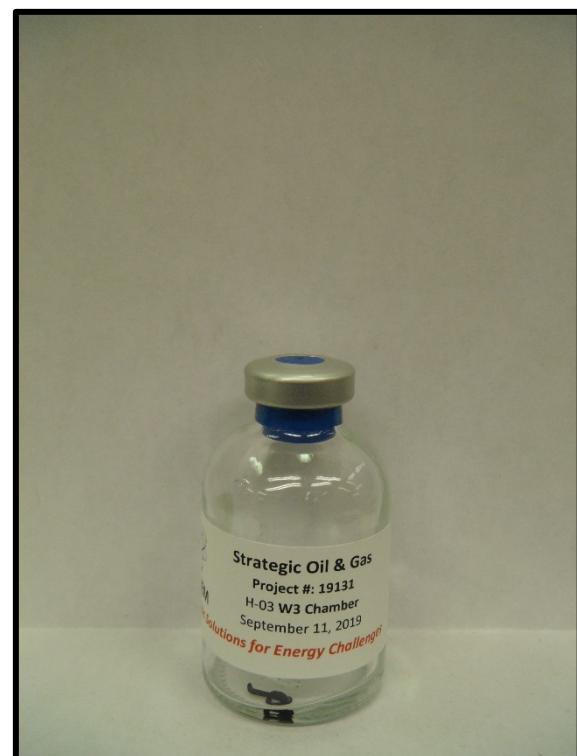
Strategic Oil & Gas Ltd.

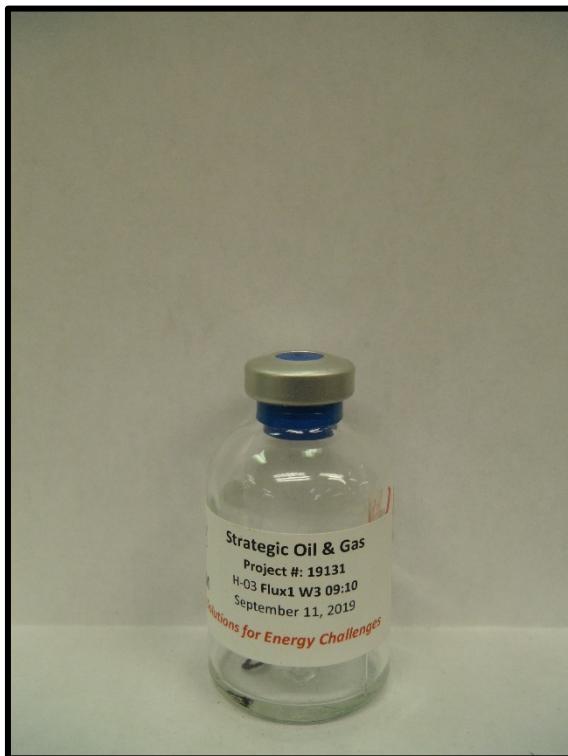

Strategic Cameron H-03

Gas Sample Containers

Photographs

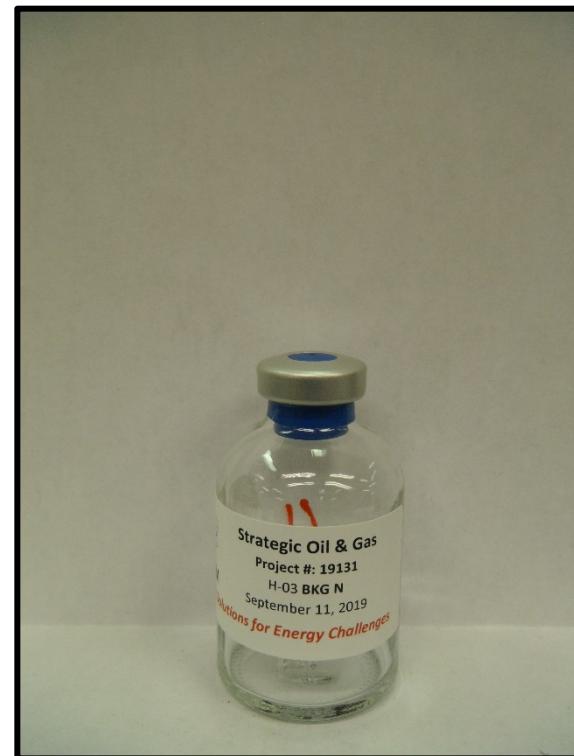
(red boxed pictures are samples measured for chemical and/or isotopic compositions)

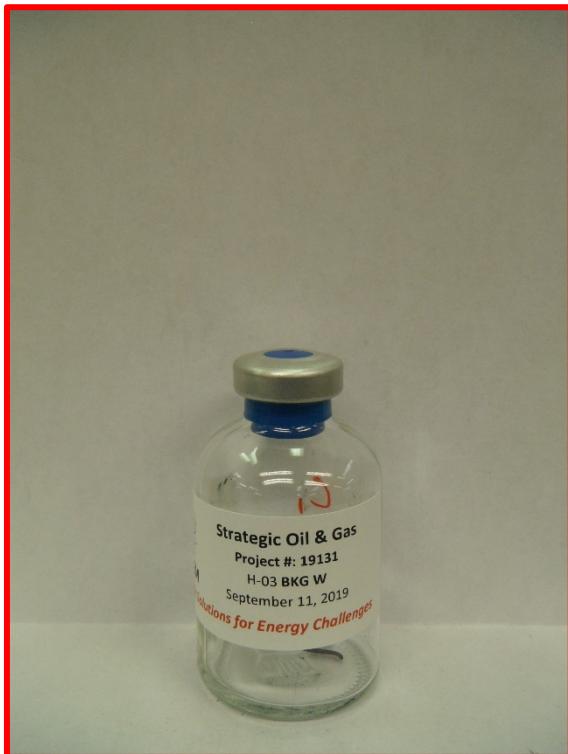

E5m
September 11, 2019

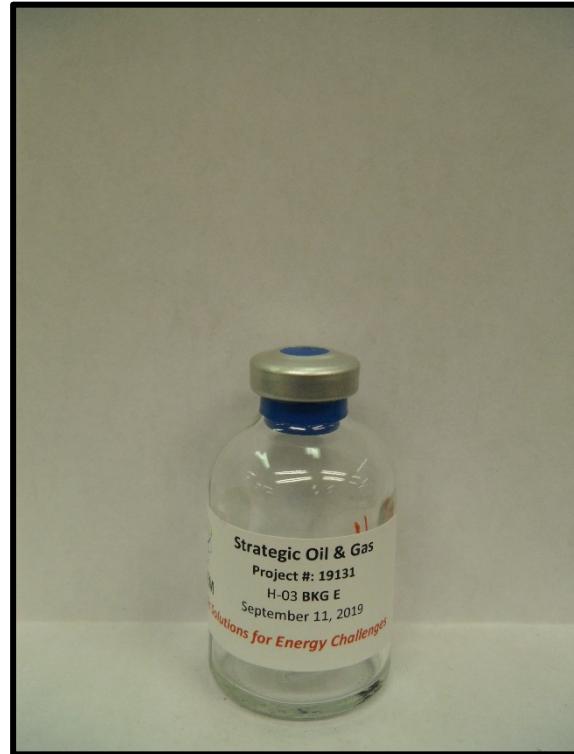

E5m
September 12, 2019

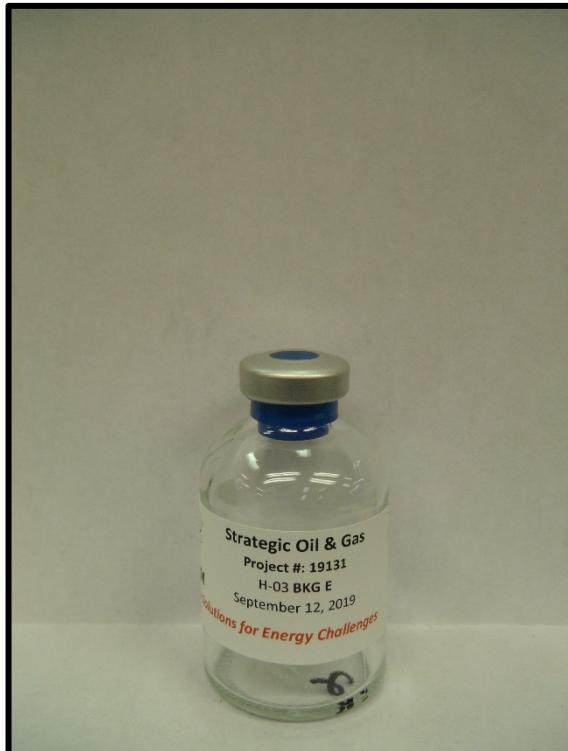
NW2m
September 11, 2019

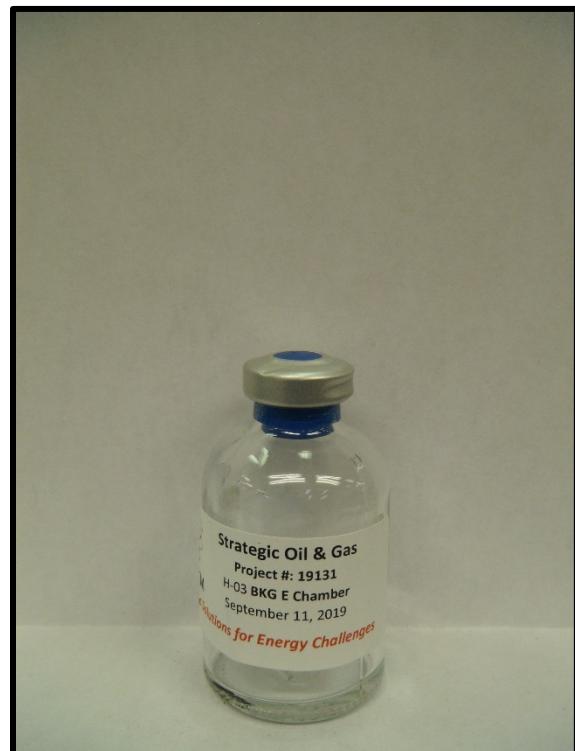
W3m Flux Chamber
September 11, 2019


Flux 1 W3m 09:10
September 11, 2019


E3m
September 11, 2019


E3m
September 12, 2019

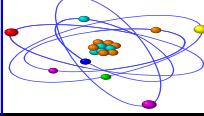

BKG N30m
September 11, 2019


BKG W30m
September 11, 2019

BKG E30m
September 11, 2019

BKG E30m
September 12, 2019

BKG E Chamber
September 12, 2019



Attachment-4

Strategic Oil & Gas Ltd.

Strategic Cameron H-03

Gas Analysis Data Sheets (GADS)

GCHEM LTD.		HIGH RESOLUTION GAS ANALYSIS CARBON ISOTOPE ANALYSIS HYDROGEN ISOTOPE ANALYSIS				
Sampling Company GCHEM Ltd. Date Tested September 11, 2019 Operator Name Strategic Oil & Gas Unique Well Identifier H-03 Well Name not provided Field or Area not provided Pool or Zone not provided Well License not provided H2S Level (Observed at Site) not provided		Lab Sample No. 19131-06 Test Type Soil gas Sample Container Type Glass Bottle Sampling Point NW2 Test Intervals or Perfs mKB N/A Date Received September 17, 2019 Date Reported October 9, 2019 Entered By Xiaolong Wang Reviewed By Brad Johnston				
Sample Handling Conditions						
Source/Sampled Pressure (kPa) Temperature (°C)		Received N/A 57 N/A 20				
Other Information:						
Laboratory Analysis						
Component	HRGC Analysis As Received Mol Frac.	Air Free As received Mol Frac.	Air Free / Acid Free As Received Mol Frac.	Carbon Isotope Analysis ‰ VPDB	Hydrogen Isotope Analysis ‰ VSMOW	HRGC Analysis As Received ppm v/v
Neon	0.000013	0.003936	0.003936			13.33
Hydrogen	0.000003	0.000874	0.000874			2.96
Helium	0.000002	0.000707	0.000707			2.40
Nitrogen	0.776335	0.000000	0.000000			776335
Oxygen	0.220278	0.000004	0.000004			220278
Carbon Dioxide	0.003329	0.982527	0.982527	-14.29		3329
Carbonyl Sulphide	nm	nm	nm			nm
Hydrogen Sulphide	nm	nm	nm			nm
Methyl Mercaptan	nm	nm	nm			nm
Ethyl Mercaptan	nm	nm	nm			nm
Thiophene	nm	nm	nm			nm
Dimethyl Disulphide	nm	nm	nm			nm
Methane	0.000054	0.015866	0.015866			53.75
Ethane	0.000000	0.000000	0.000000			<0.01
Ethene	0.000000	0.000000	0.000000			<0.01
Propane	0.000000	0.000000	0.000000			<0.01
Propene	0.000000	0.000000	0.000000			<0.01
iso-Butane	0.000000	0.000000	0.000000			<0.01
n-Butane	0.000000	0.000000	0.000000			<0.01
iso-Pentane	0.000000	0.000000	0.000000			<0.01
n-Pentane	0.000000	0.000000	0.000000			<0.01
C ₆ +	0.000000	0.000022	0.000022			0.07
TOTAL	1.000000	1.000000	1.000000			1000000
Properties						
Compositional Indicies		Real Gross Heating Value (mj/m3) @15°C and 101.35 kPa			Relative Density	
Vol % Hydrocarbons	0.01	Air Free	Moisture and	Calc. Mol.	Calc. Relative	
Vol % CH ₄	100.0	as received	Acid Gas Free	Mass Ratio	Density	
Vol % C ₂ +	0.00	0.00	0.62	0.9994	0.9994	
CH ₄ / \sum C ₂ +	N/A	Pseudo Critical Properties				
C ₂ / \sum C ₂ +	N/A	As Received Acid Gas Free				
C ₃ / \sum n-C ₄ +	N/A	pPc (kPa)	3767	7327		
		pTc (°K)	133	302		
Geological Origin of Natural Gas						
Geological Formation		Depth Range (MD from KB of Well)		Probable Depth (MD from KB of Well)		
Comments						
Forensic Solutions for Oilfield Challenges						
GCHEM Ltd. Bay #1, 4810-62 Avenue Lloydminster, AB T9V 2E9 Tel: (780) 871-4668 Fax: (780) 808-8883 e-mail: info@gchem.ca www.gchem.ca GPA 2145-09. Revision 1.3, August 1, 2016						

GCHEM LTD.					
HIGH RESOLUTION GAS ANALYSIS CARBON ISOTOPE ANALYSIS HYDROGEN ISOTOPE ANALYSIS					
Sampling Company	GCHEM Ltd.		Lab Sample No.	19131-09	
Date Tested	September 11, 2019		Test Type	Soil gas	
Operator Name	Strategic Oil & Gas		Sample Container Type	Glass Bottle	
Unique Well Identifier	H-03		Sampling Point	E3	
Well Name	not provided		Test Intervals or Perfs mKB	N/A	
Field or Area	not provided		Date Received	September 17, 2019	
Pool or Zone	not provided		Date Reported	October 9, 2019	
Well License	not provided		Entered By	Xiaolong Wang	
H2S Level (Observed at Site)	not provided		Reviewed By	Brad Johnston	
Sample Handling Conditions					
Pressure (kPa)	Source/Sampled	Received			
Pressure (kPa)	N/A	-58/24			
Temperature (°C)	N/A	20			
Other Information:					
Laboratory Analysis					
Component	HRGC Analysis As Received Mol Frac.	Air Free As received Mol Frac.	Air Free / Acid Free As Received Mol Frac.	Carbon Isotope Analysis %o VPDB	Hydrogen Isotope Analysis %o VSMOW
Neon	0.000014	0.001246	0.001246		
Hydrogen	0.000006	0.000494	0.000494		
Helium	0.000003	0.000235	0.000235		
Nitrogen	0.772574	0.000000	0.000000		
Oxygen	0.216123	0.000001	0.000001		
Carbon Dioxide	0.009963	0.881480	0.881480	-13.38	
Carbonyl Sulphide	nm	nm	nm		
Hydrogen Sulphide	nm	nm	nm		
Methyl Mercaptan	nm	nm	nm		
Ethyl Mercaptan	nm	nm	nm		
Thiophene	nm	nm	nm		
Dimethyl Disulphide	nm	nm	nm		
Methane	0.001331	0.117783	0.117783	-45.61	
Ethane	0.000000	0.000000	0.000000		
Ethene	0.000000	0.000000	0.000000		
Propane	0.000000	0.000000	0.000000		
Propene	0.000000	0.000000	0.000000		
iso-Butane	0.000000	0.000000	0.000000		
n-Butane	0.000000	0.000000	0.000000		
iso-Pentane	0.000000	0.000000	0.000000		
n-Pentane	0.000000	0.000000	0.000000		
C ₆ +	0.000000	0.000008	0.000008		0.09
TOTAL	1.000000	1.000000	1.000000		1000000
Properties					
Compositional Indicies		Real Gross Heating Value (mj/m3)		Relative Density	
Vol % Hydrocarbons	0.13	@15°C and 101.35 kPa		Calc. Mol. Mass Ratio	Calc. Relative Density
Vol % CH ₄	100.0	Air Free as received	Moisture and Acid Gas Free	1.0019	1.0020
Vol % C ₂ +	0.00	0.05	4.47		
CH ₄ / \sum C ₂ +	N/A				
C ₂ / \sum C ₃ +	N/A				
C ₃ / \sum n-C ₄ +	N/A				
Pseudo Critical Properties					
		As Received	Acid Gas Free		
pPc (kPa)		3789	7050		
pTc (°K)		134	291		
Geological Origin of Natural Gas					
Geological Formation		Depth Range (MD from KB of Well)		Probable Depth (MD from KB of Well)	
Comments					
Forensic Solutions for Oilfield Challenges					
GCHEM Ltd. Bay #1, 4810-62 Avenue Lloydminster, AB T9V 2E9 Tel: (780) 871-4668 Fax: (780) 808-8883 e-mail: info@gchem.ca www.gchem.ca GPA 2145-09. Revision 1.3, August 1, 2016					

GCHEM LTD.		HIGH RESOLUTION GAS ANALYSIS CARBON ISOTOPE ANALYSIS HYDROGEN ISOTOPE ANALYSIS																																																																																																																																																			
Sampling Company GCHEM Ltd. Date Tested September 11, 2019 Operator Name Strategic Oil & Gas Unique Well Identifier H-03 Well Name not provided Field or Area not provided Pool or Zone not provided Well License not provided H2S Level (Observed at Site) not provided		Lab Sample No. 19131-02 Test Type Soil gas Sample Container Type Glass Bottle Sampling Point BKG W Test Intervals or Perfs mKB N/A Date Received September 17, 2019 Date Reported October 9, 2019 Entered By Xiaolong Wang Reviewed By Brad Johnston																																																																																																																																																			
Sample Handling Conditions																																																																																																																																																					
Pressure (kPa) N/A Temperature (°C) N/A		Source/Sampled Received 57 20																																																																																																																																																			
Other Information:																																																																																																																																																					
Laboratory Analysis																																																																																																																																																					
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Component</th> <th style="text-align: left;">HRGC Analysis As Received Mol Frac.</th> <th style="text-align: left;">Air Free As received Mol Frac.</th> <th style="text-align: left;">Air Free / Acid Free As Received Mol Frac.</th> <th style="text-align: left;">Carbon Isotope Analysis % VPDB</th> <th style="text-align: left;">Hydrogen Isotope Analysis ‰ VSMOW</th> </tr> </thead> <tbody> <tr><td>Neon</td><td>0.000013</td><td>0.006819</td><td>0.006819</td><td></td><td></td></tr> <tr><td>Hydrogen</td><td>0.000004</td><td>0.002154</td><td>0.002154</td><td></td><td></td></tr> <tr><td>Helium</td><td>0.000002</td><td>0.001234</td><td>0.001234</td><td></td><td></td></tr> <tr><td>Nitrogen</td><td>0.777865</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>Oxygen</td><td>0.220204</td><td>0.000006</td><td>0.000006</td><td></td><td></td></tr> <tr><td>Carbon Dioxide</td><td>0.001922</td><td>0.995549</td><td>0.995549</td><td>-16.99</td><td></td></tr> <tr><td>Carbonyl Sulphide</td><td>nm</td><td>nm</td><td>nm</td><td></td><td></td></tr> <tr><td>Hydrogen Sulphide</td><td>nm</td><td>nm</td><td>nm</td><td></td><td></td></tr> <tr><td>Methyl Mercaptan</td><td>nm</td><td>nm</td><td>nm</td><td></td><td></td></tr> <tr><td>Ethyl Mercaptan</td><td>nm</td><td>nm</td><td>nm</td><td></td><td></td></tr> <tr><td>Thiophene</td><td>nm</td><td>nm</td><td>nm</td><td></td><td></td></tr> <tr><td>Dimethyl Disulphide</td><td>nm</td><td>nm</td><td>nm</td><td></td><td></td></tr> <tr><td>Methane</td><td>0.000002</td><td>0.001004</td><td>0.001004</td><td></td><td></td></tr> <tr><td>Ethane</td><td>0.000000</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>Ethene</td><td>0.000000</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>Propane</td><td>0.000000</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>Propene</td><td>0.000000</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>iso-Butane</td><td>0.000000</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>n-Butane</td><td>0.000000</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>iso-Pentane</td><td>0.000000</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>n-Pentane</td><td>0.000000</td><td>0.000000</td><td>0.000000</td><td></td><td></td></tr> <tr><td>C₆+</td><td>0.000000</td><td>0.000052</td><td>0.000052</td><td></td><td></td></tr> <tr><td>TOTAL</td><td>1.000000</td><td>1.000000</td><td>1.000000</td><td></td><td>1000000</td></tr> </tbody> </table>						Component	HRGC Analysis As Received Mol Frac.	Air Free As received Mol Frac.	Air Free / Acid Free As Received Mol Frac.	Carbon Isotope Analysis % VPDB	Hydrogen Isotope Analysis ‰ VSMOW	Neon	0.000013	0.006819	0.006819			Hydrogen	0.000004	0.002154	0.002154			Helium	0.000002	0.001234	0.001234			Nitrogen	0.777865	0.000000	0.000000			Oxygen	0.220204	0.000006	0.000006			Carbon Dioxide	0.001922	0.995549	0.995549	-16.99		Carbonyl Sulphide	nm	nm	nm			Hydrogen Sulphide	nm	nm	nm			Methyl Mercaptan	nm	nm	nm			Ethyl Mercaptan	nm	nm	nm			Thiophene	nm	nm	nm			Dimethyl Disulphide	nm	nm	nm			Methane	0.000002	0.001004	0.001004			Ethane	0.000000	0.000000	0.000000			Ethene	0.000000	0.000000	0.000000			Propane	0.000000	0.000000	0.000000			Propene	0.000000	0.000000	0.000000			iso-Butane	0.000000	0.000000	0.000000			n-Butane	0.000000	0.000000	0.000000			iso-Pentane	0.000000	0.000000	0.000000			n-Pentane	0.000000	0.000000	0.000000			C ₆ +	0.000000	0.000052	0.000052			TOTAL	1.000000	1.000000	1.000000		1000000
Component	HRGC Analysis As Received Mol Frac.	Air Free As received Mol Frac.	Air Free / Acid Free As Received Mol Frac.	Carbon Isotope Analysis % VPDB	Hydrogen Isotope Analysis ‰ VSMOW																																																																																																																																																
Neon	0.000013	0.006819	0.006819																																																																																																																																																		
Hydrogen	0.000004	0.002154	0.002154																																																																																																																																																		
Helium	0.000002	0.001234	0.001234																																																																																																																																																		
Nitrogen	0.777865	0.000000	0.000000																																																																																																																																																		
Oxygen	0.220204	0.000006	0.000006																																																																																																																																																		
Carbon Dioxide	0.001922	0.995549	0.995549	-16.99																																																																																																																																																	
Carbonyl Sulphide	nm	nm	nm																																																																																																																																																		
Hydrogen Sulphide	nm	nm	nm																																																																																																																																																		
Methyl Mercaptan	nm	nm	nm																																																																																																																																																		
Ethyl Mercaptan	nm	nm	nm																																																																																																																																																		
Thiophene	nm	nm	nm																																																																																																																																																		
Dimethyl Disulphide	nm	nm	nm																																																																																																																																																		
Methane	0.000002	0.001004	0.001004																																																																																																																																																		
Ethane	0.000000	0.000000	0.000000																																																																																																																																																		
Ethene	0.000000	0.000000	0.000000																																																																																																																																																		
Propane	0.000000	0.000000	0.000000																																																																																																																																																		
Propene	0.000000	0.000000	0.000000																																																																																																																																																		
iso-Butane	0.000000	0.000000	0.000000																																																																																																																																																		
n-Butane	0.000000	0.000000	0.000000																																																																																																																																																		
iso-Pentane	0.000000	0.000000	0.000000																																																																																																																																																		
n-Pentane	0.000000	0.000000	0.000000																																																																																																																																																		
C ₆ +	0.000000	0.000052	0.000052																																																																																																																																																		
TOTAL	1.000000	1.000000	1.000000		1000000																																																																																																																																																
HRGC Analysis As Received ppm v/v 13.16 4.16 2.38 777865 220204 1922 nm nm nm nm nm nm nm 1.94 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.10																																																																																																																																																					
Properties																																																																																																																																																					
Compositional Indicies		Real Gross Heating Value (mj/m3) @15°C and 101.35 kPa <table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td style="text-align: left;">Air Free</td><td style="text-align: left;">Moisture and</td></tr> <tr><td style="text-align: left;">as received</td><td style="text-align: left;">Acid Gas Free</td></tr> <tr><td style="text-align: left;">0.00</td><td style="text-align: left;">0.07</td></tr> </table>		Air Free	Moisture and	as received	Acid Gas Free	0.00	0.07	Relative Density <table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td style="text-align: left;">Calc. Mol. Mass Ratio</td><td style="text-align: left;">Calc. Relative Density</td></tr> <tr><td style="text-align: left;">0.9986</td><td style="text-align: left;">0.9986</td></tr> </table>		Calc. Mol. Mass Ratio	Calc. Relative Density	0.9986	0.9986																																																																																																																																						
Air Free	Moisture and																																																																																																																																																				
as received	Acid Gas Free																																																																																																																																																				
0.00	0.07																																																																																																																																																				
Calc. Mol. Mass Ratio	Calc. Relative Density																																																																																																																																																				
0.9986	0.9986																																																																																																																																																				
Vol % Hydrocarbons Vol % CH ₄ Vol % C ₂ +																																																																																																																																																					
CH ₄ / Σ C ₂ +																																																																																																																																																					
C ₂ / Σ C ₃ +																																																																																																																																																					
C ₃ / Σ n-C ₄ +																																																																																																																																																					
Pseudo Critical Properties																																																																																																																																																					
<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td style="text-align: left;">pPc (kPa)</td><td style="text-align: left;">As Received</td><td style="text-align: left;">Acid Gas Free</td></tr> <tr><td style="text-align: left;">3762</td><td style="text-align: left;">7356</td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">pTc (°K)</td><td style="text-align: left;">133</td><td style="text-align: left;">303</td></tr> </table>						pPc (kPa)	As Received	Acid Gas Free	3762	7356		pTc (°K)	133	303																																																																																																																																							
pPc (kPa)	As Received	Acid Gas Free																																																																																																																																																			
3762	7356																																																																																																																																																				
pTc (°K)	133	303																																																																																																																																																			
Geological Origin of Natural Gas																																																																																																																																																					
Geological Formation		Depth Range (MD from KB of Well)		Probable Depth (MD from KB of Well)																																																																																																																																																	
Comments																																																																																																																																																					
Forensic Solutions for Oilfield Challenges																																																																																																																																																					
GCHEM Ltd. Bay #1, 4810-62 Avenue Lloydminster, AB T9V 2E9 Tel: (780) 871-4668 Fax: (780) 808-8883 e-mail: info@gchem.ca www.gchem.ca GPA 2145-09. Revision 1.3, August 1, 2016																																																																																																																																																					