
Strategic Oil & Gas Ltd.

Work Order-Ref #: 19084

Vapor Intrusion Assessment (VIA) Soils Outside Casing (AGM)

Strategic et al Cameron
2H-03

September 11 & 12, 2019

GCHEM Ltd.
BAY #1
4810-62ND AVE.
LLOYDMINSTER, AB
T9V 2E9
(780) 871-4668
www.gchem.ca
info@gchem.ca

FORENSIC SOLUTIONS FOR ENERGY CHALLENGES

Table of Contents

1.0	Executive Summary	4
2.0	Vapor Intrusions Assessment (VIA) Summary	5
2.1	Production Casing Assessment Summary Table	5
2.2	Surface Casing Vent Flow (SCVF) Assessment Summary Table	5
2.3	Soils Outside Casing (AGM) Assessment Summary Tables	6
2.4	Interpreted Source of Migrating Gases	7
3.0	Background of Vapor Intrusion Assessments (VIA) at Resource Wells and Tracing Gas contents in the Environment using Energy Forensics	8
3.1	Biogenically Derived Methane Gas	9
3.2	Thermogenic Methane Gas	9
3.3	Classification, Characterization, and Geologic Origins of Combustible Gases in the Environment	9
4.0	Methods and Results	11
4.1	Field Assessment Methods	11
4.1.1	Non-Intrusive Vapor Intrusion Assessment	11
4.1.2	Intrusive Vapor Intrusion Assessment	13
4.2	Analytical Methods	15
5.0	Geochemical Measurements- Laboratory Results	16
5.1	Gases Obtained from Soil Vapor Probes (SVPs)	16
6.0	Conclusions	25

List of Tables

Table 1	Non-Intrusive Surface PMD	12
Table 2	Intrusive AGM-Soil Vapor Probes	14
Table 3	Gas components, isotopic compositions measured and the analytical error of measurements at GCHEM'S Analytical Laboratory	15
Table 4	High resolution molecular and stable carbon compositions of gases collected during this investigation	17

List of Figures

Figure 1	Non-Intrusive Surface Methane Scan (PMD)	12
Figure 2	Intrusive Methane Readings from Soil Vapor Probes	14
Figure 3	ΣC_{2+} vs Methane	18
Figure 4	ΣC_{6+} vs Ethane	19
Figure 5	$CH_4 / \Sigma C_{2+}$ vs $\delta^{13}C CH_4$	20
Figure 6	$\delta^{13}C CO_2$ vs $\delta^{13}C CH_4$	21

List of Attachments

Attachment 1	Well Site Photographs	23
Attachment 2	Gas Sample Container Photographs	27
Attachment 3	Chain of Custody	29
Attachment 4	Gas Analysis Data Sheets (GADS)	32

1.0 Executive Summary

On September 11-12, 2019, Strategic et al Cameron Hills 2H-03 was investigated for natural gas leakage in soils outside casing. Total combustible gas (%LEL) and H₂S field instruments levels were used to measure gas levels and types at test soil test sites. Gas samples were collected, contained and preserved from soils outside casing (AGM) and for baseline comparison, background locations, ~30m away from the well bore were also assessed.

Soils outside casing immediately adjacent to and S of the well bore were water saturated however, no gas bubbling was observed in standing water. A 104 site non-intrusive surface CH₄ scan was conducted in soils outside casing and at 3-background locations (N30m, E30m, and W30m). Two sites outside casing (N1m-E5m and E1m-S5m) contained elevated (6 and 10 ppm v/v, respectively) above background levels (2 ppm v/v) of methane gas. All other sites tested near the wellbore contained low CH₄ levels (2 ppm v/v) that were similar to the BKG sites. A total of 6 soil sites outside casing were assessed for gas leakage using an intrusive methodology where 5cm vapor test holes were augered into soils and Soil Vapor Probes (SVPs) were inserted into each test hole. Of the 6 soil vapor test sites outside casing, 3 sites (NE3m 15,600 ppm v/v, W5m 362 ppm v/v, and NW3m 145 ppm v/v) contained elevated, above background (N30m 22 ppm v/v and E30m 35 ppm v/v) levels of methane gas in SVPs. To aid in classifying combustible gas contents in soils, SOG selected 2 soil sites (NE3m and W5m) for chemical and $\delta^{13}\text{C}$ isotopic measurements. Soil sites NE3m and W5m contained high levels of CH₄ gas with low, similar to background levels of associated ΣC_2+ gas contents. $\delta^{13}\text{C}$ CH₄ and $\delta^{13}\text{C}$ CO₂ values were depleted when compared to thermogenic CH₄ gas and suggest that elevated %LEL values and associated CH₄ gas measured at the 2-soil sites are biogenic in origin where CH₄ is being generated via CO₂ reduction or fermentation pathways. Low levels of ΣC_2+ gases in soils outside casing at NE3m and W5m are the result of natural movement of light hydrocarbon gases from reservoirs at depth, upward through subsurface fractures and micro-fractures to surface. This is a naturally occurring process in all hydrocarbon sedimentary basins in the world.

With information available to date, soil vapor tests sites NE3m and W5m would be classified as ‘Biogenic-Naturally Occurring CH₄-Non Impacted’.

2.0 Vapor Intrusion Assessment Summary

Operating Company: Strategic Oil & Gas Ltd.
Well Name: Strategic et al Cameron 2H-03
UWI: 3002H036010117300

License Number: 001992
Test Date September 11-12, 2019
GCHEM Project Number 19084

2.1 Production Casing Test Summary

Combustible Gas (CH₄) ([%LEL])	nm		
Hydrogen Sulphide (H₂S) Gas (ppm v/v)	nm		
PC Flow Rate (m³/day)	nm		
P-T Date Logger Installed	nm		
P-T Data Logger Removed	nm		
P-T Data Logger Test Duration	nm		
MAX Pressure (kPa)	nm		
Gas Spls. Collection-Measurement	Total Collected	Analysis Requested*	Classification**
PC Samples (Total)	0		
PC Combustible Gas Class. Level-1 (Chemical)	NA	NA	NA
PC Combustible Gas Class. Level-2 (¹³C)		NA	NA
PC Combustible Gas Class. Level-3 (⁸D)		NA	NA
PC Combustible Gas Class. Level-4 (¹⁴C)		NA	NA

2.2 Surface Casing Vent Flow (SCVF) Test Summary

SCV Ten-Minute Bubble Test Result	nm		
SCV Flow Rate (m³/day)	nm		
SCVF Pressure-Temp Logger Installed	nm		
SCV Pressure-Temp Data Logger Removed	nm		
SCV Shut-In Time (hrs)	nm		
SCV MAX-Recorded Build Up Pressure (kPa)	nm		
SCV Stabilized Build-up Pressure (kPa):	nm		
SCV Stabilized Build-up Time (hours)	nm		
SCV Standpipe Max CH₄ Content (% LEL):	nm		
SCV Standpipe Max H₂S Content	nm		
SCV Gas Spls. Collection-Measurement	Total Collected	Analysis Requested*	Classification**
SCV Samples (Total)	0		
SCV Combustible Gas Class. Level-1 (Chemical)	NA	NA	NA
SCV Combustible Gas Class. Level-2 (¹³C)		NA	NA
SCV Combustible Gas Class. Level-3 (⁸D)		NA	NA
SCV Combustible Gas Class. Level-4 (¹⁴C)		NA	NA

2.3 Soil Gas Migration-Vapor Intrusion Assessment: Soils Outside Casing (AGM) Summary

A) Non-Intrusive CH₄ Surface Soil Scan (PMD) (Figure-1 and Table-1)

Well Casing Surface CH ₄ Test Sites	104
MAX Surface CH ₄ Reading	10
MAX H ₂ S Well Soil Reading (ppm v/v)	<1
Number of Background Sites	3
MAX Background CH ₄ (ppm v/v)	2
Max H ₂ S BKG Soil Reading (ppm v/v)	<1
Surface CH ₄ -PMD Gas Classification	

B) Non-Intrusive Surface Enclosed Soil Vapor FLUX Chamber Test

Surface SV-FC CH ₄ Test Sites	nm		
MAX SV-FC CH ₄ Reading	nm		
SV-FC Gas Spls. Collection-Measurement	Total Collected	Analysis Requested*	Test Site
SV-FC Samples (Total)	0		
SV-FC & Sites Requested for Level-1 Analysis		NA	NA
Combustible Gas Classification Level-1 (Chem.)			NA
SV-FC & Sites Requested for Level-2 Analysis		NA	NA
Combustible Gas Classification Level-2 ($\delta^{13}\text{C}$)			NA
SV-FC & Sites Requested for Level-3 Analysis		NA	NA
Combustible Gas Classification Level-3 (δD)			NA
SV-FC & Sites Requested for Level-4 Analysis		NA	NA
Combustible Gas Classification Level-4 (^{14}C)			NA

C) Intrusive Auger Test Holes with Soil Vapor Probes (Figure 2 and Table 2).

Number Soil Vapor Probe (SVP) Test Sites	6		
MAX SVP CH ₄ Reading (%LEL)	31.2		
Max H ₂ S SVP Field Reading (ppm v/v)	<1		
Number SVP BKG Test Sites	3		
MAX SVP CH ₄ BKG Test Sites (ppm v/v)	35		
SVPs Gas Spl. Collection & Measurement	Total Collected	Analysis Requested*	Test-Site
Soil Vapor Probes (SVPs) AGM (Total)	3		
SVPs & Sites Requested for Level-1 Analysis		2	NE3m, W5m
Combustible Gas Classification Level-1 (Chem.)			Biogenic-Non Impacted
SVPs & Sites Requested for Level-2 Analysis		2	NE3m, W5m
Combustible Gas Classification Level-2 ($\delta^{13}\text{C}$)			Biogenic-Non Impacted
SVP & Sites Requested for Level-3 Analysis		0	NA
Combustible Gas Classification Level-3 (δD)			NA
SVP & Sites Requested for Level-4 Analysis		0	NA
Combustible Gas Classification Level-4 (^{14}C)			NA

BKG Gas Spl. Collection-Measurement	Total Collected	Analysis Requested*	Test Site
BKG Soil Vapor Probe (SVPs) (Total)	2		
SVPs & Sites Requested for Level-1 Analysis		1	BKG E30m
Combustible Gas Classification Level-1 (Chem.)			Biogenic-Naturally Occurring-Baseline
SVPs & Sites Requested for Level-2 Analysis		0	
Combustible Gas Classification Level-2 ($\delta^{13}\text{C}$)			NA
SVP & Sites Requested for Level-3 Analysis		0	
Combustible Gas Classification Level-3 (δD)			NA
SVP & Sites Requested for Level-4 Analysis		0	
Combustible Gas Classification Level-4 ($\text{^{14}\text{C}}$)			NA

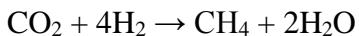
* Sample selection for chemical and isotopic analysis (geochemical analytical suite) selected by client/operator.

2.4 Interpreted Source of Natural Gas Found at/near Surface: measured depth from KB of the well (Figures 3 to 6).

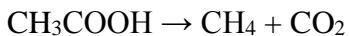
Sample Point	Geologic Formation	Depth Range	Source Depth
SVP NE3m & W5m	Near Surface Soil Respiration		Biogenic CH ₄ , NON-Impacted, Baseline

3.0 Background of Vapor Intrusion Assessments (VIA) at Resource Wells & Tracing Gas Contents in the Environment using Energy Forensics

Undesired natural gas leakage from depth to surface at resource wells is becoming increasingly recognized and is a significant financial burden to the resource industry. When high levels of natural gas are found in the surface casing vent it is termed surface casing vent flow (SCVF) and when found in soils outside casing it is termed active gas migration (AGM). Identifying the source of leaking gas, maintaining zonal isolation and eliminating gas leakage to surface has proven to be a challenging task. Industry success rates using conventional gas leakage identification tools (e.g. noise, temperature, cement bond-integrity, ultra-sonic imaging logs, etc.) to eliminate surface gas migration in the first attempt is approximately 15% to 20%. Since 1997, through collaboration with industry, government regulators and academic institutions, GCHEM Ltd. has developed ‘Energy-Forensics’ and has obtained extensive expertise in field testing, gas sampling and preservation, analytical and interpretational techniques to pinpoint the geologic source of natural gases at resource wells.


It is important to note that detection of elevated combustible gases at surface does not always mean the well is impacted with deep sourced natural gas (thermogenic). Accurate gas characterization at well sites is critical as elevated CH₄ (%LEL) contents measured at or near surface may not indicate it is leaking or impacted (false-positive) but rather the combustible gases present are the result of biogenic activity or hydrocarbon contamination (or a combination of).

Thermogenic hydrocarbon gases have unique chemical and isotopic signatures based on many variables including the starting organic material they are produced from, the chemical processes from organic origin to current form, interaction with surrounding formation rock and fluids, and effects from migrating from origin to current trap. For example, molecular and isotopic composition ($\delta^{13}\text{C}$ and $\delta^2\text{H}$) of a low temperature, shallow sourced natural gas is significantly different with respect to those of a high temperature deep sourced natural gas. This principle allows the geologic source of leaking natural gas at a wellbore to be determined.


3.1 Biogenically Derived Methane Gas

As a normal part of soil respiration, methane may be generated via two biotic pathways (depending on substrate availability):

CO₂ reduction reaction

Fermentation Process

Biogenic methane gas may be further oxidized by bacteria. Oxidizing bacteria in soils preferentially consume ¹²C over ¹³C resulting the residual gas enriched in ¹³C (i.e. $\delta^{13}\text{C}$ values become less negative) with respect to the biogenic gas (isotope enriching effect). Therefore, biogenic oxidization may provide the false signature of a ‘mixture of biogenic and thermogenic methane’ or ‘thermogenic’ gas (GCHEM in prep). Biogenic CH₄ is generally prevalent in landfill or swamp gas.

3.2 Thermogenic Methane Gas

Methane gas can be generated by abiotic processes such as the thermo-degradation of organic matter at high pressure and temperature (thermogenesis). During thermogenic CH₄ generation, pending organic matter content, pressure and temperature, associated C₂+ gases may also be formed. Thermogenic CH₄ and C₂+ gases contain enriched $\delta^{13}\text{C}$ and δD values pending gas maturity, mixing and alteration and torturous pathway from source to trap.

3.3 Classification, Characterization and Geological Origins of Combustible Gases in the Environment.

Combustible gases in soils outside casing maybe classified and characterized (biogenic, thermogenic or mixed) using chemical, carbon and hydrogen and isotopic measurements and ¹⁴C concentrations. Leaking thermogenic natural gas in soils outside casing is easier to scientifically prove than biogenic methane sources. Elevated %LEL measured in AGM (on location) maybe the result of naturally occurring biogenic processes, anthropogenic leaking thermogenic natural gases and mixtures of both. A systematic 4-level approach can be used to determine the origins (biogenic-thermogenic or mixed) combustible gas contents and include:

1) Level-1 Characterization**High Resolution Compositional-Chemical Measurements.**

Permanent, inert and CH₄ to n-C₅H₁₂ & C₆+

See NGGC-1 CH₄ vs ΣC₂+ (Szatkowski et al 2000 & 2001).

See NGGC-2 C₂H₆ vs. C₆+ (Szatkowski et al 2000 & 2001).

2) Level-2 Characterization**Stable Carbon Isotope Measurements (δ¹³C).**

δ¹³C CH₄ to n-C₅H₁₂ & CO₂ (pending concentrations-gas levels).

See NGGC-3 CH₄/ΣC₂+ vs. δ¹³C CH₄ (Bernard 1978).

See NGGC-4 δ¹³C CO₂ vs. δ¹³C CH₄ (Whiticar 1993).

3) Level-3 Characterization**Hydrogen in Methane (δD).**

δD CH₄ to dD C₄H₁₂ (pending concentrations-gas levels).

See NGGC-5 δ¹³C CH₄ vs δD CH₄ (Coleman 1993).

4) Level-4 Characterization**¹⁴C pMC concentrations (radioactive ½ life of 5750 yr).**

Pending concentrations-gas levels.

¹⁴C reveals the age of the organic matter source from which CH₄ was generated but not the time of methanogenesis.

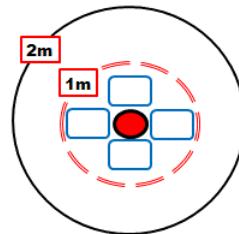
To determine the geological origins of leaking thermogenic natural gas contents, a series of plots developed by GCHEM Ltd are used and include.

1) Chemical & Isotopic Gas Field Diagram	C ₂ H ₆ /ΣC ₃ + vs δ ¹³ C C ₂ H ₆ (Szatkowski et al 2000, 2001).
2) Isotopic Gas Field Diagram	δ ¹³ C C ₂ H ₆ vs. δ ¹³ C C ₃ H ₈ (Szatkowski et al 2000, 2001).
3) Modified Chung Plot	δ ¹³ C vs 1/n (carbon & hydrogen number) (Chung 1988, and GCHEM Ltd. Unpublished).

Additional chemical and stable carbon and hydrogen isotopic plots have been developed to aid in determining the geological origins of natural gas found in the environment however, GCHEM has not published these novel and new correlations and relationships and they will not be shown or discussed in detail at this time (GCHEM Unpublished Internal Research).

4.0 Methods and Results

4.1 Field Assessment Methods and Results


4.1.1 Non-Intrusive Vapour Intrusion Assessment

On September 11, 2019, GCHEM conducted a surface soil methane scan using a Sensit PMD (Figure 3). CH₄ readings were measured at 104 locations on a grid pattern (1m x 1m) covering approximately an 10m x 10m square area around the marked wellbore. Soils outside casing were wet (standing water in some areas) however, no gas bubbling in standing water was observed while conducting the VIA in soils outside casing.

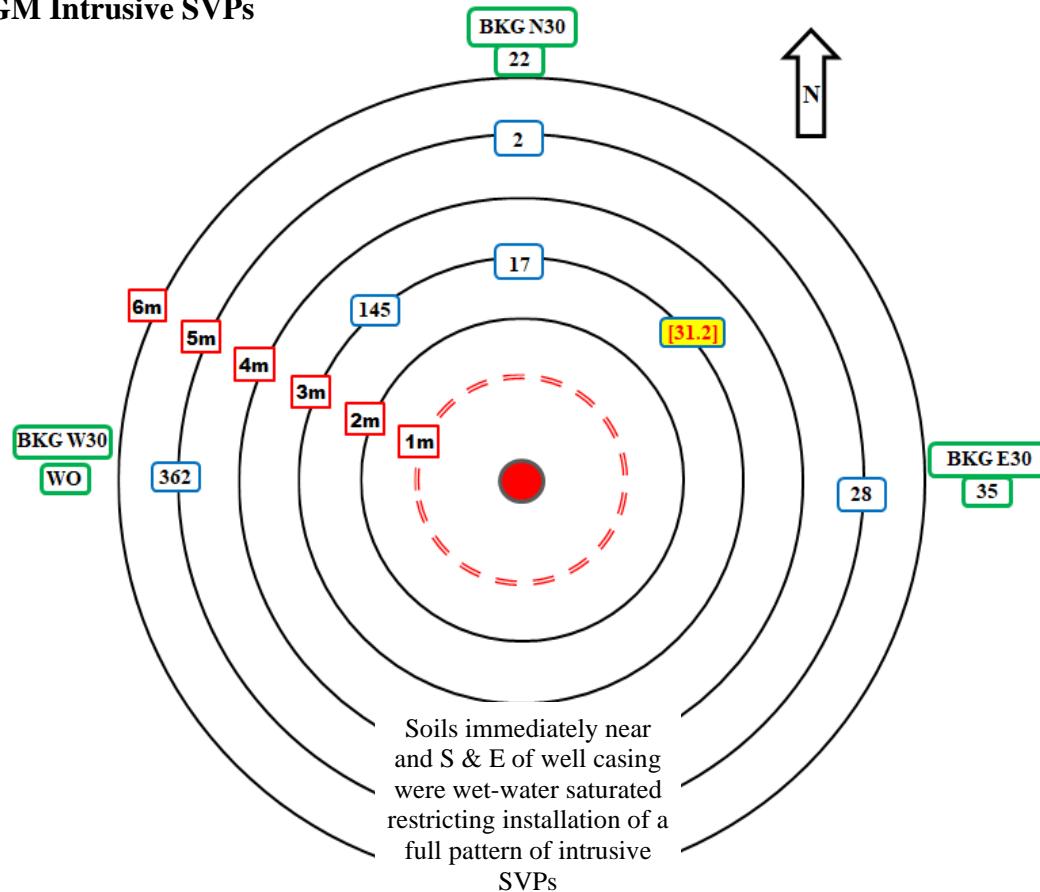
To establish background surface CH₄ gas levels a distance away from the well bore, three locations (30m north, 30m east, and 30m west of the wellbore) were also assessed. To enhance results of the surface methane scan and reduce potential effects from industrial contamination, at each test site, an atmospheric CH₄ gas level was recorded, the PMD gas sampling wand was coupled to surface soils and the CH₄ level was recorded for that specific test site. Atmospheric CH₄ level was subtracted from the CH₄ level measured after ground coupling to derive a surface soil CH₄ level at that point of the grid.

Two sites (N1-E5 and E1-S5) contained elevated (6 and 10 ppm v/v, respectively) above background methane readings (2 ppm v/v). All other sites tested near the wellbore contained low levels of CH₄ (2 ppm v/v) that were similar to the BKG sites.

Figure 1. AGM Non-Intrusive Surface PMD

Figure-1A. NON-Intrusive CH₄ Surface Scan Well Casing Detail VIEW

Table 1. AGM Non-Intrusive Surface PMD


WELL CASING (AGM) Non-Intrusive Surface PMD (CH ₄) Soil Scan							
Test Site (m)	PMD CH ₄ (ppm v/v) (%) Vol	Test Site (m)	PMD CH ₄ (ppm v/v) (%) Vol	Test Site (m)	PMD CH ₄ (ppm v/v) (%) Vol	Test Site (m)	PMD CH ₄ (ppm v/v) (%) Vol
N.5		E.5		S.5		W.5	
N1	2	E1	2	S1		W1	
N2	2	E2	2	S2	2	W2	
N3	2	E3	2	S3	2	W3	2
N4	2	E4	2	S4	2	W4	2
N5	2	E5	2	S5	2	W5	2
N5-E1	2	E5-S1	2	S5-W1	2	W5-N1	
N4-E1	2	E5-S2	2	S4-W1	2	W5-N2	
N3-E1	2	E5-S3	2	S3-W1	2	W5-N3	2
N2-E1	2	E5-S4	2	S2-W1	2	W5-N4	2
N1-E1	2	E5-S5	2	S1-W1		W5-N5	2
N1-E2	2	E4-S5	2	S1-W2		W4-N5	2
N2-E2	2	E4-S4	2	S2-W2		W4-N4	2
N3-E2	2	E4-S3	2	S3-W2	2	W4-N3	2
N4-E2	2	E4-S2	2	S4-W2	2	W4-N2	2
N5-E2	2	E4-S1	2	S5-W2	2	W4-N1	
N5-E3	2	E3-S1	2	S5-W3	2	W3-N1	
N4-E3	2	E3-S2	2	S4-W3	2	W3-N2	2
N3-E3	2	E3-S3	2	S3-W3	2	W3-N3	2
N2-E3	2	E3-S4	2	S2-W3	2	W3-N4	2
N1-E3	2	E3-S5	2	S1-W3	2	W3-N5	2
N1-E4	2	E2-S5	2	S1-W4	2	W2-N5	2
N2-E4	2	E2-S4	2	S2-W4	2	W2-N4	
N3-E4	2	E2-S3	2	S3-W4	2	W2-N3	
N4-E4	2	E2-S2	2	S4-W4	2	W2-N2	
N5-E4	2	E2-S1	2	S5-W4	2	W2-N1	
N5-E5	2	E1-S1	2	S5-W5	2	W1-N1	
N4-E5	2	E1-S2	2	S4-W5	2	W1-N2	
N3-E5	2	E1-S3	2	S3-W5	2	W1-N3	2
N2-E5	2	E1-S4	2	S2-W5	2	W1-N4	2
N1-E5	6	E1-S5	10	S1-W5	2	W1-N5	2

BACKGROUND Non-Intrusive Surface PMD (CH₄) Soil Scan

Test Site (m)	PMD CH ₄ (ppm v/v) (%)	Test Site (m)	PMD CH ₄ (ppm v/v) (%)	Test Site (m)	PMD CH ₄ (ppm v/v) (%)	Test Site (m)	PMD CH ₄ (ppm v/v) (%)
N30	2	E30	2	W30	2		

4.1.2 Intrusive Vapor Intrusion Assessment

A total of 6 soil sites outside casing were assessed for gas leakage using an intrusive methodology where a series of 5cm soil vapor test holes were augered into soils and Soil Vapor Probes (SVPs) were inserted into each test hole. The SVPs were allowed to stabilize for approximately 30-minutes prior to combustible gas content measurement with the PMD (Figure 4). Soils were water saturated at some sites at depths below 1.5m thus a full intrusive 16-auger hole test pattern could not be conducted. Of the 6 soil vapor test sites outside casing, 3 sites (NE3m 15,600 ppm v/v, W5m 362 ppm v/v, and NW3m 145 ppm v/v) contained elevated, above background levels (N30m 22 ppm v/v and E30 35 ppm v/v) of methane gas.

Figure 2. AGM Intrusive SVPs

Table 2. AGM Intrusive SVPs

Intrusive AGM - Hand Auger-Test Hole-Install Soil Vapor Probes (SVPs) ATM-Isolated							
Test Site	Soil Vapor Probes		Soil Parameters		Gas Sample		Site Assessment Comments
(m)	IR-CH ₄ (ppm v/v)	H ₂ S (ppm v/v)	Type	Moist. (1-5)	HC-CONT (Y-N)	(Y-N)	
N1		<1.0	Si	5	No		
N3	17	<1.0	Si	5	No		
N5	2	<1.0	Si	5	No		
NE3	15600	[31.2]	<1.0	Si	5	No	Yes
E1							
E3							
E5	28	<1.0	Si	5	No		
S.5							
S1							
S3							
S5							
W.5							
W1							
W3							
W5	362	<1.0	Si	5	No		Yes
NW3	145	<1.0	Si	5	No		Yes
Soil Vapor Probes							
Test Site	IR-CH ₄ (ppm v/v)	H ₂ S (ppm v/v)	Type	Moist. (1-5)	HC-CONT (Y-N)	Gas Sample (Y-N)	Site Assessment Comments
(m)	(% Vol)	(ppm v/v)					
BKG E30	35	<1.0	Si	5	No		
BKG N30	22	<1.0	Si	5	No		
BKG W30	WO	<1.0	Si	5	No		Final SVP -Watered Out

4.2 Analytical Methods

- a. High Resolution Compositional Analysis (HRCA).
 - i. He, H₂, O₂, N₂, CO₂, CH₄ to n-C₅H₁₂ & C₆+
- b. Stable Carbon ($\delta^{13}\text{C}$) and Hydrogen (δD) Isotopic Analysis.
 - i. $\delta^{13}\text{C}$ CH₄ to n-C₅H₁₂ and CO₂, and δD CH₄ to n-C₅H₁₂

Compositional (molecular) analyses were conducted at GCHEM's Analytical Laboratory using Hewlett Packard 5890 and Agilent 7890 Gas Chromatographs (GCs) configured for low (ppb v/v to ppm v/v) to high (vol. %) level detection of light alkane/alkene gases and atmospheric gas components. Chemical analysis of gases measured, and analytical error are shown in Table-1.

Stable carbon ($\delta^{13}\text{C}$) isotope ratios of light hydrocarbon gases (LHG) and carbon dioxide and hydrogen isotope ratios (δD) of LHG were also measured at GCHEM's Analytical Laboratory on a Thermo-Scientific MAT-253 Gas Chromatograph-Combustion-Continuous Flow-Isotope Ratio Mass Spectrometer (GC-C-CF-IRMS). Carbon isotope ratios are reported in delta (δ) notation and per mil (‰, parts per thousand) with respect to VPDB (Vienna Pee Dee Belemnite). Hydrogen isotope ratios are reported in delta (δ) notation and per mil (‰) with respect to VSMOW (Vienna Standard Mean Ocean Water).

Gas Component (ppmv)	Molecular Formula	Analytical Error (%)	Stable Carbon Isotopic Composition ($\delta^{13}\text{C}$)	Analytical Error (‰ VPDB)	Hydrogen Isotopic Composition (δD)	Analytical Error (‰ VSMOW)
Hydrogen	H ₂	±7%	-	-	$\delta\text{D H}_2$	±10
Helium	He	±7%	-	-	-	-
Nitrogen	N ₂	±7%	-	-	-	-
Oxygen	O ₂	±7%	-	-	-	-
Carbon Dioxide	CO ₂	±7%	$\delta^{13}\text{C CO}_2$	±0.2	-	-
Hydrogen Sulphide	H ₂ S	±7%	-	-	-	-
Methyl Mercaptan	CH ₄ S	±7%	-	-	-	-
Ethyl Mercaptan	C ₂ H ₆ S	±7%	-	-	-	-
Thiophene	C ₄ H ₄ S	±7%	-	-	-	-
Dimethyl Disulfide	C ₂ H ₆ S ₂	±7%	-	-	-	-
Methane	CH ₄	±7%	$\delta^{13}\text{C CH}_4$	±0.1	$\delta\text{D CH}_4$	±10
Ethane	C ₂ H ₆	±7%	$\delta^{13}\text{C C}_2\text{H}_6$	±0.2	$\delta\text{D C}_2\text{H}_6$	±10
Ethene	C ₂ H ₄	±7%	$\delta^{13}\text{C C}_2\text{H}_4$	±0.2	$\delta\text{D C}_2\text{H}_4$	±10
Propane	C ₃ H ₈	±7%	$\delta^{13}\text{C C}_3\text{H}_8$	±0.2	$\delta\text{D C}_3\text{H}_8$	±10
Propene	C ₃ H ₆	±7%	$\delta^{13}\text{C C}_3\text{H}_6$	±0.2	$\delta\text{D C}_3\text{H}_6$	±10
iso-Butane	i-C ₄ H ₁₀	±7%	$\delta^{13}\text{C i-C}_4\text{H}_{10}$	±0.2	$\delta\text{D i-C}_4\text{H}_{10}$	±10
normal-Butane	n-C ₄ H ₁₀	±7%	$\delta^{13}\text{C n-C}_4\text{H}_{10}$	±0.2	$\delta\text{D n-C}_4\text{H}_{10}$	±10
iso-Pentane	i-C ₅ H ₁₂	±7%	$\delta^{13}\text{C i-C}_5\text{H}_{12}$	±0.2	$\delta\text{D i-C}_5\text{H}_{12}$	±10
normal-Pentane	n-C ₅ H ₁₂	±7%	$\delta^{13}\text{C n-C}_5\text{H}_{12}$	±0.2	$\delta\text{D n-C}_5\text{H}_{12}$	±10
Hexane and higher	C ₆ +	±7%	-	-	-	-

Table 3. Gas components, isotopic compositions measured and the analytical error of the measurements at GCHEM's Analytical Laboratory.

5.0 Geochemical Measurements-Laboratory Results.

As part of this VIA (AGM), a total of 3 gas samples were collected, contained and preserved from the following locations or sample points: SVPs-soils outside casing (NE3m, W5m, and NW3m) and 2-BKG locations (N30m and E30m).

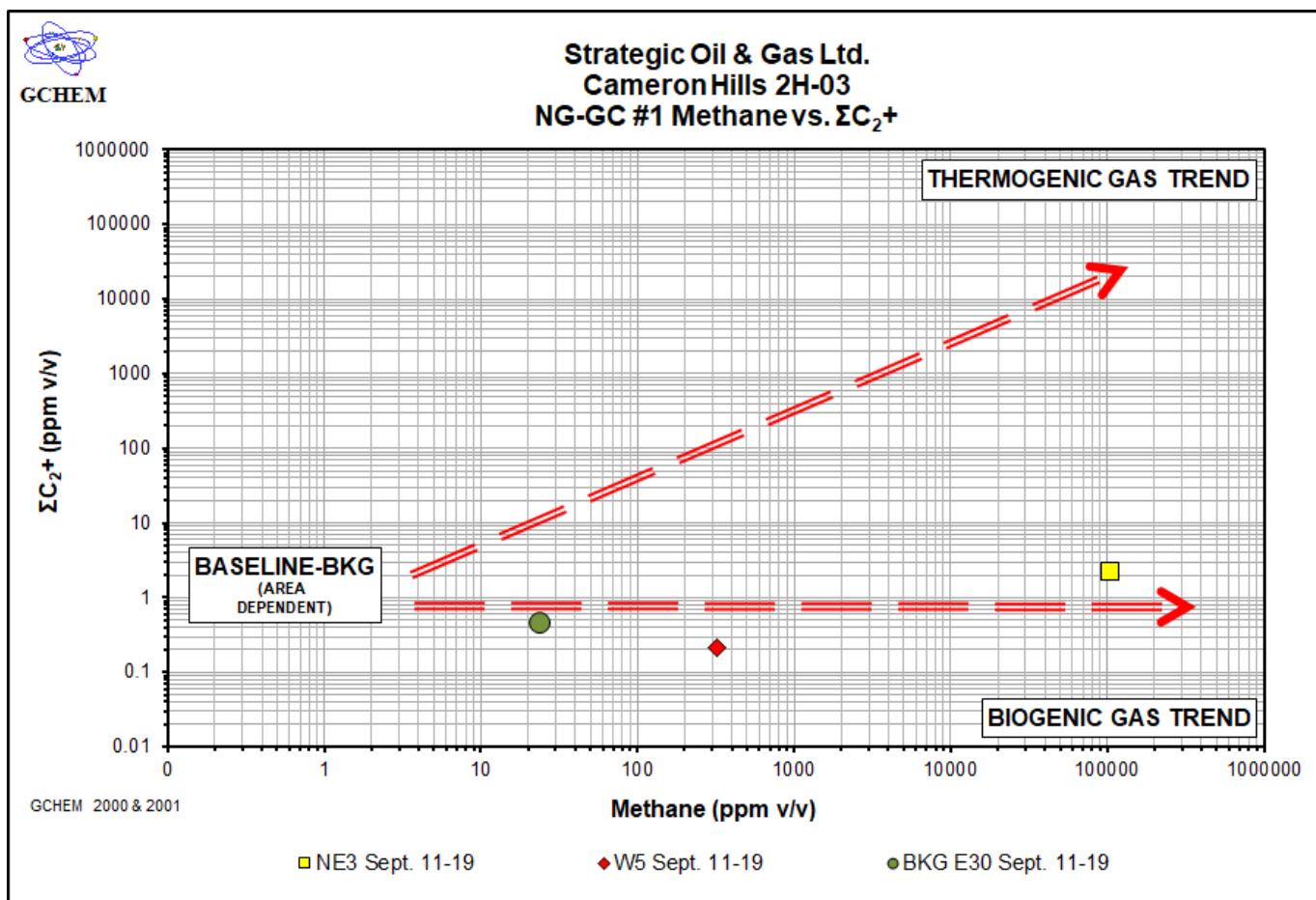
At the request of the Strategic Oil and Gas, chemical and $\delta^{13}\text{C}$ isotopic compositions were measured for gases obtained from two (NE3m and W5m) of the SVPs that contained elevated, above background, levels of combustible gases and one BKG SVP (E30m). High Resolution chemical and $\delta^{13}\text{C}$ isotopic compositions were measured at GCHEM's Forensic Lab and are provided in Table 4.

5.1 Gases Obtained from Soil Vapor Probes (SVPs).

Gases measured in two SVPs in soils near the well bore (NE3m and W5m) contain above atmospheric levels of CO_2 (32,153 and 2648 ppm v/v, respectively). Methane gas was elevated (106,535 and 324.7 ppm v/v, respectively) when compared to background level measured at BKG E30m (23.53 ppm v/v) (Table 4 and Figure 3). C_{2+} gas levels in SVPs NE3m and W5m were low (2.19 ppm v/v and 0.21 respectively) and were similar to background levels (0.47 ppm v/v). High methane with low, associated C_{2+} thermogenic gases suggests a biogenic or biotic source via CO_2 reduction or fermentation reactions for methane gas (Figure 3 and Figure 5). C_{6+} gas contents at SVPs sites NE3m and W5m were low (0.19 and 0.10 ppm v/v respectively) and suggest hydrocarbon contamination was not present at SVP test sites (Figure 4).

C_{2+} gas levels at SVP sites NE3 and W5 were too low to measure $\delta^{13}\text{C}$ isotopic compositions. Sufficient levels of CO_2 were available for $\delta^{13}\text{C}$ at both sites and CH_4 at site NE3. $\delta^{13}\text{C}$ CO_2 at SVP W5 was -20.94 ‰ VPDB. $\delta^{13}\text{C}$ CH_4 and $\delta^{13}\text{C}$ CO_2 at SVP NE3 was -75.48 and -10.19 ‰ VPDB respectively (Table 4). These values are consistent with gases originating from a biogenic source (Figures 5 and 6).

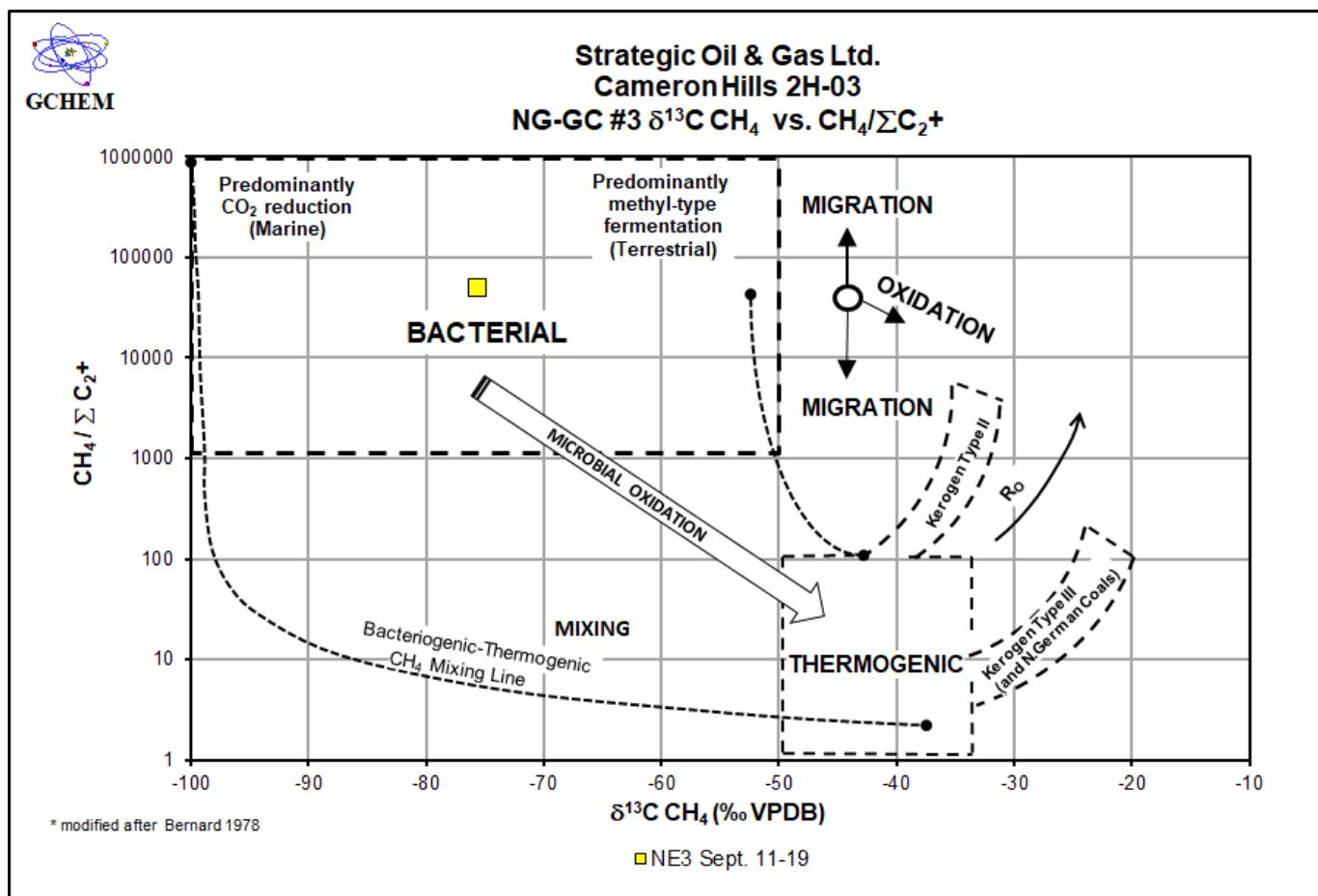
Table 4. High resolution molecular and stable carbon isotopic compositions of gas samples collected as part of the VIA at Strategic et al Cameron 2H-03. Hydrogen isotopic compositions were not measured at the request of SOG.


Gas Component	Sample Point Date Collected	NE3 Sept. 11-19 (ppm v/v)	W5 Sept. 11-19 (ppm v/v)	BKG E30 Sept. 11-19 (ppm v/v)
Hydrogen		14.33	4.88	4.39
Helium		2.01	2.25	2.37
Nitrogen		728523	778715	777048
Oxygen		132770	218305	220541
Carbon Dioxide		32153	2648	2380
Methane		106535	324.7	23.53
Ethane		<0.01	<0.01	<0.01
Ethene		<0.01	<0.01	<0.01
Propane		1.77	<0.01	<0.01
Propene		<0.01	<0.01	<0.01
iso-Butane		0.26	<0.01	<0.01
n-Butane		0.31	0.21	0.47
iso-Pentane		0.20	0.13	0.24
n-Pentane		0.11	<0.01	<0.01
C ₆ +		0.19	0.10	0.16

C1 Index (C1/ΣC2+)	48735	1547	50.02
C2 Index (C2/ΣC3+)	N/A	N/A	N/A
C3 Index (C3/ΣC4+)	4.31	N/A	N/A
C4 Index (C4/C5)	2.91	N/A	N/A
ΣC2+	2.19	0.21	0.47
ATM Ratio (N2/O2)	5.49	3.57	3.52
Vol % CO ₂ of TG	3.22	0.26	0.24
Vol % Lt. Alk. of TG	10.65	0.03	0.00
Vol % Lt. Alk. CH ₄	100.0	99.90	97.08
Vol % Lt. Alk. C ₂ +	0.002	0.10	2.92
Vol % C ₂ + of TG	0.00	0.00	0.00

Stable Carbon Isotope Compositions (‰ VPDB)			
δ ¹³ C CH ₄	-75.48	nm	nm
δ ¹³ C C ₂ H ₆	nm	nm	nm
δ ¹³ C C ₂ H ₄	nm	nm	nm
δ ¹³ C C ₃ H ₈	nm	nm	nm
δ ¹³ C C ₃ H ₆	nm	nm	nm
δ ¹³ C i-C ₄ H ₁₀	nm	nm	nm
δ ¹³ C n-C ₄ H ₁₀	nm	nm	nm
δ ¹³ C i-C ₅ H ₁₂	nm	nm	nm
δ ¹³ C n-C ₅ H ₁₂	nm	nm	nm
δ ¹³ C CO ₂	-10.19	-20.94	nm

Stable Hydrogen Isotopic Compositions (‰ VSMOW)			
δD H ₂	nm	nm	nm
δD CH ₄	nm	nm	nm
δD C ₂ H ₆	nm	nm	nm
δD C ₃ H ₈	nm	nm	nm
δD i-C ₄ H ₁₀	nm	nm	nm
δD n-C ₄ H ₁₀	nm	nm	nm


14C Concentration (pMC)	nm	nm	nm

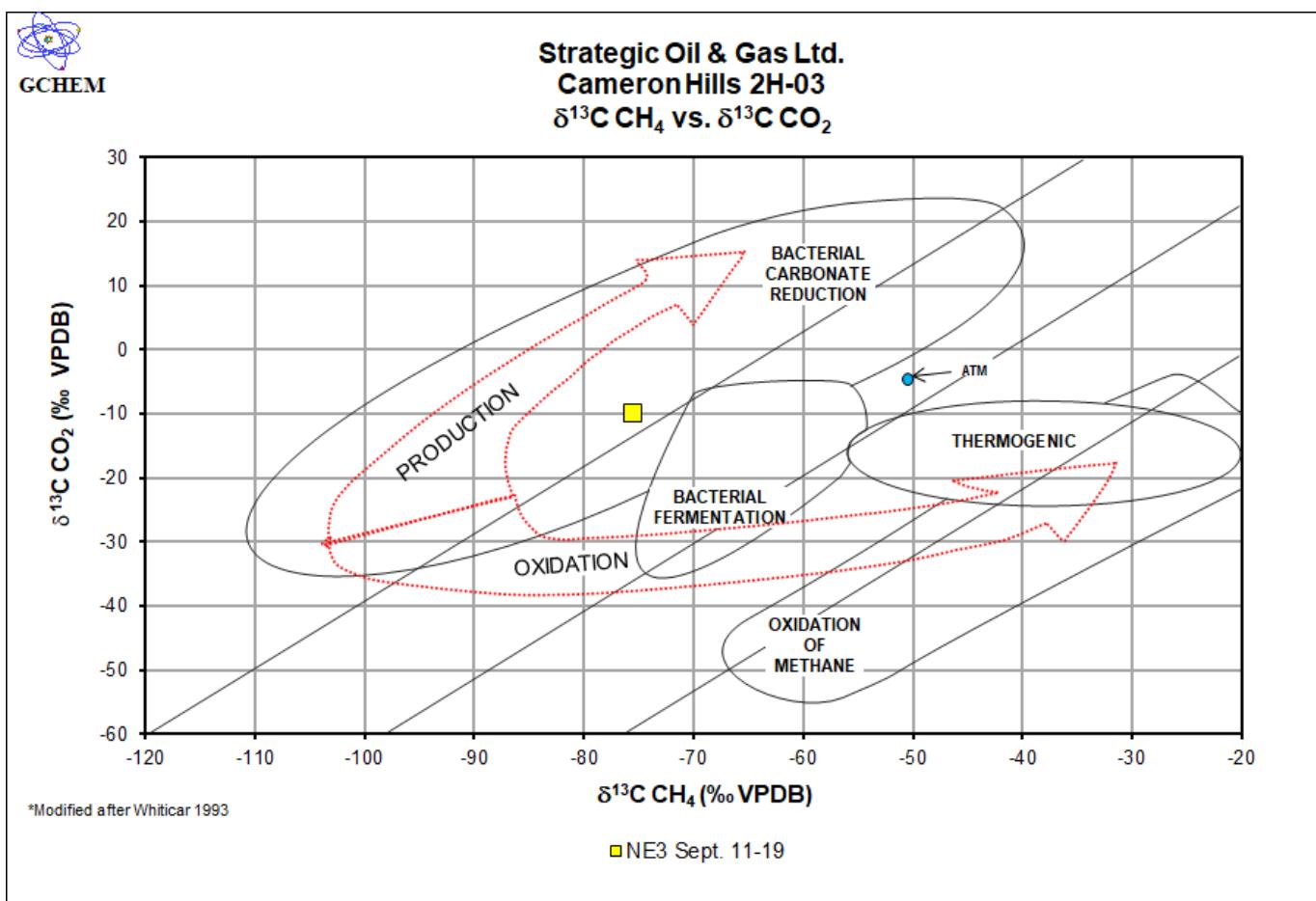

Figure-3. ΣC_2^+ vs Methane. Combustible gases detected in soils and SCVs at a wellhead may result from several origins. Natural gases indicative of SCVF or AGM are thermogenic in origin (natural gas in deep reservoirs), contain high methane and C_2^+ contents and plot in the Upper RH Quadrant. Low natural gas levels in background, off lease areas are naturally present in soils, vary from region to region and plot in the Lower LH Quadrant. Biogenic gases (swamp-gas) are produced by bacteria, are comprised of predominantly methane and plot in Lower RH Quadrant. Samples plotting in the Lower LH and RH do not contain SCVF or AGM and would not require down-hole remediation.

Figure 4. ΣC_6+ vs Ethane. C_6+ gases are relatively large molecules that do not readily or easily migrate in large quantities from depth upwards through subsurface fractures or micro-fractures to surface. Contamination by oil spills, fuels, and solvents is indicated by soil vapor samples that have high contents of C_6+ compounds and plot in the Lower RH Quadrant. Samples plotting in the Lower LH and RH Quadrants do not contain evidence of either SCVF or AGM and would not require downhole repair operations.

Figure 5. $\text{CH}_4 / \Sigma \text{C}_{2+}$ vs. $\delta^{13}\text{C CH}_4$. Thermogenic methane or methane generated by abiotic processes such as the thermal degradation of organic matter at high temperature and pressure (thermogenesis) contains enriched (less negative) $\delta^{13}\text{C}$ values ranging from -50 to -20‰ VPDB and methane relative to C_{2+} gas contents (gas wetness) less than 100. Methane gas can be generated by biotic processes such as the degradation of organic matter via CO_2 reduction or fermentation reactions generating biogenic methane. It should be noted that as a normal part of soil respiration, methane may be generated or destroyed by variable biotic pathways. Biogenic methane gas may be oxidized by bacteria resulting in an ‘isotopic enriching effect’ (i.e. $\delta^{13}\text{C}$ values become less negative as a result of oxidizing bacteria in soils that preferentially consume ^{12}C over ^{13}C , leaving the remaining gas enriched in ^{13}C). Since biogenic oxidation decreases the ratio between ^{12}C and ^{13}C , it may result in enriched $\delta^{13}\text{C CH}_4$ values that overlap with the MIXING or THERMOGENIC-GAS TREND. Biogenic methane may therefore contain $\delta^{13}\text{C}$ values greater than -50‰ VPDB (GCHEM Internal RD).

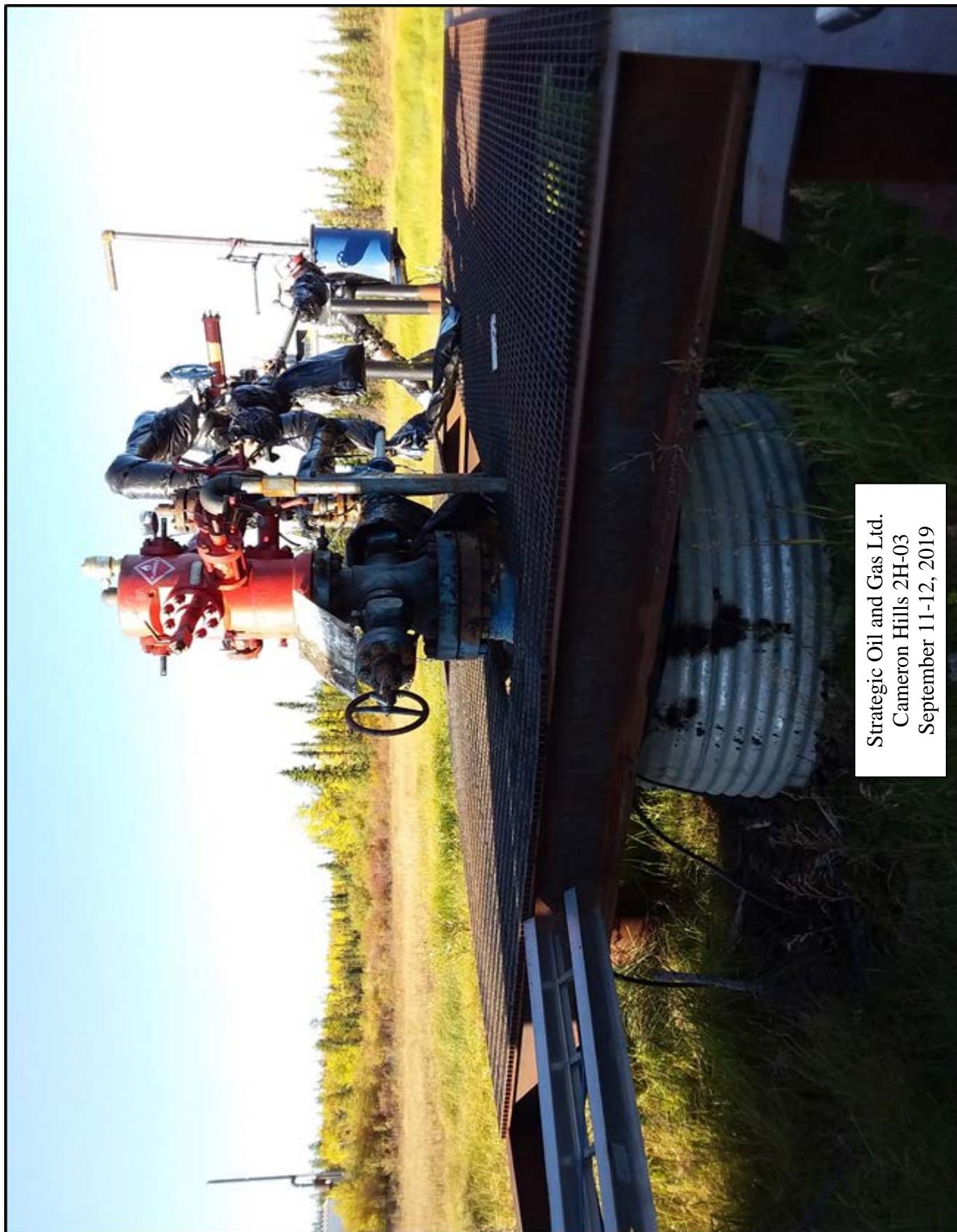
Figure 6. $\delta^{13}\text{C CO}_2$ vs. $\delta^{13}\text{C CH}_4$. Thermogenic methane or methane generated by abiotic processes such as the degradation of organic matter at high temperature and pressure contains enriched (less negative) $\delta^{13}\text{C}$ values ranging from -55 to -20‰ VPDB (or higher) and $\delta^{13}\text{C CO}_2$ values in the range of -25 to 4‰ VPDB. Methane gas may be generated by biotic processes such as the degradation of organic matter via CO_2 reduction or fermentation reactions generating biogenic methane. Biogenic methane may contain $\delta^{13}\text{C}$ values greater than -40‰ VPDB due to biogenic oxidation processes (GCHEM, in prep).

6.0 Conclusions

Soils outside casing at SOG Cameron Hills 2H-03 are wet and provides challenges for AGM vapor intrusion assessments. 3 of the 6 intrusive soil sites outside casing assessed for combustible gas contents contained elevated methane levels that ranged from 145 to 15,600 ppm v/v. H₂S was not detected (< 1.0 ppm v/v) at any of the soil test hole sites. SOG selected sites NE3m (15,600 ppm v/v) and W5m (362 ppm v/v) for high resolution chemical and stable carbon isotope measurements to classify combustible gas contents. Light hydrocarbon gases were dominated by methane gas while associated C₂+ gases were low and similar to background levels measured at test site BKG E30m. Sufficient levels of methane gas were not available for $\delta^{13}\text{C}$ CH₄ or $\delta^{13}\text{C}$ C₂+ at test site W5m however, $\delta^{13}\text{C}$ CH₄ of -75.48 ‰ VPDB at soil test site NE3m is consistent with naturally occurring biogenic methane generation (bacterial degradation of organic matter generating biogenic CH₄ gas).

With information available to date, SVP soil test sites NE3m and W5m are classified as ‘biogenic-baseline’ where CH₄ gas is the result of natural soil respirations processes via CO₂ reduction or fermentation processes generating biogenic CH₄. C₂+ gases in soils near the well are low, similar to background levels and the result of natural movement of thermogenic natural gas, from reservoirs at depth, upward through fractures and micro-fractures to surface. This is a naturally occurring process prevalent in every hydrocarbon sedimentary basin in the world.

Attachment-1


Strategic Oil & Gas Ltd.

Strategic Cameron 2H-03

Well Site Photographs

Strategic Oil and Gas Ltd.
Cameron Hills 2H-03
September 11-12, 2019

Strategic Oil and Gas Ltd.
Cameron Hills 2H-03
September 11-12, 2019

Strategic Oil and Gas Ltd.
Cameron Hills 2H-03
September 11-12, 2019

Attachment-2

Strategic Oil & Gas Ltd.

Strategic Cameron 2H-03

Chain of Custody (COC)

CHAIN OF CUSTODY

ENERGY FORENSICS

Sample Submission Form

Bay#1, 4810-62nd Ave, Lloydminster, Alberta T9V 2E9
E-mail: info@gchem.ca
Tel: (780) 871-4668
Fax: (780) 808-4881

GCHEM LTD.

GCHEM Ltd. Project# _____

Client Information

Company _____
Address _____
City, prov. _____
Postal Code _____
Client Contact _____
Phone # _____
Fax # _____
E-Mail _____

Billing/Report Information

*Standard 5-7 Days
**Rush 48hrs.
***Priority Rush 24hrs.

(*) Working Days
(**) Call for Pricing and Advance Notice

Services Needed (TAT)

Analysis To Be Performed	
IRMS $\delta^{13}\text{C}$ Analysis	IRMS $\delta^{2}\text{H}$ (D) Analysis
IRMS $\delta^{2}\text{H}$ (D) Analysis	High Resolution Compositional Analysis
High Resolution Compositional Analysis	IRMS $\delta^{34}\text{S}$ Analysis
IRMS $\delta^{34}\text{S}$ Analysis	Produced Water Forensic Suite
Produced Water Forensic Suite	High Resolution Compositional H ₂ S Analysis

Sampled By Brian

A/F/PO # _____

No.	Location	Sample Identifier	Sample Time	Date Sampled	Pressure Received	Actual Pressure	Container Type	Qty.	Sample Volume	Media Type
1	2H03	Soil/Gas - Initial Background - Initial	2011/19	2011/19	g	g	glass	3		
2		Soil/Gas - Final Background - Final	2011/19	2011/19	g	g	glass	2		
3		Soil/Gas - Final Background - Final	2011/19	2011/19	g	g	glass	2		
4				2012/11	g	g	glass	1		
5										
6										
7										
8										
9										
10										

Comments _____

Relinquished By: BrianDate/Time: Sept 16, 2019

Relinquished By: _____

Date/Time: _____

Relinquished To: _____

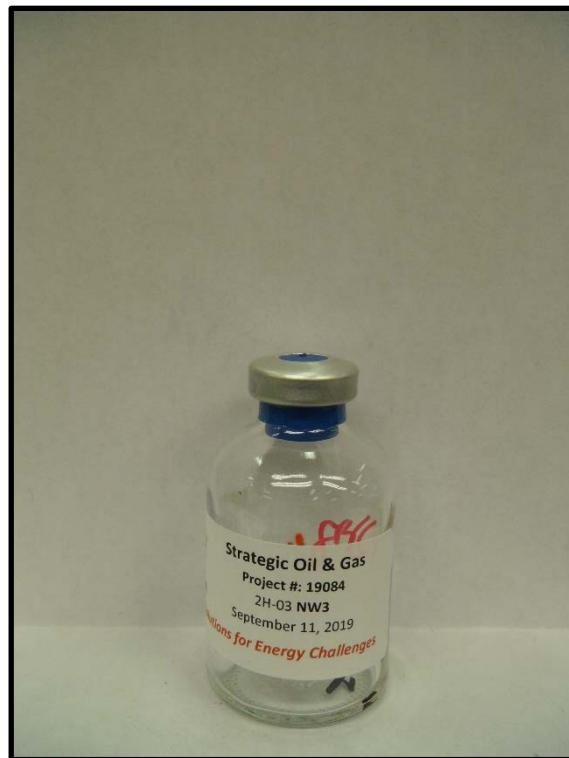
Date/Time: _____

Date/Time: _____

Attachment-3

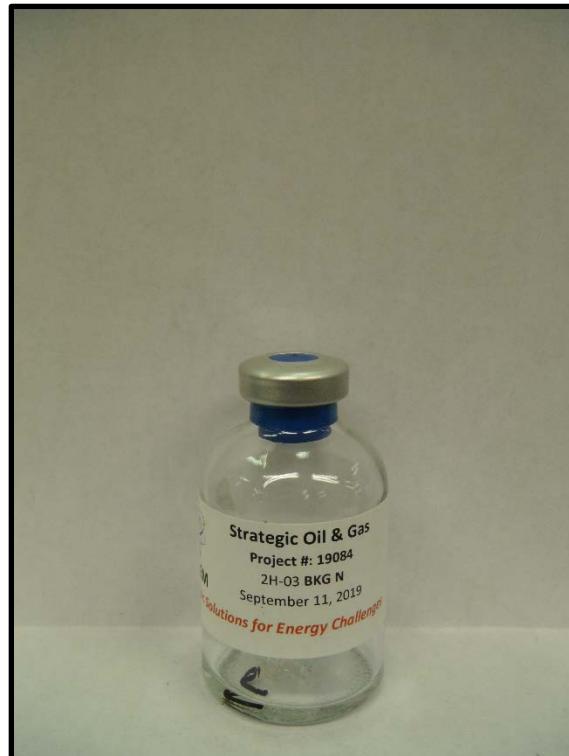
Strategic Oil & Gas Ltd.

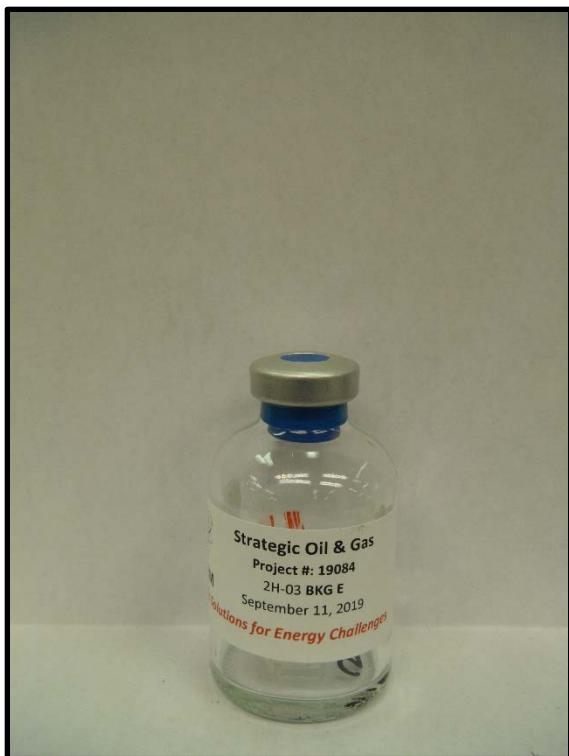
Strategic Cameron 2H-03


Gas Sample Containers

Photographs

(red boxed pictures are samples measured for chemical and/or isotopic compositions)


NE3m
September 11, 2019


NW3m
September 11, 2019

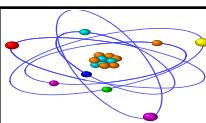
W5m
September 11, 2019

BKG N30m
September 11, 2019

BKG E30m
September 11, 2019

NE3m
September 12, 2019

BKG N30m
September 12, 2019



Attachment-4

Strategic Oil & Gas Ltd.

Strategic Cameron 2H-03

Gas Analysis Data Sheets (GADS)

GCHEM LTD.

HIGH RESOLUTION GAS ANALYSIS CARBON ISOTOPE ANALYSIS HYDROGEN ISOTOPE ANALYSIS

Sampling Company	GCHEM Ltd.	Lab Sample No.	19084-03
Date Tested	September 11, 2019	Test Type	Soil gas
Operator Name	Strategic Oil & Gas	Sample Container Type	Glass Bottles
Unique Well Identifier	2H-03	Sampling Point	NE3
Well Name	not provided	Test Intervals or Perfs mK	N/A
Field or Area	not provided	Date Received	September 16, 2019
Pool or Zone	not provided	Date Reported	October 1, 2019
Well License	not provided	Entered By	Xiaolong Wang
H2S Level (Observed at Site)	not provided	Reviewed By	Brad Johnston

Sample Handling Conditions

	Source/Sampled	Received
Pressure (kPa)	N/A	26
Temperature (°C)	N/A	20

Other Information:

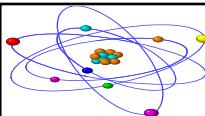
Laboratory Analysis

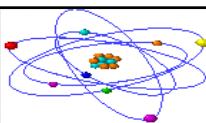
Component	HRGC Analysis As Received Mol Frac.	Air Free As received Mol Frac.	Air Free / Acid Free As Received Mol Frac.	Carbon Isotope Analysis ‰ VPDB	Hydrogen Isotope Analysis ‰ VSMOW	HRGC Analysis As Received ppm v/v
Neon	0.000012	0.000087	0.000087			12.10
Hydrogen	0.000014	0.000103	0.000103			14.33
Helium	0.000002	0.000015	0.000015			2.01
Nitrogen	0.728523	0.000002	0.000002			728523
Oxygen	0.132770	0.000000	0.000000			132770
Carbon Dioxide	0.032153	0.231805	0.231805	-10.19		32153
Carbonyl Sulphide	nm	nm	nm			nm
Hydrogen Sulphide	nm	nm	nm			nm
Methyl Mercaptan	nm	nm	nm			nm
Ethyl Mercaptan	nm	nm	nm			nm
Thiophene	nm	nm	nm			nm
Dimethyl Disulphide	nm	nm	nm			nm
Methane	0.106535	0.768055	0.768055	-75.48		106535
Ethane	0.000000	0.000000	0.000000			<0.01
Ethene	0.000000	0.000000	0.000000			<0.01
Propane	0.000002	0.000013	0.000013			1.77
Propene	0.000000	0.000000	0.000000			<0.01
iso-Butane	0.000000	0.000002	0.000002			0.26
n-Butane	0.000000	0.000002	0.000002			0.31
iso-Pentane	0.000000	0.000001	0.000001			0.20
n-Pentane	0.000000	0.000001	0.000001			0.11
C ₆ +	0.000000	0.000001	0.000001			0.19
TOTAL	1.000000	1.000000	1.000000			1000000

Properties

Compositional Indices		Real Gross Heating Value (mj/m3) @15°C and 101.35 kPa		Relative Density	
Vol % Hydrocarbons	10.65	Air Free	Moisture and	Calc. Mol. Mass Ratio	Calc. Relative Density
Vol % CH ₄	100.00	as received	Acid Gas Free	0.9592	0.9594
Vol % C ₂ +	0.00				
CH ₄ / Σ C ₂ +	48735	4.02	29.04		
C ₂ / Σ C ₃ +	N/A				
C ₃ / Σ n-C ₄ +	4.31				

Pseudo Critical Properties		
	As Received	Acid Gas Free
pPc (kPa)	3867	5248
pTc (°K)	143	217


Geological Origin of Natural Gas


Geological Formation	Depth Range (MD from KB of Well)	Probable Depth (MD from KB of Well)

Comments

Forensic Solutions for Oilfield Challenges		
GCHEM Ltd. Bay #1, 4810-62 Avenue Lloydminster, AB T9V 2E9 Tel: (780) 871-4668 Fax: (780) 808-8883 e-mail: info@gchem.ca www.gchem.ca GPA 2145-09. Revision 1.3, August 1, 2016		

GCHEM LTD.		HIGH RESOLUTION GAS ANALYSIS CARBON ISOTOPE ANALYSIS HYDROGEN ISOTOPE ANALYSIS		
Sampling Company GCHEM Ltd.		Lab Sample No. 19084-05		
Date Tested September 11, 2019		Test Type Soil gas		
Operator Name Strategic Oil & Gas		Sample Container Type Glass Bottle		
Unique Well Identifier 2H-03		Sampling Point W5		
Well Name not provided		Test Intervals or Perfs mKB N/A		
Field or Area not provided		Date Received September 16, 2019		
Pool or Zone not provided		Date Reported October 1, 2019		
Well License not provided		Entered By Xiaolong Wang		
H2S Level (Observed at Site) not provided		Reviewed By Brad Johnston		
Sample Handling Conditions				
Pressure (kPa) N/A		Source/Sampled Received		
Temperature (°C) N/A				
Other Information:				
Laboratory Analysis				
Component	HRGC Analysis As Received Mol Frac.	Air Free As received Mol Frac.	Air Free / Acid Free As Received Mol Frac.	Carbon Isotope Analysis ‰ VPDB
Neon	0.000015	0.005003	0.005003	
Hydrogen	0.000005	0.001638	0.001638	
Helium	0.000002	0.000755	0.000755	
Nitrogen	0.778715	0.000000	0.000000	
Oxygen	0.218305	0.000003	0.000003	
Carbon Dioxide	0.002648	0.888513	0.888513	-20.94
Carbonyl Sulphide	nm	nm	nm	
Hydrogen Sulphide	nm	nm	nm	
Methyl Mercaptan	nm	nm	nm	
Ethyl Mercaptan	nm	nm	nm	
Thiophene	nm	nm	nm	
Dimethyl Disulphide	nm	nm	nm	
Methane	0.000325	0.108946	0.108946	
Ethane	0.000000	0.000000	0.000000	
Ethene	0.000000	0.000000	0.000000	
Propane	0.000000	0.000000	0.000000	
Propene	0.000000	0.000000	0.000000	
iso-Butane	0.000000	0.000000	0.000000	
n-Butane	0.000000	0.000070	0.000070	
iso-Pentane	0.000000	0.000043	0.000043	
n-Pentane	0.000000	0.000000	0.000000	
C ₆ +	0.000000	0.000032	0.000032	
TOTAL	1.000000	1.000000	1.000000	1000000
Properties				
Compositional Indicies		Real Gross Heating Value (mj/m3) @15°C and 101.35 kPa		Relative Density
Vol % Hydrocarbons	0.03	Air Free as received	Moisture and Acid Gas Free	Calc. Mol. Mass Ratio Calc. Relative Density
Vol % CH ₄	99.90	0.01	4.17	0.9986 0.9986
Pseudo Critical Properties				
Geological Origin of Natural Gas				
Geological Formation		Depth Range (MD from KB of Well)		Probable Depth (MD from KB of Well)
Comments				
Forensic Solutions for Oilfield Challenges				
GCHEM Ltd. Bay #1, 4810-62 Avenue Lloydminster, AB T9V 2E9 Tel: (780) 871-4668 Fax: (780) 808-8883 e-mail: info@gchem.ca www.gchem.ca GPA 2145-09. Revision 1.3, August 1, 2016				

GCHEM LTD.

HIGH RESOLUTION GAS ANALYSIS CARBON ISOTOPE ANALYSIS HYDROGEN ISOTOPE ANALYSIS

Sampling Company	GCHEM Ltd.	Lab Sample No.	19084-02
Date Tested	September 11, 2019	Test Type	Soil gas
Operator Name	Strategic Oil & Gas	Sample Container Type	Glass Bottle
Unique Well Identifier	2H-03	Sampling Point	BKG E
Well Name	not provided	Test Intervals or Perfs mKB	N/A
Field or Area	not provided	Date Received	September 16, 2019
Pool or Zone	not provided	Date Reported	October 1, 2019
Well License	not provided	Entered By	Xiaolong Wang
H2S Level (Observed at Site)	not provided	Reviewed By	Brad Johnston

Sample Handling Conditions

	Source/Sampled	Received
Pressure (kPa)	N/A	53
Temperature (°C)	N/A	20

Other Information:

Laboratory Analysis

Component	HRGC Analysis As Received Mol Frac.	Air Free As received Mol Frac.	Air Free / Acid Free As Received Mol Frac.	Carbon Isotope Analysis % VPDB	Hydrogen Isotope Analysis % VSMOW	HRGC Analysis As Received ppm v/v
Neon	0.000014	0.005888	0.005888			14.20
Hydrogen	0.000004	0.001822	0.001822			4.39
Helium	0.000002	0.000982	0.000982			2.37
Nitrogen	0.777048	0.000000	0.000000			777048
Oxygen	0.220541	0.000005	0.000005			220541
Carbon Dioxide	0.002380	0.987075	0.987075			2380
Carbonyl Sulphide	nm	nm	nm			nm
Hydrogen Sulphide	nm	nm	nm			nm
Methyl Mercaptan	nm	nm	nm			nm
Ethyl Mercaptan	nm	nm	nm			nm
Thiophene	nm	nm	nm			nm
Dimethyl Disulphide	nm	nm	nm			nm
Methane	0.000024	0.009759	0.009759			23.53
Ethane	0.000000	0.000000	0.000000			<0.01
Ethene	0.000000	0.000000	0.000000			<0.01
Propane	0.000000	0.000000	0.000000			<0.01
Propene	0.000000	0.000000	0.000000			<0.01
iso-Butane	0.000000	0.000000	0.000000			<0.01
n-Butane	0.000000	0.000195	0.000195			0.47
iso-Pentane	0.000000	0.000098	0.000098			0.24
n-Pentane	0.000000	0.000000	0.000000			<0.01
C ₆ +	0.000000	0.000064	0.000064			0.16
TOTAL	1.000000	1.000000	1.000000			1000000

Properties

Compositional Indices		Real Gross Heating Value (mj/m3) @15°C and 101.35 kPa		Relative Density	
Vol % Hydrocarbons	0.00	Air Free	Moisture and as received	Calc. Mol. Mass Ratio	Calc. Relative Density
Vol % CH ₄	97.08			0.9989	0.9989
Vol % C ₂ +	0.00				
CH ₄ / \sum C ₂ +	50.02				
C ₂ / \sum C ₃ +	N/A				
C ₃ / \sum n-C ₄ +	N/A				

Pseudo Critical Properties			
	As Received	Acid Gas Free	
pPc (kPa)	3764		7335
pTc (°K)	133		302

Geological Origin of Natural Gas

Geological Formation	Depth Range (MD from KB of Well)	Probable Depth (MD from KB of Well)

Comments

Forensic Solutions for Oilfield Challenges		
GCHEM Ltd. Bay #1, 4810-62 Avenue Lloydminster, AB T9V 2E9 Tel: (780) 871-4668 Fax: (780) 808-8883 e-mail: info@gchem.ca www.gchem.ca GPA 2145-09. Revision 1.3, August 1, 2016		

