

Core Analysis of the Sulphur Point Formation, Cameron Hills, North West Territories

Introduction

This Core study is being conducted to determine the nature of the reservoir in the lower dolomitized portion of the Sulphur Point formation (the upper limestone portion is non reservoir and therefore will only be discussed briefly). Cores from five wells in the Cameron Hills area were studied in detail to help answer the following questions.

- 1) What are the depositional facies; what is the depositional system?
- 2) What types of dolomite are present? What controls the occurrence of dolomite? What is the timing of dolomitization?
- 3) What is controlling the development of reservoir? What is the relationship between porosity and permeability (why does some high porosity rock have low permeability?) Is fracturing a component?
- 4) Is there a basement control on facies / dolomitization /reservoir development?
- 5) Can the geometry of the reservoir be predicted?

This study successfully determined the depositional and diagenetic controls on reservoir development. This study began by understanding the depositional processes then moved into the numerous diagenetic processes that have effected this formation. Basement tectonics and its role in deposition and diagenesis were also determined.

Summary table of depositional and diagenetic systems:

Depositional System	Facies Name	Description	Processes	Effect on reservoir
Supratidal	A: Evaporite pan	Nodular to chicken wire anhydrite with thin dolo mudstone beds and variable dolo mudstone matrix	Repeated storm recharge and evaporation in depressions or pans landward of the shoreline	Non-reservoir
	B: Cryptalgal Grainstone	Cryptalgal laminated mud-allochem grainstone composed of a mix of pellets, peloids, intraclasts, and micritized non-skeletal grains; contains rare skeletal fragments	Repeated storm deposition of mud-allochems from the intertidal and subtidal zones onto the supratidal flat seaward of the evaporite pans	Reservoir if secondarily dolomitized, non reservoir if early dolomitized.
	C: Sabkha Mudstone	Typically mottled but, occasionally, wavey laminated mudstone. Often has subaerial and/or soil diagenesis	Repeated storm deposition of carbonate mud from the intertidal and subtidal zones onto the supratidal flat seaward of the	Reservoir if secondarily dolomitized

			evaporite pans	
Intertidal	D: Upper Intertidal	Cryptalgal laminated mud-allochem grainstone composed of a mix of pellets, peloids, intraclasts, and micritized non-skeletal grains; contains rare skeletal fragments. Minor current evidence, possible vertical burrows.	Common subaerial exposure, minor bioturbation	Reservoir if secondarily dolomitized, meteoric leaching enhances porosity and permeability
	E: Middle Intertidal	Current dominated sedimentary structures with minor cryptalgal laminations. Vertical burrows with some horizontal burrows possible.	Moderate subaerial exposure.	Reservoir if secondarily dolomitized, meteoric leaching enhances porosity and permeability
	F: Lower Intertidal	Well bioturbated sediments with little current structures or cryptalgal laminations preserved; both vertical and horizontal burrows.	Uncommon subaerial exposure, common bioturbation	Reservoir if secondarily dolomitized, meteoric leaching enhances porosity and permeability
Subtidal	G: Shallow Subtidal	Muddy texture with little evidence of bedding due to bioturbation, no current evidence, occasional skeletal grains, Stromatoporoid fossils may present.	Low current energy deposition of sediments; the high amount of bioturbation destroys sedimentary structures.	Non reservoir in muddy rocks, reservoir in grainy rocks if secondarily dolomitized. Typically low porosity.
Regolith	Regolith F: Fluvial/alluvium	Carbonate clasts floating in clay or shale matrix. A wide range of sediments that usually include both a laminated, black, argillaceous matrix with carbonate rock clasts. The carbonate clasts may be hard and corroded or soft and semi-conformed. Soil overprinting may be present on carbonate clasts.	Deposition of carbonate clasts and fluvial sourced shale and clastics on top of soils.	Non-reservoir
Regolith	Regolith C: Cave Floor Deposition	Typically a mixture of carbonate clasts floating in clay or shale matrix. Some soft sediment deformation features may be present.	Sediments transported from the surface into a karst cavern system	Non-reservoir
Regolith	Regolith M: Marine	Carbonate and argillaceous clasts floating in a peloidal grainstone. Light gray in colour. No bedding is visible.	A mixture of detrital clasts and marine derived sediments; probably deposited in a	Limited reservoir potential if there is secondary porosity development by meteoric leaching or dolomitization.

			shallow subtidal setting.	
Diagenetic system	Subfacies Name	Description	Processes	Effect on reservoir
Karst; Dissolution of carbonate sediments	Subfacies L: Meteoric leaching	Marine carbonates have fabric selective leached porosity.	Carbonate sediments are dissolved by meteoric leaching	Creation of secondary matrix porosity
	Subfacies R: Cavern development and Roof Collapse	Carbonate clast breccia. Fracture network may be open, or infilled with sediment or cement.	Cave roof collapses due to overburden pressure.	Typically non reservoir because fractures are infilled, reservoir if there is no matrix infill and is secondarily dolomitized
Soil development	Subfacies P: Paleosol/Soil	Bedding is mottled, fabric is no longer recognizable, limestone or dolostone is either bleached or has a gray reduction alteration colour, karst features are common and rooting is rare.	The alteration of sediments via subaerial exposure, plant activity and ground water.	Either reservoir or non-reservoir
Dolomitization	Subfacies S: Sabkha	Sabkha: Supratidal deposits, typically cryptalgal laminated mudstone, with earthy dolomite crystals. Fabric is well preserved. Light brown in colour, locally oil stained.	The evaporation of seawater in tidal flat pools increases the magnesium concentration; this fluid percolates through the sediments and subsequently dolomitizes the sediments.	Low permeability reservoir
	Subfacies B: Burial compaction/ Fluid Expulsion dolomites	Micro crystalline to very fine crystalline dolomite; partial destruction of fabric.	Expulsion of magnesium rich waters from the underlying Muskeg evaporates percolates in the phreatic zone dolomitizing all carbonate facies	Produces reservoir in grainy rocks
	Subfacies H: Hydrothermal	Coarser dolomite crystals, up to 2 mm, white to light gray in colour, hydrofractured sediments, associated galena;	Basement fault sourced fluids travel up through a fault	Does not produce reservoir

		vugs up to 1 cm with dolomite crystals.	and into the sedimentary rocks through existing permeability pathways	
Syndepositional Tectonics	Subfacies T: Syndepositional fracturing, liquefaction and brecciation	Fracturing, faulting, brecciation and liquefaction of sedimentary layers prior to complete lithification resulting in a mottled or chaotic appearance. Healed fractures or faults with millimeter to centimeter scale offset of beds. These features are attributed to tectonic events and are not related to karst diagenesis.	Tectonic activity generates seismic events which results in brecciation or liquefaction of sediments	No effect

Discussion of Depositional Facies

Marine Carbonates

The carbonate sediments found in the Sulphur Point formation in this area are typically peritidal, hard pellet grainstones and packstones. Supratidal, Sabkha, deposits are common at the base of the formation and may occur throughout the formation. Often the supratidal deposits have a subaerial diagenetic overprint. In the limestone section the depositional facies are more visible because of a lack of diagenetic overprinting. The intertidal deposits are mainly composed of peloids but there is a minor skeletal component and the sediments are variably muddy. There is one subtidal bed that is about 30cm thick and is present in each core. This bed has characteristic Stromatoporoid fossils in it. Being subtidal, this is the only bed in the study area that may be laterally continuous over large areas.

This sedimentary package indicates that this area was a warm water, shallow marine setting similar the modern Bahamas. Changes in sedimentation are a function of relative sea level changes due to active basement tectonics.

Regoliths

Regoliths are an accumulation of carbonate clasts sourced by the erosion of carbonate sediments and from fluvial sourced argillaceous material. The carbonate clasts may be semiconformed implying that the carbonate sediments (marine deposition) were eroded prior to complete lithification. Some carbonate clasts were completely lithified and are corroded. Some of the clasts have paleosol diagenesis evidence. All of this implies that carbonate sediments were deposited in a marine setting (supratidal to intertidal), were rapidly uplifted and were eroded. The argillaceous matrix within the regolith sediments was sourced from a fluvial source. Regoliths develop in several setting in this formation. First, regoliths are found on top of soil horizons. Second, regoliths can be found within caverns; this implies that there is a connection between the cavern and the surface. Third, regoliths can be found in sinkholes. Fourth, some parts of the regolith sediments can be found within marine carbonate beds. This implies that regolith sediments were transported into the marine environment, sorted, and deposited.

There is a thick regolith bed, often referred to as the main regolith that is found within each core at approximately the same position. This bed is a terrestrial accumulation that often occurs on a paleosol. The formation of this bed occurred by the erosion of tectonically uplifted Sulphur Point carbonates which were

transported to the study area by a fluvial source. This indicates that there was a large regional uplift with a long duration. Marine carbonates overly this regolith bed which indicates that the basement dropped and a marine incursion followed.

Discussion of Diagenesis

Karst

Karst features are common throughout the Sulphur Point formation. Cave development and roof collapse features occur throughout the Sulphur Point. Roof collapse fractures can add permeability to a reservoir unit if the fractures are not filled with sediment or cement. Solution enhanced fractures occurs are found occasionally in the Sulphur Point. Meteoric leaching, which creates secondary matrix porosity, also occurred at this time. The topography of the Sulphur point varied during periods of exposure. The K-74 well has advanced karst features such as cavern creation and collapse and was high relative to the M-73 well which has very little cavern development and appears to have been within the water table. The northern area (A-52 and G-21) has evidence of meteoric leaching in the lower reservoir and common karst features including roof collapse above the lower reservoir.

Paleosols

Soil development is common throughout the Sulphur Point. Some paleosols have great porosity while others have poor porosity. Paleosols in both muddy and grainy rocks were found in the cores. Rocks that are microcrystalline paleosols may have either poor porosity or good intercrystalline porosity; this is probably a function of cementing, position of the water table and the amount of time the sediment was exposed to meteoric fluids. Some of the pay zones are in fact paleosols. The rocks were initially grainy carbonates in some cases or are unidentifiable in others.

Dolomitization

Three types of dolomitization were found in the study area:

1: Sabkha dolomitization. This is limited to Sabkha beds near the base of the Sulphur Point formation. This process occurs very early in the diagenetic history; burial depth is probably less than 3m. There is excellent preservation of the original cryptalgal fabric of the rock. This process is responsible for only a small portion of the dolomitization of the Sulphur Point carbonates and in some areas these lower Sabkha beds were destroyed or altered by karst diagenesis or soil development.

2: Burial dolomitization. This process is the dominant dolomitization mechanism in the Sulphur Point. Dolomitizing fluids rose from the Muskeg equivalent anhydrites when a critical pressure/temperature was reached, possibly during Slave Point? The upward motion of this fluid stopped when the vadose/phreatic boundary was reached. Burial dolomitization appears to be confined to the phreatic zone. In the limestone beds above there is extensive karst dissolution and subsequent roof collapse breccias that are not dolomitized; this type of meteoric dissolution occurs in the vadose zone. This interface occurs in either the main regolith bed or in the roof collapse breccias above it. It is transitional over about a one meter interval. This dolomitization process creates intercrystalline porosity within grainy intertidal beds.

3: Hydrothermal dolomitization. This diagenetic component does not create reservoir. The presence of saddle dolomite within crystalline dolostone was found in thin section indicating a hydrothermal overprint; it slightly reduces porosity. The peloidal rocks have a secondary dolomite crystal growth within pores. Fault sourced hydrothermal dolomite occurs as detritus within the main regolith and rarely in argillaceous beds within the marine carbonate sediments. The hydrothermal dolomite detritus was probably eroded from a fault sourced hydrothermal dolostone. This fault sourced HDT was emplaced during the Sulphur Pt, in the Sulphur Pt, uplifted and eroded, and deposited in Sulphur Pt.

Synsedimentary tectonics

Tectonic features are present throughout the Sulphur Point. Faults and fractures, liquefaction brecciation, and soft sediment deformation features are common. These features occur sporadically throughout the deposition of this formation. The soft sediment deformation features occur before complete lithification.

Fractured beds with millimeter to centimeter offset have no displacement in beds the overlying beds. All of these features indicate that the basement was continuously tectonically active throughout the deposition of the Sulphur Point formation. All of the features have an early or healed appearance which implies that they occurred prior to complete lithification. These tectonic events occurred concurrently with all of the other diagenetic events in the Sulphur Point. These features appear to predate karst features but some of the roof collapse features may have been generated by tectonic events.

The effect of the large scale tectonic uplifting is first that the depositional environment is changed and secondly, areas that are raised above the tidal zone, sub aerially exposed, begin the diagenetic process. The longer a carbonate sediment is exposed to the karst process the more secondary porosity will be created.

Reservoir Discussion

The K-74 well has a great reservoir because of the secondary porosity generation created by meteoric leaching and karst dissolution. The karst dissolution probably occurred over a long period of time, caverns were created which subsequently collapsed. This reservoir is fractured from due to roof collapse; thus it has good porosity and permeability. This well has a higher than expected cumulative oil production. This well has abundant open fractures throughout the dolomitized section, above and below the perforated interval, and is probably receiving production from a very thick zone. Obviously it has a large lateral drainage as well. Although the beds may not be laterally continuous on a kilometer scale, porous and/or fractured beds are probably in communication with each other at this scale. Pressure depletion data from neighboring wells will support or disprove this theory.

The best reservoir beds occur in grainy, intertidal deposits that are either crystalline dolostones or are meteoric leached peloidal rocks; the later type has the highest porosity and permeability. Porosity generation in the crystalline dolostone is simply from the dolomitization process. In the leached rocks porosity is generated by the removal of sediment or cements, not by dolomitization.

Sabkha beds usually have good porosity but because of the microcrystalline matrix the permeability is generally too low for oil production (<10mD). These beds are thin, usually 10-20cm thick, and often have diagenetic overprints which harm the reservoir; these beds are not economic targets.

Fractures

Several different types of fractures were recognized in core;

- 1: Syndepositional Tectonics; early fractures that are healed. No benefit to reservoir.
- 2: Roof collapse; often have cements such as dolomite or anhydrite but may be open and have solution enhancement. Beneficial to reservoir.
- 3: Tectonic. Last stage of fracturing; ranges from partially to completely cemented. Beneficial to reservoir.

Reservoir Summary for cored wells:

The K-74 well has the roof collapse fractures which are a solution enhanced.

The M-73 well has poor, patchy pp vug porosity, and glade soils that are poor reservoir. (There is a definite sub aerial diagenesis overprint, sed structures are gone, fractures are solution enhanced, but the porosity is lacking)

The C-75 well had patchy porosity that looks better in core analysis than core.

The G-21 well has good reservoir

The A-52 well has better reservoir than G-21

Reservoir Paragenesis for each well

The paragenesis of the K-74 reservoir zone is; marine deposition of hard pellet grainstone and packstone, syndepositional tectonic liquefaction, lithification, soil development, vadose dissolution, roof collapse, burial dolomitization. The roof collapse feature in this well has added significant permeability through the

fracture network. Soil development has also occurred in this zone and has a negative effect on parts of the reservoir.

The paragenesis of the C-75 reservoir zone is; marine deposition of hard pellet grainstone and packstone, syndepositional tectonic liquefaction, lithification, burial dolomitization. The C-75 well is wet but still has some good reservoir, although it is less than the K-74 well in thickness and porosity and permeability. This well lacks the extensive meteoric leaching and the karst collapse found in the K-74 well.

The paragenesis of the M-73 reservoir zone is; marine deposition of hard pellet grainstone and packstone, syndepositional tectonic liquefaction, lithification, karst, soil development, marine deposition, ect, burial dolomitization. The M-73 appears to have very little reservoir compared to the K-74 and A-52 wells. Meteoric leaching is a minor component of the total porosity; most of the porosity is related to burial dolomitization. The beds with sub aerial exposure related diagenesis have less than expected porosity and permeability. Paleosols in this well have low porosity and permeability. Some of these beds appear to be glade soil (waterlogged).

The paragenesis of the A-52 reservoir zone is; marine deposition, syndepositional tectonic liquefaction, lithification, vadose dissolution, burial dolomitization. Although this well lacks the fractures from a roof collapse, the porosity and permeability are excellent.

The paragenesis of the G-21 reservoir zone is; marine deposition of hard pellet grainstone and packstone, lithification, meteoric leaching (vadose), burial dolomitization. No evidence of tectonics in the lower reservoir unit, but is present in the upper unit. Good porosity and permeability but not as good as A-52.

Paragenesis for the study area

Generalized Sulphur Point paragenesis within the study area:

- 1) Deposition of the Muskeg equivalent anhydrite
- 2) Exposure and erosion of the Muskeg equivalent anhydrite
- 3) Deposition of Sulphur Point supratidal (sabkha) carbonates early dolomitization
- 4) Uplift and exposure; karst and paleosol development
- 5) Marine incursion, deposition of intertidal and subtidal grainy carbonates
- 6) Uplift and exposure; karst and paleosol development; meteoric dissolution and the creation of reservoir
- 7) Alternating deposition of peritidal carbonates and subaerial exposure; karst and paleosol development
- Emplacement of fault sourced hydrothermal dolomite.
- 8) Broad tectonic uplift (with a region higher than the study area), erosion and deposition of the thick regolith deposit that occurs throughout the study area.
- 9) Tectonic drop, marine incursion, deposition of intertidal and subtidal grainy carbonates (this is the mostly LS bed).
- 10) Uplift, exposure and karst development
- 11) Deposition of the Watt Mountain shales (marine?), then uplift, subaerial exposure and paleosol development
- 12) Burial dolomitization

Well Summaries

K-74

Extensive karst development within the limestone section; most of this section is a roof collapse breccia. Most of the limestone section is a roof collapse breccia. The limestone/dolostone contact is within the main regolith bed. The beds immediately above the reservoir have abundant karst features and the reservoir unit also has karst cavern and roof collapse as well as meteoric leaching. This reservoir unit lies above the subtidal bed with the Stromatoporoid fossils. The base of the Sulphur point is a karst cavern with fill and

the roof intact. No Muskeg Equivalent anhydrite was recovered in the core. This core has the most karst cavern features than the others suggesting that it was structurally high and was exposed to dissolution for a long period of time.

C-75

Extensive karst development within the limestone section; most of this section is a roof collapse breccia. The limestone/dolostone contact is in the bedded grainy carbonates immediately above the main regolith bed. The upper dolomite section (between the reservoir and the main regolith bed) is a series of grainy carbonates with some karst diagenesis. The reservoir is a grainy carbonate that is probably an upper intertidal to supratidal deposit with karst and soil diagenesis. The porosity is patchy compared to wells such as K-74 and the northern area. Less subaerial diagenesis than M-73.

M-73

The limestone section of this well is mostly intact, not a big roof collapse breccia like most of the other cores. Perhaps it was structurally lower than the K-74 well and was therefore not as affected by karst diagenesis. There are syndepositional tectonic features through out the limestone unit. There is porosity development and oil staining in the limestone where soils did not develop. This porosity is the result of meteoric leaching.

The limestone/dolostone contact is into the roof collapse breccia above the main regolith. There are detrital clasts and crystals of hydrothermal dolomite near the top of the main regolith that appear to be a fault sourced hydrothermal dolomite that was probably emplaced during the Sulphur point time, uplifted and eroded.

This well is in the more tectonically active South East area. When compared to the A-52 and G-21 wells in the North West, it is apparent that there is a marine deposition and subsequent sub aerial exposure cyclicity throughout these sediments. The rocks in this core are often bleached but the porosity development is not as good as expected; this may be due to soil development and the position of the water table. If the rocks are in the vadose zone then the necessary leaching for good reservoir occurs. Secondly, there are multiple soil horizons in this core but not great porosity. The porosity within the intertidal beds is patchy unlike the North West area.

300/F-73

The dark brown crystalline dolostones are characteristic of intertidal, peloidal grainstones and packstones that have not undergone meteoric leaching. The porosity in these rocks is related to dolomitization and in core is often patchy with poor permeability matrix separating the patches. The light brown microcrystalline rocks have undergone diagenesis related to subaerial exposure; some meteoric leaching is evident in these rocks. The permeability of these microcrystalline beds is probably less than 5mD which results in low oil production.

302/F-73

The drill cuttings from this well are a lighter colour of brown than most of the cuttings from the original 300/F-73 well. From core analysis this lighter colour is a result of diagenesis related to sub aerial exposure. The good porosity spike at 1526-1527m MD is probably an intertidal, peloidal packstone that was subjected to meteoric leaching and dolomitization. The interval from 1527-1530m is probably a mixture of Sabkha beds and intertidal beds with low porosity. There are low porosity micro crystalline, crystalline and crypto crystalline rocks in the samples. The bottom porosity spike from 1530-1531m is probably a Sabkha bed that has meteoric leaching and dolomitization generated secondary porosity. The permeability of this reservoir is limited by the microcrystalline dolomite crystals that are commonly found in the packstones and the Sabkha mudstones.

A-52

This core has part of the Watt Mountain shale which is green and has paleosol features. Green clay from the Watt Mountain can be found within the roof collapse breccias of the Sulphur Point limestone in this and other cores. Extensive karst development within the limestone section; most of this section is a roof collapse breccia. The limestone/dolostone contact is in the roof collapse breccia above the main regolith

bed. Karst features are found throughout the dolostone section above the reservoir; immediately above the reservoir there was a karst cavern and subsequent roof collapse. The reservoir has evidence of meteoric leaching. The reservoir lies above and below the subtidal Stromatoporoid bed. This reservoir has excellent matrix porosity and permeability, but no fractures.

G-21

Extensive karst development within the limestone section; most of this section is a roof collapse breccia. The limestone/dolostone contact is within the main regolith bed. There are detrital clasts and crystals of hydrothermal dolomite near the top of the main regolith that appear to be a fault sourced hydrothermal dolomite that was probably emplaced during the Sulphur point time, uplifted and eroded.

The G-21 well has good consistent reservoir beds that have both meteoric leaching and dolomitization created secondary porosity. The dark brown coloured intertidal beds lack meteoric leaching and have pin point vuggy and intercrystalline porosity. Karst evidence is present above the lower porous unit. The upper porous unit is one meter thick and is a Sabkha bed that has some evidence for sub aerial diagenesis. This rock is microcrystalline and has good porosity and permeability.

Exploration Models

North West

A-52 has higher porosity and permeability than G-21 but is wet. Use the 3D seismic to target current structural highs; I believe some of these highs already produce gas.

South East

Paleosols can be either poor or very good reservoir. Advanced karst development, caverns, creates more secondary porosity through meteoric leaching. Is there a relationship between isopachs or something else that could indicate whether the well is like K-74 (cavern) or M-73 (soils)?

Template for logging other cores

Evaluate the degree of karst diagenesis in the limestone section. Determine the top and bottom of the main regolith bed and note where the limestone/dolostone contact is. For the dolostone section the karst features and secondary porosity creation are important. The relationship of the reservoir bed to the subtidal Strom bed may be helpful in determining the timing of the meteoric leaching. The amount of time that the sediments are exposed to meteoric fluids and the position of the paleo water table are important to reservoir development.

Conclusions

- 1) Deposition of the Sulphur Point Carbonates occurred in a warm, shallow marine environment.
- 2) The basin was tectonically active throughout Sulphur Point time. Numerous cycles of deposition, uplift and erosion or evident.
- 3) Karst diagenesis is common throughout the study area, is an indicator of uplift and subaerial exposure and creates reservoir.
- 4) Although Sabkha, Burial, and Hydrothermal dolostone is present, only burial dolomitization is significant. Intercrystalline porosity is created by burial dolomite.

Recommendations

Any other cores in the study area should be logged and compared to these findings to see if the relationships hold or change.

1:240	20 40 60 80 100	Sample Quality: good,fair,poor,terrible	Interpreted Lithology & Facies	Facies & Resvr Summary	Dol XII & SilicicGn Size, Sort, Rnd	Structure / Fractures	Diagenesis	Sedimentology, Bioturbation, Fossils etc	Dep Systems & Environment					
m		Fmtn	Long Facies Desc. & Comments (lith, alloch, mineralogy, porosity, defining features, etc)	Res. Pot. good, poor, questionable Resvr Type: m=massive, l=fair, d=f	Est. Total Effective Por	Est. Total Perm (md)	Pore Types; e, mx, x, xi, g, gh, fe, m, vi, vt, sh, sc, p, fr, art	HC Show; Pyrobit, D=dissem, F=film, O=odor	DoI XII & SilicicGn Size, Sort, Rnd	Structure / Fractures	Diagenesis	Sedimentology, Bioturbation, Fossils etc	Dep Systems & Environment	
1520	0 PE trace 5	Sample Quality: good,fair,poor,terrible	Bulk Lithology % of Sample; 5% increments	Interpreted Lithology & Facies	Res. Pot. good, poor, questionable Resvr Type: m=massive, l=fair, d=f	Est. Total Effective Por	Est. Total Perm (md)	Pore Types; e, mx, x, xi, g, gh, fe, m, vi, vt, sh, sc, p, fr, art	HC Show; Pyrobit, D=dissem, F=film, O=odor	Dol XII & SilicicGn Size, Sort, Rnd	Structure / Fractures	Diagenesis	Sedimentology, Bioturbation, Fossils etc	Dep Systems & Environment
1525														
1530														
1535														
1540														
1545														

