

OTTAWA COPY
9211-P33-6-2

GEOLOGICAL WELLSITE REPORT

for

PARA ET AL SWEDE A-52

Prepared for

PARAMOUNT RESOURCES LTD.

by

Robert J. Adamowicz, BSc Geol.

Date: March 01, 1991

TABLE OF CONTENTS

- Introduction
- Well Summary
- Casing Summary
- Survey Record
- Formation Tops
- Drill Stem Test Reports (2)
- Logging Program
- Sample Descriptions
- Bit Record
- Daily Summary

INTRODUCTION

The Paramount et al Swede A-52 well situated at $60^{\circ} 20'$ latitude and $117^{\circ} 30'$ longitude in the North West Territories of Canada, was spudded on February 10th, 1991 @ 21:00 HRS. The G-21 well was drilled to a depth of 1610.0 metres driller depth and 1612 metres logger depth. The well took 14 days to drill, and 18 days total time to rig release, which was February 28th, 1991 @ 20:00 HRS.

Surface casing was set and cemented at 398.0 metres. The main hole, 222mm diameter, was drilled with air from surface casing to 1283.0 metres with no problems as the hole kept relatively dry. The hole was drilled with gelchem mud from 1283.0 metres to 1612.0 metres, total depth (logger).

Two cores were cut in the Sulphur Point formation, with 100% recovery on both, and then a drillstem test was run (as the Sulphur Point represented the primary zone of interest). A core was also cut in the Keg River formation (100% recovery) and drillstem test # two was performed (secondary zone of interest), upon penetration.

The well data indicated poor Sulphur Point oil potential and poor Keg River oil potential, and the well was plugged and abandoned.

WELL SUMMARY

WELL NAME : Para et al Swede A-52
LOCATION : 60° 20' Lat. 117° 30' Long.
ELEVATIONS : Grnd. 692.6m K.B. 697.1m
OPERATOR : Paramount Resources Ltd.
CONTRACTOR : Command Drilling Ltd., Rig # 2
SUPERVISION : Tool push - Bud Matier
Engineer - Gerry Sanders
Geologist - Rob Adamowicz
WELL SPUNDED: 10-02-91 @ 21:00 HRS
DRILLING : 25-02-91 @ 02:15 HRS
COMPLETED
RIG RELEASE : 28-02-91 @ 20:00 HRS
HOLE SIZE : Surface 349mm Intmd. 222mm Main 216mm
CASING SIZE : Surface 244.5mm @ 398m
Production nil.
TOTAL DEPTH : Driller 1610.0m Logger 1612.0m
BOTTOM HOLE : Precambrian Granite
FORMATION
LOGS : Phasor DISFL-GR 1:600 & 1:240 scale 398-1612m
BHC Sonic GR-Cal " " " "
CNL-LDT-Pef-XYCal " " " "
" 1:120 scale (LST) 1300-1612m
" 1:120 scale (DOL) 1300-1612m
Microlog-GR 1:240 & 1:120 1300-1612m
CORES : Core #1 1363-1381m (Sulphur Pt.) Rec.18.0m
Core #2 1381-1391.0m (Sulph.Pt./Musk) Rec.10.0m
Core #3 1478-1496.2m (Keg River) Rec.18.2m
DRILL STEM : DST #1 (On Penetration) 1366-1382.5m (Sulph.Pt.)
TESTS DST #2 (On Penetration) 1475-1486.0m (Keg R.)
WELL STATUS : Dry and Abandoned

CASING SUMMARY

Surface Casing

Ran 33 joints 244.5mm 53.6 kg/m J55 8 RD LTC ERW IPSCO 398.68m surface casing. Cemented by FRACMASTER with 22.7 m³ 1900 kg/m³ 0-1-0 "G" + 2% CaCl₂ w/ 3 m³ water preflush. Landed at 398.0m KB. Plug down at 20:02 91-02-12. Circulated out 3.5 m³ cement returns to surface.

SURVEY RECORD

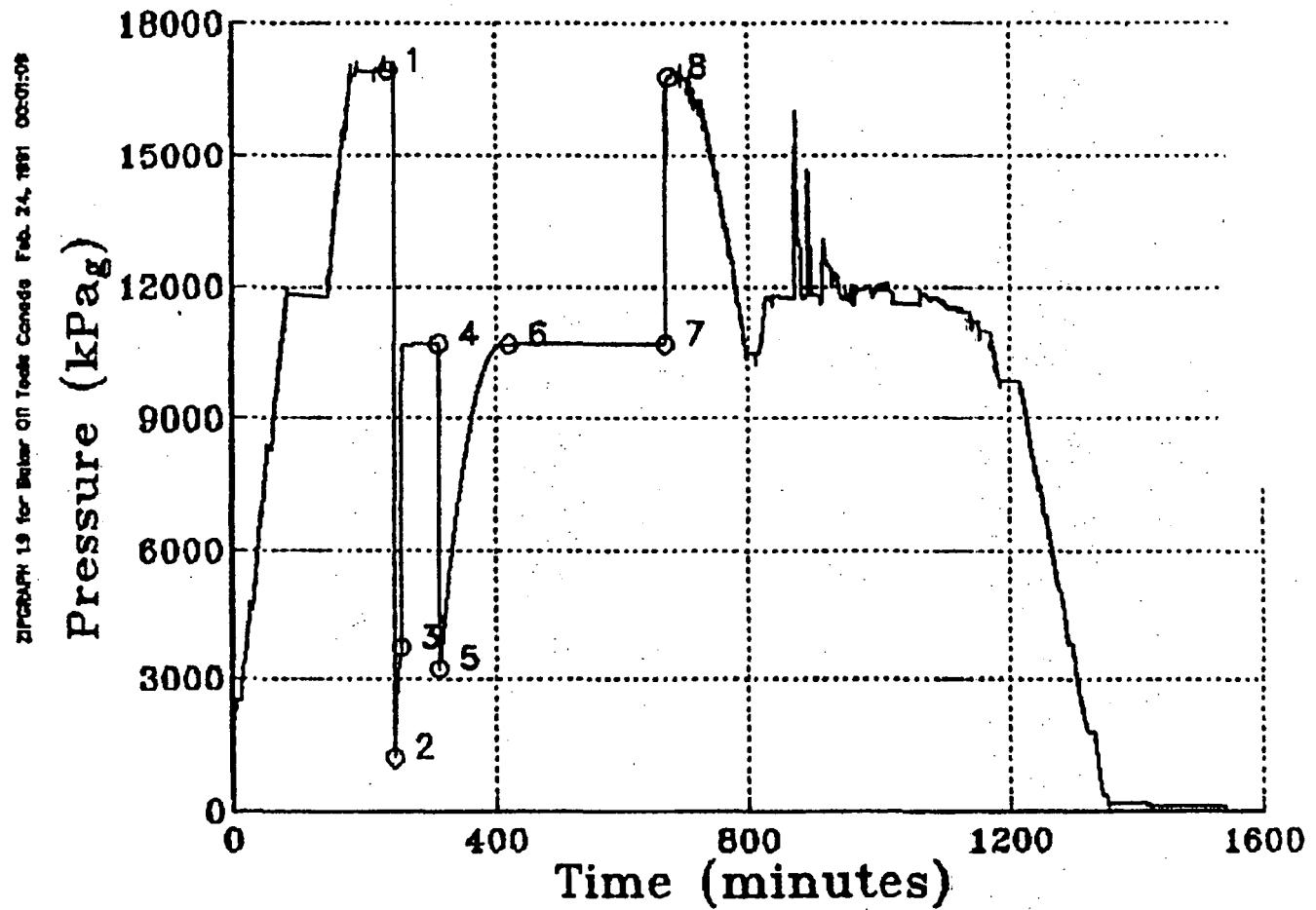
20m 1/4 , 50m 1/16 , 78m 1/2 , 106m 1 , 135m 1/4 , 162m 3/4 ,
190m 1/8 , 218m 1/8 , 247m 3/4 , 266m 3/4 , 295m 1/2 , 324m 1/8 ,
353m 1/8 , 398m 1/4 , 470m 1/4 , 538m 1/8 , 615m 1/8 , 682m 3/4 ,
759m 1 1/4 , 807m 1 3/4 , 827m 1 , 855m 1 1/4 , 865m 1 1/4 ,
885m 1 1/4 , 925m 1 1/2 , 963m 1 1/4 , 1002m 2 , 1031m 2 1/4 ,
1137m 1 , 1186m 1 , 1234m 7/8 , 1283m 1/2 , 1329m 1/2 , 1387m 1/4
1478m 1 , 1532m 3/4 , 1581m 3/4

PARA ET AL SWEDE A-52

FORMATION TOPS

G.L.: 692.6m
K.B.: 697.1m

Formation	Sample Top	(S.S.)	Log Top	(S.S.)
WABAMUN	458.8m	+238.3m	459.0m	+238.1m
JEAN MARIE	680.0	+ 17.1	681.0	+ 16.1
FORT SIMPSON	687.0	+ 10.1	687.0	+ 10.1
TWIN FALLS	798.0	-100.9	798.0	-100.9
HAY RIVER SHALE	945.0	-247.9	943.0	-245.9
BEAVER HILL LAKE	1278.0	-580.9	1279.0	-581.9
MUSKWA	1282.0	-584.9	1284.0	-586.9
SLAVE POINT	1310.0	-612.9	1310.3	-613.2
FORT VERMILLION	1338.0	-640.9	1340.5	-643.4
WATT MOUNTAIN	1358.0	-660.9	1360.1	-663.0
SULPHUR POINT Lst.	1364.0	-666.9	1365.5	-668.4
Dol.	1371.3	-674.2	1372.0	-674.9
MUSKEG	1383.0	-685.9	1385.1	-688.0
KEG RIVER	1477.0	-779.9	1476.7	-779.6
CHINCHAGA	1545.0	-847.9	1546.1	-849.0
GRANITE WASH	1572.0	-874.9	1565.6	-868.5
QUARTZITE	1575.0	-877.9	1572.8	-875.7
PRECAMBRIAN	1590.0	-892.9	1592.0	-894.9
TOTAL DEPTH	1610.0	-912.9	1612.0	-914.9



DST #2

Paramount et al SWOC A52

PA52B

LOGGING PROGRAM

2) BHC Sonic-GR-Cal
1:600 T.D. to surface casing
1:240 T.D. to surface casing
GR 0-150
T.D. to top of Slave Point 300-100 us/m
Top of Slave Pt. to surf.csg. 500-100 us/m

3) CNL-LDT-Pef-GR-XYCal
1:600 T.D. to surface casing
GR 0-150
Bulk Density 2000-3000 kg/m³
1:240 T.D. to surface casing
GR 0-150
Limestone matrix 45 to -15
Dolomite matrix 45 to -15, TD to top Sl.Pt.
Display and integrate X-Y Calipers for
Cement bond volume log
1:120 High resolution - LST - TD to top of Sl.Pt.
High resolution - DOL - TD to top of Sul.Pt.

4) Microlog-GR
1:240 TD to top of Slave Point
Resistivity 0-40 ohm-m linear scale
1:120 TD to top of Slave Point
Resistivity 0-40 ohm-m linear scale

5) Cement Volume Log
1:600 Compute and fax to Paramount office

6) LOGNET
1:240 Phasor, Sonic, Microlog - TD to 50m above
Slave Point
1:240 Neutron/Density - TD to 50m above Slave Pt.
Limestone presentation
1:120 High resolution - LST - TD to top of Sl.Pt.
High resolution - DOL - TD to top of Sul.Pt

LOGGING COMPANY : Schlumberger Engineer-D.Stephanson Ph#926-2551
Peter(High Level) Ph#926-2841

PRINTS : 2 Field (wellsite) and 8 Field (office)

DIRECTIONS : 1 km south of Indian Cabins turn left off HWY 35, go 9 km, take right at "Y", follow main road to Cameron River for 60 km. cross river and follow road for 2 km to "T", turn left and go 9 km to "T", turn left, go 10 km to Rig.

PARA ET AL SWEDE A-52

LITHOLOGICAL DESCRIPTIONS

1285 SHALE light to medium grey, brittle, dolomitic, flat

1290 SHALE medium to dark grey to black, A/A, minor SHALE, light to medium grey, A/A

1295 A/A

1300 A/A SHALE light to medium grey, brittle, dolomitic, A/A

1305 A/A minor LIMESTONE light grey to grey brown to white, cryptocrystalline, trace microcrystalline, tight, packstone, no shows

1309 SLAVE POINT

1310 LIMESTONE A/A, light grey to grey brown to white, medium brown, wackstone in part

1312.5 A/A LIMESTONE abundant chocolate brown, trace broken calcite crystal fragments

1315 LIMESTONE cream to dark brown, cryptocrystalline, tight, SHALE light to medium to dark grey to black

1320 A/A LIMESTONE A/A, occasional microcrystalline, tight, trace SHALE, black, carbonaceous

1325 A/A cream to light to medium brown, tight, mottled in part, fair petro odor on heating sample, dull yellow, orange and bright yellow fluorescence and weak white streaming cut

1330 A/A

1332.5 A/A fair petro odor on heating sample

1335 A/A predominantly microcrystalline, mottled, predominantly tight, trace pinpoint and intercrystalline porosity, dull yellow orange to bright yellow fluorescence and weak white streaming cut

1340 A/A trace to fair intercrystalline and pinpoint porosity (3-5%) in part

1345 A/A LIMESTONE predominantly cryptocrystalline, tight, SHALE, light to medium grey green to grey

1350 A/A LIMESTONE pelletoidal in part, predominantly tight

1355 A/A

1358 WATT MOUNTAIN

1360 A/A trace SHALE light green to occasionally chocolate brown, brittle, siliceous, hard in part

1362.7 SHALE light grey green to light green, greasy appearance, conchoidal habit, abundant fine black specks

CORE DESCRIPTIOnS

CORE #1 1363.0 - 1381.0m
(Cut 18.0m, Rec. 18.0m)

1363.0 to 1364.0m
SHALE light to medium green, dolomitic, crumbly, waxy, hard to soft

1364.0 to 1364.6m
LIMESTONE light brown to grey brown, breccia, angular pebbles up to 12 centimetre diameter, any size possible, cryptocrystalline, tight, abundant SHALE matrix, A/A, between pebbles

1364.6 to 1370.0m
LIMESTONE A/A, light to dark brown, massive, tight, moderately abundant fractures in any direction, often lined with SHALE A/A, predominantly closed fractures, occasional fracture filled with ANHYDRITE white, crystalline, occasional large pebble, angular, up to 15 centimeters diameter near base interval, thin SHALE intercalations around 1367.0 metres, A/A, between pebbles, occasional ANHYDRITE filled vug present around 1367 metres and 1369 metres, SHALE interlaminations, chocolate brown or light to medium green A/A, occasional diagonal fracture, slickensides, minor bleeding oil from fracture in interval 1369 to 1370 metres

1370.0 to 1371.2m

LIMESTONE A/A, light to dark brown, cryptocrystalline, A/A, dolomitic in part, brecciated, occasional bed with fair to poor intercrystalline and pinpoint porosity in part, with abundant bleeding oil (light brown light sour oil), up to 4 centimetre thick band, heavy H2S odor from bleeding oil, dull yellow green fluorescence, and immediate lime green cut

1371.2 to 1380.0m

DOLOMITE light to medium brown, cryptocrystalline to very fine crystalline, minor to abundant bleeding oil in beds (0.2 to 0.5 metre diameter), occasional thin SHALE laminations in top half metre, fluorescence and cut A/A, minor bleeding oil, fluorescence and cut A/A and occasional SHALE laminations or intercalations in interval 1372 to 1373m, occasional fracture SHALE or ANHYDRITE filled A/A in 1373 to 1374m interval, minor bleeding oil fluorescence and cut A/A and strong H2S odor in intervals 1374.2 to 1374.5m and 1376.8 to 1377.2m, DOLOMITE breccia abundant SHALE interlaminations A/A, in interval 1377.2 to 1377.6m, fair oil stain with fluorescence and cut A/A and fair H2S odor in interval 1379.2 to 1379.6m

1380.0 to 1381.0m

DOLOMITE A/A, top half metre of interval Algal Mat appearance, and bottom half meter DOLOMITE fine crystalline, fair intercrystalline porosity, abundant infill of vugular porosity with ANHYDRITE A/A, up to 4 centimetre diameter

CORE #2 1381.0 - 1391.0m
(Cut 10.0m, Rec. 10.0m)

1381.0 to 1382.4m

DOLOMITE light to dark brown, cryptocrystalline to microcrystalline, predominantly tight, abundant bleeding oil in bands throughout, minor Algal Mat appearance, very thin SHALE laminations, 0.2 metre thick maximum, occasional fair pinpoint and intercrystalline porosity bands (less than 5% porosity), and occasional ANHYDRITE filled fracture present in any direction, complete infill of ANHYDRITE in part

1383.0

MUSKEG

1382.4 to 1383.2m

DOLOSTONE cryptocrystalline, tight, brecciated, occasional SHALE bands, dark grey green, waxy, (less than 2 centimetres thick), DOLOMITE pebbles, up to 15 centimetre diameter, angular

1383.2 to 1384.6m

ANHYDRITE yellow to white to light grey on surface, dark grey brown to white on fresh surface, occasional SHALE bed, dark grey to grey brown, carbonaceous, less than 4 centimetres thick

1384.6 to 1386.0m

DOLOMITE medium to dark brown, micro to cryptocrystalline predominantly tight, occasional fair to poor intercrystalline porosity bands, occasionally good bleeding oil bands (2 to 30 centimetres thick)

1386.0 to 1387.8m

ANHYDRITE A/A, moderately abundant fractures in any direction, SHALE filled, occasional tight DOLOMITE band, up to 20 centimeters thick, bottom 20 centimeters of interval shows SHALE laminations, A/A, less than 0.25 centimeters thick

1387.8 to 1389.5m

DOLOSTONE A/A, predominantly with laminations, thin SHALE laminations, fair bleeding oil from laminations (half a metre below top of interval), 0.3 metres thick, top 1/2 metre abundant ANHYDRITE clasts, up to 10 centimetre diameter, flame structure at base interval, brecciated

1389.5 to 1390.7m

ANHYDRITE A/A, moderately abundant fractures, SHALE filled

1390.7 to 1391.0m

DOLOSTONE A/A, tight, no oil staining, abundant thin SHALE laminations, A/A

SAMPLE DESCRIPTIONS CONTINUED

1395 DOLOMITE A/A light to dark brown to cream to white, cryptocrystalline to microcrystalline, tight, no shows, SHALE A/A, ANHYDRITE cream to medium brown, well rounded chips, translucent, waxy, tight, trace bryozoan fossil fragments

1400 A/A

1405 A/A ANHYDRITE A/A, also angular chips present

1410 SHALE light to dark grey, soft to moderately hard, dull to slightly metallic, dolomitic, minor LIMESTONE cream to dark brown, cryptocrystalline, tight, trace ANHYDRITE A/A

1415 A/A trace to minor DOLOMITE A/A

1420 A/A DOLOMITE light to medium brown, micro to cryptocrystalline, trace pinpoint porosity

1425 A/A

1430 A/A DOLOMITE light to dark brown, predominantly micro crystalline. tight, trace poor intercrystalline porosity, trace dead oil stain

1435 A/A poor intercrystalline and pinpoint porosity in part, fair petro odor on heating sample, dull yellow brown fluorescence, no cut

1440 A/A abundant ANHYDRITE A/A, minor DOLOMITE A/A, fair petro odor on heating sample

1445 DOLOMITE light to medium brown, micro to fine crystalline. predominantly microcrystalline, poor to fair intercrystalline porosity, minor dull yellow green dry cut, and weak white streaming cut in part, fair petro odor, ANHYDRITE A/A

1450 ANHYDRITE A/A, minor DOLOMITE predominantly tight to poor porosity

1455 A/A trace DOLOMITE A/A

1460 DOLOMITE light to dark brown, A/A, as in 1445 sample, predominantly poor intercrystalline porosity, ANHYDRITE A/A

1465 ANHYDRITE A/A, minor DOLOMITE light to medium brown, A/A, micro to cryptocrystalline, trace pinpoint porosity to tight

1470 ANHYDRITE A/A, DOLOMITE A/A, predominantly micro to cryptocrystalline, tight

1475 A/A minor ANHYDRITE A/A, DOLOMITE A/A

1477

KEG RIVER

1477 DOLOMITE light to dark brown, micro to fine crystalline, predominantly micro crystalline, friable, good intercrystalline porosity, fair vugular porosity (3-6%)
DOLOMITE dark brown, cryptocrystalline, tight, red brown fluorescence, no cut

CORE DESCRIPTION

CORE #3 1478.0 - 1496.2m
(Cut 18.2m, Rec. 18.2m)

1478.0 to 1482.5m

DOLOMITE light to medium brown to grey brown, predominantly cryptocrystalline, predominantly tight, occasional patchy pinpoint porosity bands (5 centimeter thick band), moderately abundant SHALE partings (less than 0.25 centimetres thick), medium to dark grey, carbonaceous, trace spotty black bleeding oil, bleeding at SHALE partings (stylolitic surface), occasional bleeding fracture and pinpoint, occasional vug (less than 3 centimeter diameter), fair black bleeding oil, (occasional Brachiopod shaped vug), fair fracture porosity in part connecting vugular porosity, moderately abundant calcite crystals lining on vugs (occupy from 10 to 30 percent of porosity), top 0.25 meters of intreval has a wet appearance, grainstone to packstone, dull yellow green dry fluorescence and bright lime green cut

1482.5 to 1487.0m

DOLOMITE A/A, occasional fist sized vugs (predominantly 1 to 2 centimeters diameter, moderately abundant vugs with abundant lining of calcite crystals A/A (less than 10 percent porosity), minor large pinpoint vugs (less than 1 centimeter diameter), minor bleeding oil from vugs, good vugular porosity in part, grainstone, fluorescence and cut A/A, moderately abundant SHALE partings A/A and occasional well developed vug (1-2 centimeters diameter) with calcite crystal lining in intreval 1485.5 to 1486.5m, predominantly poor porosity in intreval 1486 to 1487m

1487.0 to 1491.4m

DOLOMITE A/A, occasional vugular porosity or pinpoint porosity zone, minor SHALE partings, A/A, occasional vug less than 2 centimeters diameter A/A 1487.5m, generally a lack of fracture porosity, some evidence of minor broken shell fragments where dolomitization obliterates fossil evidence, moderately abundant vugs present with calcite crystal lining A/A in intreval 1490-1490.2m. minor evidence oil staining from 1490 1492m, occasional SHALE clasts present A/A. 2 to 5 centimeter diameter 1490 to 1492m intreval, around 1491m some vugs indicate brachiopod shapes

1491.4 to 1496.2m

DOLOMITE A/A, wackstone to packstone, occasional band fair to good pinpoint porosity (1 metre and 0.5 metre thick), abundant AMPHIPORA, dolomite replacement forms abundant pinpoint and minor intercrystalline porosity in part, SHALE partings, A/A, moderately abundant, occasional ANHYDRITE filled vugs (less than 1 centimeter diameter) around 1494 amd 1496m. trace to minor poor to fair vugular and pinpoint porosity in part. occasional spotty bleeding oil in part, dull yellow dry fluorescence and bright yellow immediate cut

SAMPLE DESCRIPTIONS CONTINUED

1500 DOLOMITE light to dark brown, micro to fine crystalline, trace pinpoint and intercrystalline porosity, trace broken calcite crystal fragments, minor light oil staining, trace to minor dull yellow green fluorescence, no cut, fair petro odor on heating sample

1502.5 DOLOMITE A/A, light to medium grey and light grey brown to medium brown, occasional dark brown to black, micro to fine crystalline, predominantly very fine crystalline, poor intercrystalline porosity and trace good vugular porosity, some good dolomite crystals developed, shows, A/A, fair petro odor on heating sample

1505 DOLOMITE A/A, light to dark brown to black, minor fair pinpoint, intercrystalline and vugular porosity

1510 A/A DOLOMITE light to dark brown to white, fair petro odor on heating sample

1515 A/A

1520 A/A

1525 A/A predominantly trace to minor pinpoint to vugular porosity, minor broken dolomite crystal fragments present

1530 A/A

1535 A/A predominantly dark brown

1540 A/A

1545 A/A trace pinpoint and vugular porosity

1545 CHINCHAGA

1550 ANHYDRITE light grey brown to brown, mottled, rounded to sub-rounded chips, tight, DOLOMITE light to dark brown, cryptocrystalline, tight, no shows, SHALE light to dark grey, dolomitic, brittle

1555 A/A ANHYDRITE and DOLOMITE A/A, cream

1560 A/A

1565 A/A

1570 A/A DOLOMITE microcrystalline in part, tight, no shows, trace SHALE light green, dolomitic, brittle, conchoidal habit

1572 GRANITE WASH

1575 QUARTZITE

1575 SANDSTONE trace, medium to very coarse grained, white to clear, round to sub-rounded to angular grains, moderately to poorly sorted, fair to poor porosity, no shows, QUARTZITE dark red brown to maroon to pink, hard, glassy, angular chips, breccia with GRANITE well weathered, pink to red orange to white, resistant to soft, feldspar and quartz grains, medium to coarse grained, reddish orange feldspar base soft clays turn drilling mud red instantly, silty in part, well fractured in part

1580 A/A SANDSTONE angular quartz grains, SILTSTONE light green, glassy, siliceous, tight, (olivine rich ?), trace to minor fractures present

1585 A/A abundant CLAY matrix, white to light grey,
occasional angular or rounded quartz grains, medium to
very coarse grained, slightly dolomitic in part

1590 A/A CLAY white to light pink, speckled black, breccia
with QUARTZITE and SILTSTONE and feldspar and quartz and
white mica fragments, A/A

1590 PreCAMBRIAN

1595 A/A QUARTZITE A/A, massive, very resistant

1600 A/A QUARTZITE dark red brown to brown, greasy to
metallic appearance, trace to minor feldspar and clay,
more quartz than above

1605 A/A QUARTZITE dark red brown to dark brown to black

1610 A/A

(TOTAL DEPTH : 1610m (25-02-91 @ 02:15 HRS.)

BIT RECORD

COMPANY
NAME OF WELL

PARAMOUNT RESOURCES LTD.

PARA ET AL. SWEDE A-52

PARAMOUNT ET AL SWEDE A-52

DAILY SUMMARY

DATE	DEPTH	STATUS	MUD	WEIGHT	PH	WL	OTHER
			VISCOSITY				
91-02-11	101m	DRLG	52	1100	--	--	GELCHEM
91-02-12	398m	DRLG	65	1200	9.5	--	GELCHEM
91-02-13	398m	NIPPLE UP BOP	45	1160	10	--	GELCHEM
91-02-14	497m	DRLG	45	1100	10	9.0	GELCHEM
91-02-15	846m	DRLG	45	1010	11	--	GELCHEM
91-02-16	1108m	DRLG	45	1100	11	8.5	GELCHEM
91-02-17	1283m	DRLG	46	1030	10	8.0	GELCHEM
91-02-18	1363m	POH to CORE	52	1100	10.5	7.0	GELCHEM
91-02-19	1390m	DST#1	52	1120	11	8.0	GELCHEM
91-02-20	1390m	RUN IN	52	1120	11	8.0	GELCHEM
91-02-21	1452m	DRLG	57	1125	11	8.0	GELCHEM
91-02-22	1488m	CORE#3	44	1140	11.5	7.5	GELCHEM
91-02-23	1496m	DST#2	49	1140	10	8.5	GELCHEM
91-02-24	1508m	DRLG	52	1135	10	8.4	GELCHEM
91-02-25	1556m	DRLG	50	1125	10.5	8.0	GELCHEM
91-02-26	1610m	TRIP TO LOG	53	1145	10.5	7.5	GELCHEM
91-02-27	1610m	RUN PLUGS	--	--	--	--	GELCHEM
91-02-28	1610m	RELEASE RIG					

9211-P33-6-2
CALGARY COPY

GEOLOGICAL WELLSITE REPORT

for

PARA ET AL SWEDE A-52

Prepared for

PARAMOUNT RESOURCES LTD.

by

Robert J. Adamowicz, BSc Geol.

Date: March 01, 1991

TABLE OF CONTENTS

- Introduction
- Well Summary
- Casing Summary
- Survey Record
- Formation Tops
- Drill Stem Test Reports (2)
- Logging Program
- Sample Descriptions
- Bit Record
- Daily Summary

INTRODUCTION

The Paramount et al Swede A-52 well situated at $60^{\circ} 20'$ latitude and $117^{\circ} 30'$ longitude in the North West Territories of Canada, was spudded on February 10th, 1991 @ 21:00 HRS. The G-21 well was drilled to a depth of 1610.0 metres driller depth and 1612 metres logger depth. The well took 14 days to drill, and 18 days total time to rig release, which was February 28th, 1991 @ 20:00 HRS.

Surface casing was set and cemented at 398.0 metres. The main hole, 222mm diameter, was drilled with air from surface casing to 1283.0 metres with no problems as the hole kept relatively dry. The hole was drilled with gelchem mud from 1283.0 metres to 1612.0 metres, total depth (logger).

Two cores were cut in the Sulphur Point formation, with 100% recovery on both, and then a drillstem test was run (as the Sulphur Point represented the primary zone of interest). A core was also cut in the Keg River formation (100% recovery) and drillstem test # two was preformed (secondary zone of interest), upon penetration.

The well data indicated poor Sulphur Point oil potential and poor Keg River oil potential, and the well was plugged and abandoned.

WELL SUMMARY

WELL NAME : Para et al Swede A-52
LOCATION : 60° 20' Lat. 117° 30' Long.
ELEVATIONS : Grnd. 692.6m K.B. 697.1m
OPERATOR : Paramount Resources Ltd.
CONTRACTOR : Command Drilling Ltd., Rig # 2
SUPERVISION : Tool push - Bud Matier
Engineer - Gerry Sanders
Geologist - Rob Adamowicz
WELL SPUNDED: 10-02-91 @ 21:00 HRS
DRILLING : 25-02-91 @ 02:15 HRS
COMPLETED
RIG RELEASE : 28-02-91 @ 20:00 HRS
HOLE SIZE : Surface 349mm Intmd. 222mm Main 216mm
CASING SIZE : Surface 244.5mm @ 398m
Production nil.
TOTAL DEPTH : Driller 1610.0m Logger 1612.0m
BOTTOM HOLE : Precambrian Granite
FORMATION
LOGS : Phasor DISFL-GR 1:600 & 1:240 scale 398-1612m
BHC Sonic GR-Cal " " " "
CNL-LDT-Pef-XYCal " " " "
" 1:120 scale (LST) 1300-1612m
" 1:120 scale (DOL) 1300-1612m
Microlog-GR 1:240 & 1:120 1300-1612m
CORES : Core #1 1363-1381m (Sulphur Pt.) Rec.18.0m
Core #2 1381-1391.0m (Sulph.Pt./Musk) Rec.10.0m
Core #3 1478-1496.2m (Keg River) Rec.18.2m
DRILL STEM : DST #1 (On Penetration) 1366-1382.5m (Sulph.Pt.)
TESTS DST #2 (On Penetration) 1475-1486.0m (Keg R.)
WELL STATUS : Dry and Abandoned

CASING SUMMARY

Surface Casing

Ran 33 joints 244.5mm 53.6 kg/m J55 8 RD LTC ERW IPSCO 398.68m surface casing. Cemented by FRACMASTER with 22.7 m³ 1900 kg/m³ 0-1-0 "G" + 2% CaCl₂ w/ 3 m³ water preflush. Landed at 398.0m KB. Plug down at 20:02 91-02-12. Circulated out 3.5 m³ cement returns to surface.

SURVEY RECORD

20m 1/4 , 50m 1/16 , 78m 1/2 , 106m 1 , 135m 1/4 , 162m 3/4 ,
190m 1/8 , 218m 1/8 , 247m 3/4 , 266m 3/4 , 295m 1/2 , 324m 1/8 ,
353m 1/8 , 398m 1/4 , 470m 1/4 , 538m 1/8 , 615m 1/8 , 682m 3/4 ,
759m 1 1/4 , 807m 1 3/4 , 827m 1 , 855m 1 1/4 , 865 1 1/4 ,
885m 1 1/4 , 925m 1 1/2 , 963m 1 1/4 , 1002m 2 , 1031m 2 1/4 ,
1137m 1 , 1186m 1 , 1234m 7/8 , 1283m 1/2 , 1329m 1/2 , 1387m 1/4
1478 1 , 1532m 3/4 , 1581m 3/4

PARA ET AL SWEDE A-52

FORMATION TOPS

G.L.: 692.6m
K.B.: 697.1m

Formation	Sample Top	(S.S.)	Log Top	(S.S.)
WABAMUN	458.8m	+238.3m	459.0m	+238.1m
JEAN MARIE	680.0	+ 17.1	681.0	+ 16.1
FORT SIMPSON	687.0	+ 10.1	687.0	+ 10.1
TWIN FALLS	798.0	-100.9	798.0	-100.9
HAY RIVER SHALE	945.0	-247.9	943.0	-245.9
BEAVER HILL LAKE	1278.0	-580.9	1279.0	-581.9
MUSKWA	1282.0	-584.9	1284.0	-586.9
SLAVE POINT	1310.0	-612.9	1310.3	-613.2
FORT VERMILLION	1338.0	-640.9	1340.5	-643.4
WATT MOUNTAIN	1358.0	-660.9	1360.1	-663.0
SULPHUR POINT Lst.	1364.0	-666.9	1365.5	-668.4
Dol.	1371.3	-674.2	1372.0	-674.9
MUSKEG	1383.0	-685.9	1385.1	-688.0
KEG RIVER	1477.0	-779.9	1476.7	-779.6
CHINCHAGA	1545.0	-847.9	1546.1	-849.0
GRANITE WASH	1572.0	-874.9	1565.6	-868.5
QUARTZITE	1575.0	-877.9	1572.8	-875.7
PRECAMBRIAN	1590.0	-892.9	1592.0	-894.9
TOTAL DEPTH	1610.0	-912.9	1612.0	-914.9

PARAMOUNT RESOURCES LTD

DRILL STEM TEST REPORT

GENERAL DATA

WELL NAME: PARA ET AL SWEDE A 52 DATE: 91-02-23
 TEST No.: 2 FORMATION: KEG River INTERVAL: 1475 - 1486 m
 TESTING COMPANY: BACER TESTER: GLEN McLean
 TEST TYPE: STRANIC PACKER OD.: 178 No. OF PACKERS: 2
 HOLE SIZE: 2 1/8 mm WELL DEPTH: 1486 m DRILL PIPE SIZE: 1 1/4 mm OD x 9 1/4 mm ID
 DRILL COLLAR SIZE (1): 1 1/2 mm OD x 7 1/2 mm ID x _____ m (2): _____ mm OD x _____ mm ID x _____ m

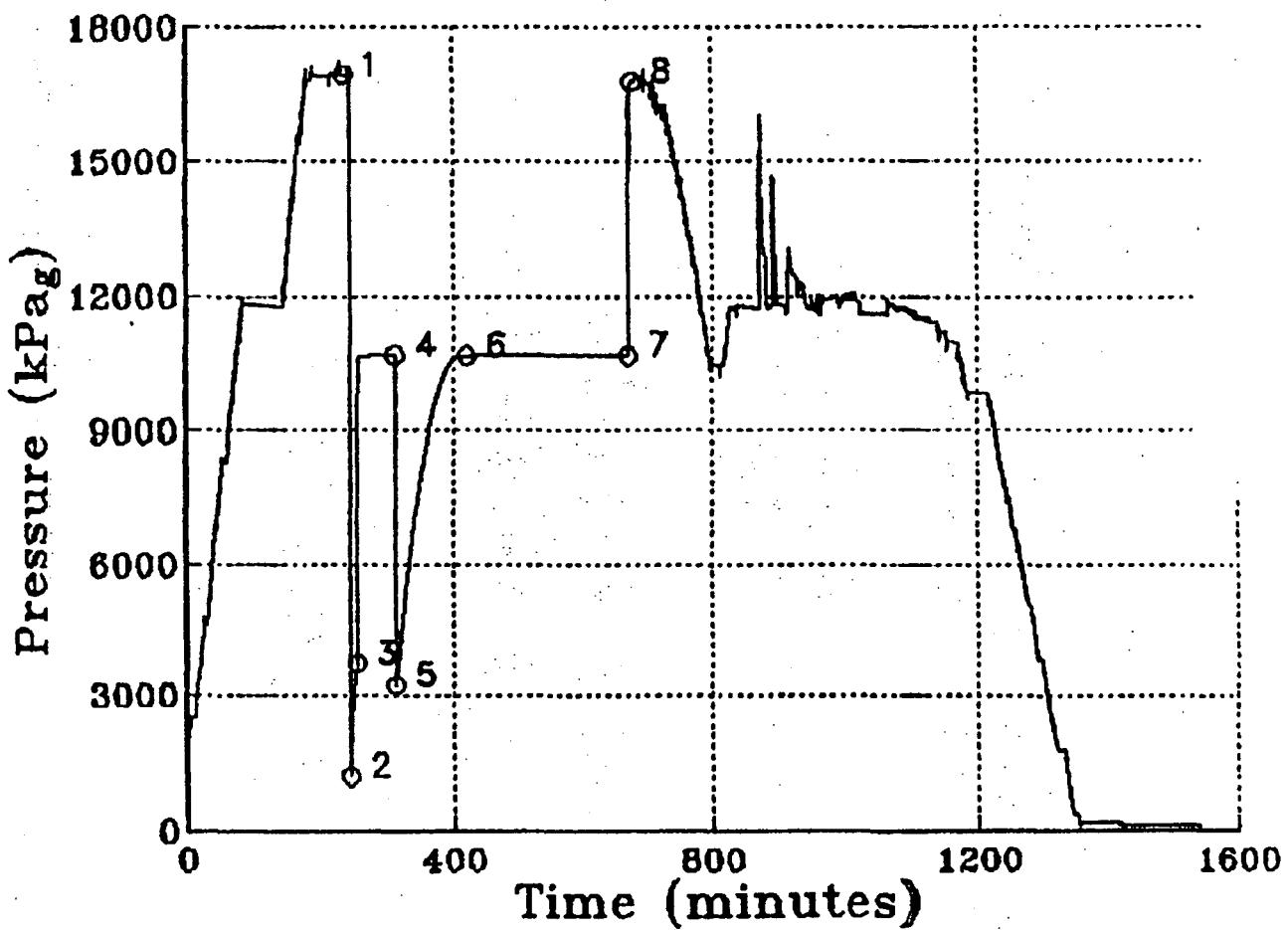
PRESSURE RECORDERS

No. 012 DEPTH 1477 m IN/OUT-SIDE CUSHION: _____ AMOUNT: _____ m
 No. 20619 DEPTH 1469 m IN/OUT-SIDE EQUIPMENT USED: (YES/NO)
 No. 7848 DEPTH 1477 m IN/OUT-SIDE JARS YES PUMP OUT SUB YES
 No. 13462 DEPTH 1462 m IN/OUT-SIDE SAMPLE CHAMBER YES SAFETY JT YES
 No. _____ DEPTH _____ m IN/OUT-SIDE BY-PASS ASSEMBLY YES

TESTING TIMES

PREFLOW 10 mins. PREFLOW WEAK AIR BLOW INCREASING TO STRONG
 INITIAL SHUT IN 60 mins. in 2 1/2 min
 VALVE OPEN 60 mins. VALVE OPEN WEAK AIR BLOW INCREASING TO STRONG
 FINAL SHUT IN 240 mins. in 2 1/2 mins. N.G. F.I.S.

GAS FLOW RATES


TIME HRS	ORIFICE SIZE, mm	PRESSURE kPa	RATE m3/d
0	<u>N.G.T.S</u>		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			
99			
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121			
122			
123			
124			
125			
126			
127			
128			
129			
130			
131			
132			
133			
134			
135			
136			
137			
138			
139			
140			
141			
142			
143			
144			
145			
146			
147			
148			
149			
150			
151			
152			
153			
154			
155			
156			
157			
158			
159			
160			
161			
162			
163			
164			
165			
166			
167			
168			
169			
170			
171			
172			
173			
174			
175			
176			
177			
178			
179			
180			
181			
182			
183			
184			
185			
186			
187			
188			
189			
190			
191			
192			
193			
194			
195			
196			
197			
198			
199			
200			
201			
202			
203			
204			
205			
206			
207			
208			
209			
210			
211			
212			
213			
214			
215			
216			
217			
218			
219			
220			
221			
222			
223			
224			
225			
226			
227			
228			
229			
230			
231			
232			
233			
234			
235			
236			
237			
238			
239			
240			
241			
242			
243			
244			
245			
246			
247			
248			
249			
250			
251			
252			
253			
254			
255			
256			
257			
258			
259			
260			
261			
262			
263			
264			
265			
266			
267			
268			
269			
270			
271			
272			
273			
274			
275			
276			
277			
278			
279			
280			
281			
282			
283			
284			
285			
286			
287			
288			
289			
290			
291			
292			
293			
294			
295			
296			
297			
298			
299			
300			
301			
302			
303			
304			
305			
306			
307			
308			
309			
310			
311			
312			
313			
314			
315			
316			
317			
318			
319			
320			
321			
322			
323			
324			
325			
326			
327			
328			
329			
330			
331			
332			
333			
334			
335			
336			
337			
338			
339			
340			
341			
342			
343			
344			
345			
346			
347			
348			
349			
350			
351			
352			
353			
354			
355			
356			
357			
358			
359			
360			
361			
362			
363			
364			
365			
366			
367			
368			
369			
370			
371			
372			
373			
374			
375			
376			
377			
378			
379			
380			
381			
382			
383			
384			
385			
386			
387			
388			
389			
390			
391			
392			
393			
394			
395			
396			
397			
398			
399			
400			
401			
402			
403			
404			
405			
406			
407			
408			
409			
410			
411			
412			
413			
414			
415			
416			
417			
418			
419			
420			
421			
422			
423			
424			
425			
426			
427			
428			
429			
430			
431			
43			

DST #2

Paramount Star Swede A52

PA52B

GRAPH 19 for Data on Test Case Feb. 24, 1961 Ocean

LOGGING PROGRAM

WELL NAME : Para et al Swede A-52

LOCATION : 60° 20' Lat. 117° 30' Long.

ELEVATIONS : Grnd. 692.6m K.B. 697.1m

OPERATOR : Paramount Resources Ltd.

CONTRACTOR : Command Drilling Ltd., Rig # 2

SUPERVISION : Tool push - Bud Matier
Engineer - Gerry Sanders
Geologist - Rob Adamowicz

WELL SPUNDED: 10-02-91 @ 21:00 HRS

DRILLING : 25-02-91 @ 02:15 HRS
COMPLETED

RIG RELEASE : 28-02-91 @ 20:00 HRS

HOLE SIZE : Surface 349mm Intmd. 222mm Main 216mm

CASING SIZE : Surface 244.5mm @ 398m

TOTAL DEPTH : Driller 1610.0m

BOTTOM HOLE : Precambrian Granite
FORMATION

FORMATIONS : (Attached)

LOGS :

1) Phasor DISFL-GR
1:600 T.D. to surface casing
S.P. -120 to 15mV, GR 0-150
Resistivity ILD 0-150 ohms&SFL A 0-50 linear
Conductivity 1000-0 mhos/m

1:240 T.D. to surface casing
SP -120 to 15 mV, GR 0-150
Resistivity 0.2-2000 ohm-m logarithmic scale

2) BHC Sonic-GR-Cal

1:600	T.D. to surface casing
1:240	T.D. to surface casing GR 0-150
	T.D. to top of Slave Point 300-100 us/m
	Top of Slave Pt. to surf.csg. 500-100 us/m

3) CNL-LDT-Pef-GR-XYCal

1:600	T.D. to surface casing GR 0-150
1:240	Bulk Density 2000-3000 kg/m ³ T.D. to surface casing GR 0-150 Limestone matrix 45 to -15 Dolomite matrix 45 to -15, TD to top Sl.Pt. Display and integrate X-Y Calipers for Cement bond volume log 1:120 High resolution - LST - TD to top of Sl.Pt. High resolution - DOL - TD to top of Sul.Pt.

4) Microlog-GR

1:240	TD to top of Slave Point Resistivity 0-40 ohm-m linear scale
1:120	TD to top of Slave Point Resistivity 0-40 ohm-m linear scale

5) Cement Volume Log

1:600	Compute and fax to Paramount office
-------	-------------------------------------

6) LOGNET

1:240	Phasor, Sonic, Microlog - TD to 50m above Slave Point
1:240	Neutron/Density - TD to 50m above Slave Pt. Limestone presentation
1:120	High resolution - LST - TD to top of Sl.Pt. High resolution - DOL - TD to top of Sul.Pt

LOGGING COMPANY : Schlumberger Engineer-D. Stephanson Ph#926-2551
Peter(High Level) Ph#926-2841

PRINTS : 2 Field (wellsite) and 8 Field (office)

DIRECTIONS : 1 km south of Indian Cabins turn left off HWY 35, go 9 km, take right at "Y", follow main road to Cameron River for 60 km, cross river and follow road for 2 km to "T", turn left and go 9 km to "T", turn left, go 10 km to Rig.

PARA ET AL SWEDE A-52

LITHOLOGICAL DESCRIPTIONS

1285 SHALE light to medium grey, brittle, dolomitic, flat

1290 SHALE medium to dark grey to black, A/A, minor SHALE, light to medium grey, A/A

1295 A/A

1300 A/A SHALE light to medium grey, brittle, dolomitic, A/A

1305 A/A minor LIMESTONE light grey to grey brown to white, cryptocrystalline, trace microcrystalline, tight, packstone, no shows

1309 SLAVE POINT

1310 LIMESTONE A/A, light grey to grey brown to white, medium brown, wackstone in part

1312.5 A/A LIMESTONE abundant chocolate brown, trace broken calcite crystal fragments

1315 LIMESTONE cream to dark brown, cryptocrystalline, tight, SHALE light to medium to dark grey to black

1320 A/A LIMESTONE A/A, occasional microcrystalline, tight, trace SHALE, black, carbonaceous

1325 A/A cream to light to medium brown, tight, mottled in part, fair petro odor on heating sample, dull yellow, orange and bright yellow fluorescence and weak white streaming cut

1330 A/A

1332.5 A/A fair petro odor on heating sample

1335 A/A predominantly microcrystalline, mottled, predominantly tight, trace pinpoint and intercrystalline porosity, dull yellow orange to bright yellow fluorescence and weak white streaming cut

1340 A/A trace to fair intercrystalline and pinpoint porosity (3-5%) in part

1345 A/A LIMESTONE predominantly cryptocrystalline, tight, SHALE. light to medium grey green to grey

1350 A/A LIMESTONE pelletoidal in part, predominantly tight

1355 A/A

1358 WATT MOUNTAIN

1360 A/A trace SHALE light green to occasionally chocolate brown, brittle, siliceous, hard in part

1362.7 SHALE light grey green to light green, greasy appearance, conchoidal habit, abundant fine black specks

CORE DESCRIPTI0NS

CORE #1 1363.0 - 1381.0m
(Cut 18.0m, Rec. 18.0m)

1363.0 to 1364.0m
SHALE light to medium green, dolomitic, crumbly, waxy, hard to soft

1364.0 to 1364.6m
LIMESTONE light brown to grey brown, breccia, angular pebbles up to 12 centimetre diameter, any size possible, cryptocrystalline, tight, abundant SHALE matrix, A/A, between pebbles

1364.6 to 1370.0m
LIMESTONE A/A, light to dark brown, massive, tight, moderately abundant fractures in any direction, often lined with SHALE A/A, predominantly closed fractures, occasional fracture filled with ANHYDRITE white, crystalline, occasional large pebble, angular, up to 15 centimeters diameter near base interval, thin SHALE intercalations around 1367.0 metres, A/A, Between pebbles, occasional ANHYDRITE filled vug present around 1367 metres and 1369 metres, SHALE interlaminations, chocolate brown or light to medium green A/A, occasional diagonal fracture, slickensides, minor bleeding oil from fracture in interval 1369 to 1370 metres

1370.0 to 1371.2m

LIMESTONE A/A, light to dark brown, cryptocrystalline, A/A, dolomitic in part, brecciated, occasional bed with fair to poor intercrystalline and pinpoint porosity in part, with abundant bleeding oil (light brown light sour oil), up to 4 centimetre thick band, heavy H₂S odor from bleeding oil, dull yellow green fluorescence, and immediate lime green cut

1371.2 to 1380.0m

DOLOMITE light to medium brown, cryptocrystalline to very fine crystalline, minor to abundant bleeding oil in beds (0.2 to 0.5 metre diameter), occasional thin SHALE laminations in top half metre, fluorescence and cut A/A, minor bleeding oil, fluorescence and cut A/A and occasional SHALE laminations or intercalations in interval 1372 to 1373m, occasional fracture SHALE or ANHYDRITE filled A/A in 1373 to 1374m interval, minor bleeding oil fluorescence and cut A/A and strong H₂S odor in intervals 1374.2 to 1374.5m and 1376.8 to 1377.2m, DOLOMITE breccia abundant SHALE interlaminations A/A, in interval 1377.2 to 1377.6m, fair oil stain with fluorescence and cut A/A and fair H₂S odor in interval 1379.2 to 1379.6m

1380.0 to 1381.0m

DOLOMITE A/A, top half metre of interval Algal Mat appearance, and bottom half meter DOLOMITE fine crystalline, fair intercrystalline porosity, abundant infill of vugular porosity with ANHYDRITE A/A, up to 4 centimetre diameter

CORE #2 1381.0 - 1391.0m
(Cut 10.0m, Rec. 10.0m)

1381.0 to 1382.4m

DOLOMITE light to dark brown, cryptocrystalline to microcrystalline, predominantly tight, abundant bleeding oil in bands throughout, minor Algal Mat appearance, very thin SHALE laminations, 0.2 metre thick maximum occasional fair pinpoint and intercrystalline porosity bands (less than 5% porosity), and occasional ANHYDRITE filled fracture present in any direction, complete infill of ANHYDRITE in part

1383.0

MUSKEG

1382.4 to 1383.2m

DOLOSTONE cryptocrystalline, tight, brecciated, occasional SHALE bands, dark grey green, waxy, (less than 2 centimetres thick), DOLOMITE pebbles, up to 15 centimetre diameter, angular

1383.2 to 1384.6m

ANHYDRITE yellow to white to light grey on surface, dark grey brown to white on fresh surface, occasional SHALE bed, dark grey to grey brown, carbonaceous, less than 4 centimetres thick

1384.6 to 1386.0m

DOLOMITE medium to dark brown, micro to cryptocrystalline predominantly tight, occasional fair to poor intercrystalline porosity bands, occasionally good bleeding oil bands (2 to 30 centimetres thick)

1386.0 to 1387.8m

ANHYDRITE A/A, moderately abundant fractures in any direction, SHALE filled, occasional tight DOLOMITE band, up to 20 centimeters thick, bottom 20 centimeters of interval shows SHALE laminations, A/A, less than 0.25 centimeters thick

1387.8 to 1389.5m

DOLOSTONE A/A, predominantly with laminations, thin SHALE laminations, fair bleeding oil from laminations (half a metre below top of interval), 0.3 metres thick, top 1/2 metre abundant ANHYDRITE clasts, up to 10 centimetre diameter, flame structure at base interval, brecciated

1389.5 to 1390.7m

ANHYDRITE A/A, moderately abundant fractures, SHALE filled

1390.7 to 1391.0m

DOLOSTONE A/A, tight, no oil staining, abundant thin SHALE laminations, A/A

SAMPLE DESCRIPTIONS CONTINUED

1395 DOLOMITE A/A light to dark brown to cream to white, cryptocrystalline to microcrystalline, tight, no shows, SHALE A/A, ANHYDRITE cream to medium brown, well rounded chips, translucent, waxy, tight, trace bryozoan fossil fragments

1400 A/A

1405 A/A ANHYDRITE A/A. also angular chips present

1410 SHALE light to dark grey, soft to moderately hard, dull to slightly metallic, dolomitic, minor LIMESTONE cream to dark brown, cryptocrystalline, tight, trace ANHYDRITE A/A

1415 A/A trace to minor DOLOMITE A/A

1420 A/A DOLOMITE light to medium brown, micro to cryptocrystalline, trace pinpoint porosity

1425 A/A

1430 A/A DOLOMITE light to dark brown, predominantly micro crystalline, tight, trace poor intercrystalline porosity, trace dead oil stain

1435 A/A poor intercrystalline and pinpoint porosity in part, fair petro odor on heating sample, dull yellow brown fluorescence, no cut

1440 A/A abundant ANHYDRITE A/A, minor DOLOMITE A/A, fair petro odor on heating sample

1445 DOLOMITE light to medium brown, micro to fine crystalline, predominantly microcrystalline, poor to fair intercrystalline porosity, minor dull yellow green dry cut, and weak white streaming cut in part, fair petro odor, ANHYDRITE A/A

1450 ANHYDRITE A/A, minor DOLOMITE predominantly tight to poor porosity

1455 A/A trace DOLOMITE A/A

1460 DOLOMITE light to dark brown, A/A, as in 1445 sample, predominantly poor intercrystalline porosity, ANHYDRITE A/A

1465 ANHYDRITE A/A, minor DOLOMITE light to medium brown, A/A, micro to cryptocrystalline, trace pinpoint porosity to tight

1470 ANHYDRITE A/A, DOLOMITE A/A, predominantly micro to cryptocrystalline, tight

1475 A/A minor ANHYDRITE A/A, DOLOMITE A/A

1477

KEG RIVER

1477 DOLOMITE light to dark brown, micro to fine crystalline, predominantly micro crystalline, friable, good intercrystalline porosity, fair vugular porosity (3-6%)
DOLOMITE dark brown, cryptocrystalline, tight, red brown fluorescence, no cut

CORE DESCRIPTION

CORE #3 1478.0 - 1496.2m
(Cut 18.2m, Rec. 18.2m)

1478.0 to 1482.5m

DOLOMITE light to medium brown to grey brown, predominantly cryptocrystalline, predominantly tight, occasional patchy pinpoint porosity bands (5 centimeter thick band), moderately abundant SHALE partings (less than 0.25 centimetres thick), medium to dark grey, carbonaceous, trace spotty black bleeding oil, bleeding at SHALE partings (stylolitic surface), occasional bleeding fracture and pinpoint, occasional vug (less than 3 centimeter diameter), fair black bleeding oil, (occasional Brachiopod shaped vug), fair fracture porosity in part connecting vugular porosity, moderately abundant calcite crystals lining on vugs (occupy from 10 to 30 percent of porosity), top 0.25 meters of intreval has a wet appearance, grainstone to packstone, dull yellow green dry fluorescence and bright lime green cut

1482.5 to 1487.0m

DOLOMITE A/A, occasional fist sized vugs (predominantly 1 to 2 centimeters diameter, moderately abundant vugs with abundant lining of calcite crystals A/A (less than 10 percent porosity), minor large pinpoint vugs (less than 1 centimeter diameter), minor bleeding oil from vugs, good vugular porosity in part, grainstone, fluorescence and cut A/A, moderately abundant SHALE partings A/A and occasional well developed vug (1-2 centimeters diameter) with calcite crystal lining in intreval 1485.5 to 1486.5m, predominantly poor porosity in intreval 1486 to 1487m

1487.0 to 1491.4m

DOLOMITE A/A, occasional vugular porosity or pinpoint porosity zone, minor SHALE partings, A/A. Occasional vug less than 2 centimeters diameter A/A 1487.5m, generally a lack of fracture porosity, some evidence of minor broken shell fragments where dolomitization obliterates fossil evidence, moderately abundant vugs present with calcite crystal lining A/A in interval 1490-1490.2m. minor evidence oil staining from 1490 1492m, occasional SHALE clasts present A/A. 2 to 5 centimeter diameter 1490 to 1492m interval, around 1491m some vugs indicate brachiopod shapes

1491.4 to 1496.2m

DOLOMITE A/A, wackstone to packstone, occasional band fair to good pinpoint porosity (1 metre and 0.5 metre thick), abundant AMPHIPORA, dolomite replacement forms abundant pinpoint and minor intercrystalline porosity in part, SHALE partings, A/A, moderately abundant, occasional ANHYDRITE filled vugs (less than 1 centimeter diameter) around 1494 and 1496m, trace to minor poor to fair vugular and pinpoint porosity in part. occasional spotty bleeding oil in part, dull yellow dry fluorescence and bright yellow immediate cut

SAMPLE DESCRIPTIONS CONTINUED

1500 DOLOMITE light to dark brown, micro to fine crystalline, trace pinpoint and intercrystalline porosity, trace broken calcite crystal fragments, minor light oil staining, trace to minor dull yellow green fluorescence, no cut, fair petro odor on heating sample

1502.5 DOLOMITE A/A, light to medium grey and light grey brown to medium brown. occasional dark brown to black, micro to fine crystalline, predominantly very fine crystalline, poor intercrystalline porosity and trace good vugular porosity, some good dolomite crystals developed, shows, A/A, fair petro odor on heating sample

1505 DOLOMITE A/A, light to dark brown to black, minor fair pinpoint, intercrystalline and vugular porosity

1510 A/A DOLOMITE light to dark brown to white, fair petro odor on heating sample

1515 A/A

1520 A/A

1525 A/A predominantly trace to minor pinpoint to vugular porosity, minor broken dolomite crystal fragments present

1530 A/A

1535 A/A predominantly dark brown

1540 A/A

1545 A/A trace pinpoint and vugular porosity

1545 CHINCHAGA

1550 ANHYDRITE light grey brown to brown, mottled, rounded to sub-rounded chips, tight, DOLOMITE light to dark brown, cryptocrystalline, tight, no shows, SHALE light to dark grey, dolomitic, brittle

1555 A/A ANHYDRITE and DOLOMITE A/A, cream

1560 A/A

1565 A/A

1570 A/A DOLOMITE microcrystalline in part, tight, no shows, trace SHALE light green, dolomitic, brittle, conchoidal habit

1572 GRANITE WASH

1575 QUARTZITE

1575 SANDSTONE trace, medium to very coarse grained, white to clear, round to sub-rounded to angular grains, moderately to poorly sorted, fair to poor porosity, no shows, QUARTZITE dark red brown to maroon to pink, hard, glassy, angular chips, breccia with GRANITE well weathered, pink to red orange to white, resistant to soft, feldspar and quartz grains, medium to coarse grained, reddish orange feldspar base soft clays turn drilling mud red instantly, silty in part, well fractured in part

1580 A/A SANDSTONE angular quartz grains, SILTSTONE light green, glassy, siliceous, tight, (olivine rich ?), trace to minor fractures present

1585 A/A abundant CLAY matrix, white to light grey,
occasional angular or rounded quartz grains, medium to
very coarse grained, slightly dolomitic in part

1590 A/A CLAY white to light pink, speckled black, breccia
with QUARTZITE and SILTSTONE and feldspar and quartz and
white mica fragments, A/A

1590 PreCAMBRIAN

1595 A/A QUARTZITE A/A, massive, very resistant

1600 A/A QUARTZITE dark red brown to brown, greasy to
metallic appearance, trace to minor feldspar and clay,
more quartz than above

1605 A/A QUARTZITE dark red brown to dark brown to black

1610 A/A

(TOTAL DEPTH : 1610m (25-02-91 @ 02:15 HRS.)

BIT RECORD

COMPANY
NAME OF W

PARAMOUNT RESOURCES LTD.

PARA ET AL SWEDE A-52

PARAMOUNT ET AL SWEDE A-52

DAILY SUMMARY

DATE	DEPTH	STATUS	MUD	WEIGHT	PH	WL	OTHER
			VISCOSITY				
91-02-11	101m	DRLG	52	1100	--	--	GELCHEM
91-02-12	398m	DRLG	65	1200	9.5	--	GELCHEM
91-02-13	398m	NIPPLE UP BOP	45	1160	10	--	GELCHEM
91-02-14	497m	DRLG	45	1100	10	9.0	GELCHEM
91-02-15	846m	DRLG	45	1010	11	--	GELCHEM
91-02-16	1108m	DRLG	45	1100	11	8.5	GELCHEM
91-02-17	1283m	DRLG	46	1030	10	8.0	GELCHEM
91-02-18	1363m	POH to CORE	52	1100	10.5	7.0	GELCHEM
91-02-19	1390m	DST#1	52	1120	11	8.0	GELCHEM
91-02-20	1390m	RUN IN	52	1120	11	8.0	GELCHEM
91-02-21	1452m	DRLG	57	1125	11	8.0	GELCHEM
91-02-22	1488m	CORE#3	44	1140	11.5	7.5	GELCHEM
91-02-23	1496m	DST#2	49	1140	10	8.5	GELCHEM
91-02-24	1508m	DRLG	52	1135	10	8.4	GELCHEM
91-02-25	1556m	DRLG	50	1125	10.5	8.0	GELCHEM
91-02-26	1610m	TRIP TO LOG	53	1145	10.5	7.5	GELCHEM
91-02-27	1610m	RUN PLUGS	--	--	--	--	GELCHEM
91-02-28	1610m	RELEASE RIG					

CANADA OIL AND GAS LANDS
ADMINISTRATION
ADMINISTRATION DU PÉTROLE ET DU
GAZ DES TERRES DU CANADA

MAR 18 1991

ENGINEERING AND CONTROL
BRANCH
TECHNIQUE ET DU CONTRÔLE