

9211-P33-5-2

CALGARY COPY

PARAMOUNT RESOURCES LTD.

4100 - FIRST CANADIAN CENTRE, 350 - 7TH AVENUE S.W.
CALGARY, ALBERTA T2P 3W5
TELEPHONE: (403) 266-2047
FAX: (403) 262-7994

**FINAL WELL REPORT
FOR
PARAMOUNT
ET AL
CAMERON N-28**

FINAL WELL REPORT
FOR
PARAMOUNT ET AL CAMERON N-28

PARAMOUNT RESOURCES LTD.

4000 First Canadian Centre
350 - 7th Avenue S.W.
CALGARY, Alberta
T2P 3W5

CANADA OIL AND GAS LANDS
ADMINISTRATION
ADMINISTRATION DU PÉTROLE ET DU
GAZ DES TERRES DU CANADA

JUN 18 1990

ENGINEERING AND CONTROL
BRANCH
TECHNIQUE ET DU CONTRÔLE

Michael Cholach, P.GeoL.

TABLE OF CONTENTS

	<u>PAGE</u>
A. INTRODUCTION	1
1. Summary	1
2. Locality Map	1
B. GENERAL DATA	2
1. Well Name	2
2. Well location	2
3. Unique Identifier	2
4. Operator And Drilling Contractor	2
5. Drilling Unit	2
6. Position Keeping	2
7. Support Craft	2
8. Drilling Unit Performance	2
9. Difficulties And Delays	3
C. SUMMARY OF DRILLING OPERATIONS	3
1. Elevations	3
2. Total Depth	3
3. Date And Hour Spudded	3
4. Date Drilling Completed	3
5. Date of Rig Release	3
6. Well Status	3
7. Hole Sizes And Depth	3
8. Casing And Cementing Record	4
9. Sidetracked Hole	4
10. Drilling Fluid	4
11. Fishing Operations	5
12. Well Kicks	5
13. Formation Leak-Off Test	5
14. Time Distribution	5
15. Deviation Surveys	5
16. Abandonment Plugs	5
D. GEOLOGY	6
1. Drill Cuttings	8
2. Cores	8
3. Lithology	8
4. Stratigraphic Column	8

E. WELL EVALUATION	9
1. Downhole Logs	9
2. Other Logs	9
3. Synthetic Seismograms	9
4. Formation Stimulation	9
5. Formation And Production Tests	9
F. ENVIRONMENTAL WELL REPORT	9
G. APPENDICES TO WELL HISTORY REPORT	10
1. Oil, Gas, And Water Analyses	10
2. Reservoir Engineering Data	10
3. Petrographic Record	10
4. Details Of Formation And Production Testing	10
5. Petrological Records	10
6. Paleontological Reports	10
7. Palynological Reports	10
8. Geochemical Reports	10
9. Age Determinations (K/Ar etc.)	10
10. Processed Combination Logs	10
11. Deviation Record	10
12. Gas Detector Log	10
13. Completion Data	10
14. Composite Well Record	10
15. Final Survey Plat	10
16. Mud Data	10

LIST OF TABLES

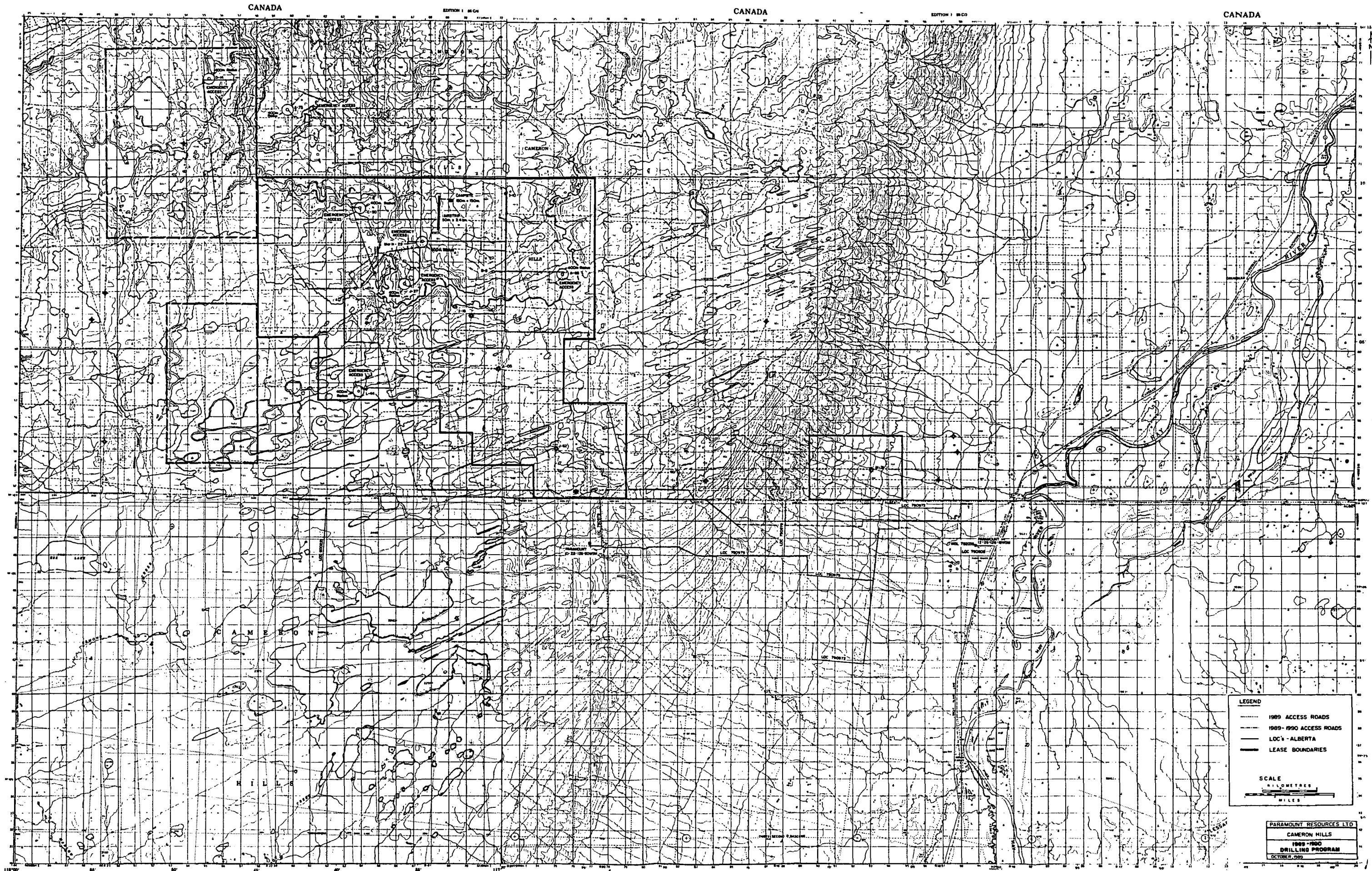
1. Bit Record
2. Time Distribution
3. Downhole Log Summary
4. Deviation Record
5. Mud Data

LIST OF FIGURES

1. Location Map
2. Stratigraphic Column

A. INTRODUCTION

1. Summary


The Paramount et al Cameron N-28 well was drilled by Paramount Resources Ltd. during the first quarter of 1990 to explore for reserves of natural gas in the Slave Point, Sulphur Point, and Keg River Formations. The drilling contractor was Sierra Drilling Ltd. The rig used was a Sierra 5000 top drive unit with a hydraulic pipe handling system. The rig also has slant hole capability for angles from 45 degrees to 90 degrees.

The N-28 well was drilled to a total depth of 1590 m. Surface hole (349 mm) to 244 m, cased with 298.5 mm casing to a depth of 203 m and cemented. Intermediate hole (270 mm) was drilled to 834 m, cased with 219.1 mm casing and cemented. The main hole (222 mm) was drilled to 1417 m to Sulphur Point Formation. DST #1 was run which had a maximum gas flow rate of 149,538 m³/day. Drilling then continued to a total depth of 1590 m. T.D. The hole was logged by Schlumberger. Logs run were:

PHASOR INDUCTION-SFL-GR
CNL-GR
BHC-SONIC-GR-CAL
CNL-LDT-DAC-GR-CAL
MICROLOG

A 139.7 mm casing liner was run and cemented.

2. Locality Map (See Figure 1, Following Page)

B. GENERAL DATA

1. Well Name

Paramount et al Cameron N-28.
Exploration Agreement No. 312
Grid Area: 60° 10' N, 117° 30' W

2. Well Location

Surveyed by conventional ground traverse methods to determine final position.

UTM Ref. Meridian: 117°

Coordinates: North 666 6174.37
East 46 7475.11

Lat. 60° 07' 59.23"
Long. 117° 35' 07.63"

3. Unique Well Identifier

300N286010117300

4. Operator And Drilling Contractor

Operator: Paramount Resources Ltd.
4000 First Canadian Centre
350 - 7th Avenue S.W.
Calgary, Alberta
T2P 3W5

Drilling Contractor: Sierra Drilling Ltd.
P.O. Box 177
Medicine Hat, Alberta
T1A 7E8

5. Drilling Unit (N/A)

6. Position Keeping (N/A)

7. Support Craft (N/A)

8. Drilling Unit Performance (N/A)

9. Difficulties And Delays (N/A)

C. SUMMARY OF OPERATIONS

1. Elevations

Rotary Table 764.1 m

Ground 760.1 m

2. Total Depth

Drilled 1590.00 m

Logged 1591.80 m

PBTD 1576.50 m

3. Date And Hour Spudded

Spudded 1990-02-26 at 17:15 hours.

4. Date Drilling Completed

1990-03-18

5. Date Of Rig Release

1990-03-19

6. Well Status

To be evaluated.

7. Hole Sizes And Depth

Surface Hole 349 mm - depth 244 m

Intermediate Hole 270 mm - depth 834 m

Main Hole 222 mm - depth 1590 m

See Table 1 for Bit Record. (Following Page).

TABLE 1

PARAMOUNT ET AL CAMERON N-28

BIT RECORD

<u>NO.</u>	<u>SIZE MM</u>	<u>MAKE</u>	<u>TYPE</u>	<u>DEPTH OUT</u>	<u>METRES DRILLED</u>	<u>HOURS</u>	<u>METRES PER HOUR</u>	<u>ACCUM HOURS</u>
1A	222	HUGHES	J-2	25	25	5.50	4.50	5.50
2A	222	HUGHES	J-2	85	60			13.50
3A	222	REED	HP12	200	115	8.50	13.50	22.00
4A	222	REED	HP13G	250	50	2.50	20.00	24.50
1B	349	SMITH	SJ	100	100	3.25	30.70	27.75
2B	349	HUGHES	J-4	211	111	5.50	20.10	33.25
3B	381	SMITH	S3J	244	244	4.75	51.40	38.00
1C	270	REED	HP12	260	16	1.75	9.10	39.75
2C	270	REED	HP51A	834	574	48.75	11.80	88.50
1	200	REED	HP51	1417	583	67.50	8.60	156.00
2	200	SMITH	S84R	1525	108	31.00	3.50	187.00
3	200	REED	HP53	1590	65	28.25	2.30	215.25

8. Casing And Cement Record

Surface Casing: Ran 16 joints, 298.5 mm, 62.5 kg/m, H-40, ST&C, Ipsco Casing. Landed at 203.3 mKB. Cemented with 28 tonnes 0.1.0 Class 'G' cement + 2% CaCl_2 .

Interm. Casing: Ran 64 joints, 219.1 mm, 35.72 kg/m IK-55, ST&C Ipsco Casing. Landed at 834.29 mKB. Cemented with 18.01 tonnes of 0.1.8 cement + 0.75% T-10. Tailed in with 14.26 tonnes of 0.1.0 Class 'G' cement + 0.8% NFL + 0.10% SPC 12000.

Liner: Ran 66 joints, 139.7 mm, 23.09 kg/m, IK-55, Ipsco LT&C casing. Landed at 1590.5 mKB. Top of liner at 858.47 mKB. Cemented liner with 35.6 tonnes 0.1.4 cement + 0.75% T-10. Tailed in with 29.0 tonnes 0.1.0 Class 'G' cement + 0.8% NFL + 0.10% SPC 12000.

The casing is held by a Walker Type EGC-22 13 5/8" X 8 5/8" automatic slips and sealed by Walker Type EGF 13 5/8" X 8 5/8" secondary seals.

9. Sidetracked Hole (N/A)

10. Drilling Fluid

Surface Hole (0 - 244 m):

Boulders and gravel were encountered while drilling surface hole, thus, the mud density was kept high around 1260 kg/m^3 , and viscosity was maintained around 130.

Intermediate Hole (244 m - 834 m):

This part of the hole was drilled with a gel-chem mud having the following properties:

Density	1130 kg/m^3
Viscosity	52
W.L.	11
pH	9

Main Hole (834 m - 1590 m):

The interval from 834 m to 1328 m was drilled with air. The remainder of the hole was drilled with a gel-chem mud having a density of about 1140 kg/m^3 , and viscosity of 50. Fluid loss was kept around 7.0 with drispac, while the pH was controlled with caustic soda at 10.5+.

11. Fishing Operations N/A

12. Well Kicks

None encountered.

13. Formation Leak-Off Test

Two formation leak-off tests were completed. The first test was immediately below surface casing, and the second test was immediately below intermediate casing.

Surface Casing: A FLOT was run at 248 mKB. Fluid density was 1000 kg/m³ which had a gradient of 9.81 kg/m. A gradient of 17.6 kPa/m was established.

Intermediate Casing: A FLOT was run at 839 mKB. Fluid density was 1000 kg/m³ which has a gradient of 9.81 kPa/m. A gradient of 22 kPa/m was established.

14. Time Distribution (See Table 2, Following Page)

15. Deviation Survey (N/A)

16. Abandonment Plugs (N/A)

TABLE 2

PARAMOUNT ET AL CAMERON H-28

TIME DISTRIBUTION

SPUNDED WELL ON 1990-02-26 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 1 OF 10

TABLE 2

PARAMOUNT ET AL CAMERON N-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-28 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 2 OF 10

DATE	FROM	TO	DRILL	CIRC.		RIG	RIG	SLIP &	DEV.	WIRELINE	CASING	NIPPLE		DRILL		DEPTH			
				COND.	MUD							UP	TEST	STEM	REAM	OTHER	B.O.P.	24:00	
DATE	FROM	TO	DRILL	MUD	TRIPS	SERVICE	REPAIRS	CUT LINE	SURVEY	LOGS	CEMENT	W.O.C.	UP	TEST	STEM	REAM	OTHER	DRILL	24:00
1990-02-28	00:00	00:45	0.75																
1990-02-28	00:45	02:15																1.50	
1990-02-28	02:15	04:45	2.50																
1990-02-28	04:45	05:15																0.50	
1990-02-28	05:15	05:30																0.25	
1990-02-28	05:30	07:15																1.75	
1990-02-28	07:15	07:30																0.25	
1990-02-28	07:30	08:00																1.50	
1990-02-28	09:00	10:15	1.25																
1990-02-28	10:15	11:00																0.75	
1990-02-28	11:00	13:15	2.25																
1990-02-28	13:15	13:30																0.25	
1990-02-28	13:30	14:45																1.25	
1990-02-28	14:45	16:30	1.75																
1990-02-28	16:30	17:00																0.50	
1990-02-28	17:00	20:45																3.75	
1990-02-28	20:45	21:15																0.50	
1990-02-28	20:15	24:00	2.75																

TABLE 2

PARAMOUNT ET AL CAMERON N-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-26 AT 17:15 HOURS
 RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 3 OF 10

DATE	FROM	TO	DRILL	CIRC.		RIG	RIG	SLIP &	DEV.	WIRELINE	CASING	NIPPLE		DRILL		DEPTH			
				COND.	MUD							UP	TEST	STEM	REAM	OTHER	B.O.P.	24:00	
DATE	FROM	TO	DRILL	COND.	MUD	TRIPS	SERVICE	REPAIRS	CUT LINE	SURVEY	LOGS	CEMENT	W.O.C.	B.O.P.	B.O.P.	TEST	REAM	OTHER	DRILL HOURS
1990-03-01	00:00	02:45	2.75																
1990-03-01	02:45	04:30				1.75													
1990-03-01	04:30	06:30	2.00																
1990-03-01	06:30	07:15				0.75													
1990-03-01	07:15	07:30					0.25												
1990-03-01	07:30	08:45				1.25													
1990-03-01	08:45	13:30	4.75																
1990-03-01	13:30	13:45			0.25														
1990-03-01	13:45	16:00				2.25													
1990-03-01	16:00	17:45	1.75																
1990-03-01	17:45	19:00				1.25													
1990-03-01	19:00	24:00										5.00						244	
1990-03-02	00:00	22:15										22.25							
1990-03-02	22:15	23:00				0.75													
1990-03-02	23:00	23:45														0.75			
1990-03-02	23:45	24:00				0.25												244	
1990-03-03	00:00	02:30														2.50			
1990-03-03	02:30	04:00				1.50													
1990-03-03	04:00	08:00				4.00													
1990-03-03	08:00	09:45				1.75							9.00						
1990-03-03	09:45	18:45																	
1990-03-03	18:45	24:00										5.25						244	

TABLE 2

PARAMOUNT ET AL CAMERON N-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-26 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 4 OF 10

DATE	FROM	TO	DRILL	CIRC.				RIG	BIG	SLIP &	DEV.	WIRELINE	CASING	RUN		NIPPLE	DRILL	TEST	STEM	REAM	OTHER	B.O.P.	DEPTH		
				COND.	MUD	TRIPS	SERVICE							LOGS	CEMENT	W.O.C.	UP	B.O.P.	B.O.P.	TEST	DRILL	24:00			
1990-03-04	00:00	00:30														0.60									
1990-03-04	00:30	09:00															8.50								
1990-03-04	09:00	11:15																2.25							
1990-03-04	11:15	13:45						2.50																	
1990-03-04	13:45	15:30																1.75							
1990-03-04	15:30	20:00																	4.50						
1990-03-04	20:00	20:15																		0.25					
1990-03-04	20:15	24:00																	3.75	260					
1990-03-05	00:00	00:30																		0.50					
1990-03-05	00:30	04:00					3.50																		
1990-03-05	04:00	05:00													1.00										
1990-03-05	05:00	06:30					1.50																		
1990-03-05	06:30	09:00							2.50																
1990-03-05	09:00	09:30					0.50																		
1990-03-05	09:30	11:00	1.60																						
1990-03-05	11:00	12:00							1.00																
1990-03-05	12:00	14:30																	2.50						
1990-03-05	14:30	15:45					1.25																		
1990-03-05	15:45	16:15							0.50																
1990-03-05	16:15	17:30								1.25															
1990-03-05	17:30	19:00	1.50																						
1990-03-05	19:00	19:15																	0.25						
1990-03-05	19:15	23:00	3.75																						
1990-03-05	23:00	23:15													0.25										
1990-03-05	23:15	24:00	0.75																	400					

TABLE 2

PARAMOUNT ET AL CAMERON N-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-26 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 5 OF 10

TABLE 2

PARAMOUNT ET AL. CAMERON N-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-26 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 6 OF 10

TABLE 2

PARAMOUNT ET AL CAMERON N-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-26 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 7 OF 10

TABLE 2

PARAMOUNT ET AL CAMERON N-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-26 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 8 OF 10

TABLE 2

PARAMOUNT ET AL CAMERON N-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-26 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 9 OF 10

TABLE 2

PARAMOUNT ET AL CAMERON H-28

TIME DISTRIBUTION

SPUDED WELL ON 1990-02-26 AT 17:15 HOURS

RIG RELEASED ON 1990-03-19 AT 24:00 HOURS

PAGE 10 OF 10

DATE	FROM	TO	DRILL	CIRC.				RIG	RIG	SLIP &	DEV.	WIRELINE	CASING	RUN		NIPPLE		DRILL		DEPTH				
				COND.	MUD	TRIPS	SERVICE							LOGS	CEMENT	W.O.C.	B.O.P.	B.O.P.	TEST	STEM	TEST	REAM	OTHER	B.O.P.
1990-03-17	00:00	02:45	2.75																					
1990-03-17	02:45	03:15																						
1990-03-17	03:15	08:45	6.50																					
1990-03-17	09:45	10:00													0.25									
1990-03-17	10:00	14:45	4.75																					
1990-03-17	14:45	15:15														0.50								
1990-03-17	15:15	22:30	7.25																					
1990-03-17	22:30	22:45													0.25									
1990-03-17	22:45	24:00	1.25																				1588	
1990-03-18	00:00	00:30	0.50																					
1990-03-18	00:30	01:15													0.75									
1990-03-18	01:15	01:45													0.50									
1990-03-18	01:45	02:45	1.00																					
1990-03-18	02:45	06:45													4.00									
1990-03-18	06:45	24:00														17.25							1590	
1990-03-19	00:00	01:00														1.00								
1990-03-19	01:00	13:00															12.00							
1990-03-19	13:00	24:00																				11.00	1590	
TOTALS				219.00	26.50	74.00	8.50	17.00							9.75	18.25	57.75	8.75	16.75	8.75	6.60	4.75	37.50	0.50

D. GEOLOGY

Regional Geological Discussion:

The geological record in the Cameron Hills area can be divided into six lithostratigraphic intervals, each generally bounded by major transgressive or regressive events. These intervals are:

1. Lower Elk Point Group
2. Upper Elk Point Group
3. Beaverhill Lake Group
4. Woodbend Group
5. Winterburn Group
6. Wabamun Group

Lower Elk Point Group

This group includes the interval from the Basal Devonian sands to the base of the Keg River Formation. The evaporites of the Chinchaga Formation and silici-clastics of the basal Granite Wash were deposited within a shallow restricted epicontinental seaway. These deposits onlap the Pre-Devonian surface and range in thickness from zero over the prominent Tathlina and Peace River archs to nearly 300 metres within the interarch basins.

Upper Elk Point Group

A major transgression resulted in the deposition of organic rich open marine carbonates of the Lower Keg River Formation. This crinoid/brachiopod rich carbonate platform ranges in thickness from 15 to 50 metres.

Continued marine transgression and subsidence led to the formation of an extension Upper Keg River barrier reef complex (Shekelite-Presquile Barrier Complex) which enclosed the Elk Point basin on its northern and western sides. Southeast of this barrier, isolated pinnacle reefs, low energy reef mounds and shelf deposits of the Upper Keg River Formation were deposited. Generally the Upper Keg River is deposited conformably upon Lower Keg River Platform carbonates, but in areas of high Pre-Devonian topography, these rocks are deposited unconformably upon the Pre-Devonian surface (e.g. A-5 and I-10 wells).

Relatively open marine conditions existed through to the end of the Keg River time with normal salinity maintained by marine water entering the basin from both the northwest and northeast. During the early Givetian stage the Tathlina land mass elevated resulting in the restriction of the Elk Point basin with normal marine conditions restricted to the Shekelite Barrier Complex. Southeast of the Barrier Complex, the increasingly evaporitic conditions resulted in deposition of interbedded anhydrites and dolomites of the Muskeg Formation.

Toward the end of Upper Elk Point time subsidence of the barrier complex allowed normal marine conditions to return to the northern end of the Elk Point basin resulting in deposition of the regional extensive Sulphur Point dolomites and limestones. Detailed correlations of the Sulphur Point carbonates with adjacent anhydrite/dolomite cycles of the uppermost Muskeg Formation indicated a facies relationship exists between these two formations.

Upper Elk Point deposition was terminated by a pronounced regression, resulting in widespread deposition of shallow marine and continental shales and silty sandstone of the Watt Mountain Formation.

Beaverhill Lake Group

Beaverhill Lake Group sedimentation began with gradual marine transgression over a relatively flat surface of Watt Mountain clastics. The initial deposits comprised of the peritidal and shallow restricted shelf carbonates of the Fort Vermilion Formation. Continued transgression created more open marine conditions and the shallow shelf carbonates of the Slave Point were deposited.

Further marine transgression over the Slave Point surface resulted in deposition of a sequence of basin filling argillaceous limestones and calcareous shales of the Waterways Formation.

Woodbend Group

In northern Alberta the transition from the shallow marine Waterways Formation to the deeper water Woodbend Group is conformable. This transgressive pulse produced the most extensive Devonian marine incursion into the Alberta Basin and is represented by euxinic "deep" water organic rich shales of the Muskwa/Duvernay Formation. These shales are overlain by thick accumulations of Upper Woodbend Group shales of the Fort Simpson Formation and carbonates of the Twin Falls (Grosmont) Formation.

Winterburn Group

The regressive sedimentation patterns developed during infilling of the Woodbend Basin continued with shallow water carbonate shelf deposits prograding out over basin filling clastics. In northern Alberta a regressive pulse allowed the argillaceous carbonates of the Basal Nisku Formation to give way to cleaner shallow water shelf carbonates of the Calmar Formation and Blueridge Member of the Graminia Formation. A second major regressive pulse occurred at the close of Winterburn time resulting in the deposition of terrigenous clastics of the Graminia Silt unit.

Wabamun Group

The Wabamun Group carbonate ramp sequence conformably overlies the Winterburn Group. These largely lime mud rich, burrowed pelletoidal limestones, grading locally to lime grainstones, were deposited in response to six major eustatic sea level rises and accentuated by local subsidence patterns.

Well Summary

Paramount et al Cameron N-28 was drilled to evaluate hydrocarbon potential in the Mid-Devonian, Slave Point, Sulphur Point, and Keg River Formations.

The well was drilled from surface to total depth in 23 days. Large boulders were encountered while drilling surface hole. A pilot hole was drilled to 250 metres, and then reamed out to 381 mm. Surface casing was set at 203 metres. On drilling out water was encountered. On mudding up lost circulation occurred, LCM was added and circulation regained. Several cubic metres of gas cut oil were recovered ahead of the mud. A 270 mm hole was drilled with mud to 834 metres, where intermediate casing was set. 200 mm hole was drilled from 834 to 1298 metres with air, and to 1591 metres with mud. No other engineering problems were encountered.

A drill stem test was run in the Sulphur Point Formation. No cores were cut.

Hydrocarbons were encountered in the Slave Point, Sulphur Point, Muskeg, and Keg River Formations. Also oil was observed in the mud circa 720 to 750 metres, where a calcareous sandstone was encountered. Sample conditions were good with local excessive shale cavings.

1. Drill Cuttings (See Following Pages For Sample Descriptions)

Ten metre samples were collected from 380 m to 1300 m. Five metre samples collected from 1305 m to 1590 m.

Sample Distribution = Washed Cuttings - 5 Metre Intervals
One Set Samples - C.O.G.L.A., Yellowknife
One Set Samples - I.S.P.G., Calgary
One Set Samples - Paramount, Calgary.

Sample Distribution = Unwashed Cuttings - 10 Metre Intervals
One Set Samples - I.S.P.G., Calgary.

2. Cores (N/A)

3. Lithology (See Following Pages, Sample Descriptions)

4. Stratigraphic Column (See Figure 2, Following Page)

TABLE OF FORMATIONS

AGE	FORMATION	LITHOLOGY
	Wabamun	Limestone: crypto to micro crystalline
	Winterburn	Limestone crypto - micro crystalline, argillaceous
LATE DEVONIAN	Twin Falls (Grosmont)	Limestone crypto - micro
	Fort Simpson	shales
	Muskwa	organic rich shales
	Waterways	shales (basinal)
	Slave Point	Limestone
	Ft. Vermilion	Limestone
	Watt Mountain	shales - bituminous
	Sulphur Point	Limestone & Dolomite
MIDDLE DEVONIAN	Muskeg	anhydrite & dolomite
	Upper Keg River	Dolomite
	Lower Keg River	organic rich limestone & dolomite
	Chinchaga	anhydrite
EARLY DEVONIAN	Granite Wash	
		sands
PRE DEVONIAN		Metamorphic Complex

GEOLOGICAL MARKERS

K.B: 764.1 m

GRD: 760.1 m

Paramount et al Cameron N-28

Sample Descriptions

Surface Casing set @ 203.3 m

390 - 400 m Shale 100%, black, soft to firm, subfissile, dull to earthy, micaceous, good trace coarse, round, translucent to smokey quartz grains.

400 - 410 m Shale 60%, as above. Sand 40%, unconsolidated, translucent to smokey, rose, medium to coarse, round, well sorted, 50% quartz, feldspar.

410 - 420 m Shale 90%, Sand 10%, as above.

420 - 450 m Shale 100%, black, soft to firm, subfissile to fissile, earthy to waxy, locally silty.

450 - 470 m Shale 100%, black, firm, fissile, earthy to waxy, micaceous, trace pyrite.

470 - 480 m Shale 90%, as above. Sand 10%, unconsolidated, smokey, translucent, rose, medium to coarse, subangular, well sorted, 50% quartz, feldspar.

480 - 500 m Shale 100%, dark grey, firm, subfissile, earthy, rarely micaceous.

500 - 510 m Shale 100%, black, firm, fissile to subfissile, earthy to dull, locally micaceous, trace kaolinite.

510 - 520 m Shale 50%, as above. Sand 50%, unconsolidated, opaque, translucent, rose, smokey, medium to very coarse, round to angular, moderately sorted, 50% quartz, feldspar.

520 - 530 m Limestone 40%, white, firm, cryptocrystalline, chalky, pelletal, anhydritic, trace sparry calcite, mudstone, tight. Anhydrite 20%, white, soft, amorphous, chalky. Sand 20%, Shale 20%, as above.

Wabamun 530.0 m (+234.1 m)

530 - 540 m Limestone 70%, white to cream, firm, cryptocrystalline, waxy to chalky, pelletal, anhydritic, trace Rugosa, mudstone, tight. Anhydrite 30%, white, soft, amorphous to crystalline, sucrosic to chalky.

540 - 560 m Limestone 60%, as above, locally microcrystalline and sucrosic. Anhydrite 40%, as above.

560 - 570 m Limestone 80%, cream to white, brittle to firm, microcrystalline to cryptocrystalline, sucrosic to chalky, locally pelletal, mudstone to wackestone, tight, isolated pin-point to small vuggy porosity, patchy dark brown to black oil staining, no fluorescence or cut. Anhydrite 20%, as above.

570 - 580 m Limestone 90%, cream, friable to firm, microcrystalline, sucrosic, sparry calcite, packstone, 0-6% intercrystalline porosity, trace patchy dark brown oil staining, no

fluorescence or cut. Anhydrite 10%, as above.

580 - 600 m Limestone 100%, cream, brittle to friable, microcrystalline to very fine crystalline, sucrosic to granular, pelletal, packstone to grainstone, trace Brachiopod, trace Ostracod, 0-6% intercrystalline and small vuggy porosity, locally 6-12%, trace patchy black oil staining, dull gold fluorescence, slow streaming pale yellow cut fluorescence, POOR to TRACE SHOW.

600 - 610 m Limestone 100%, cream, friable to firm, microcrystalline to locally cryptocrystalline, sucrosic to waxy, locally pelletal, mudstone to packstone, 0-6% intercrystalline porosity, no show.

610 - 630 m Limestone 80%, as above. Anhydrite 20%, white, soft, amorphous to crystalline, sucrosic to chalky.

630 - 660 m Limestone 100%, grey/white, brittle, microcrystalline to cryptocrystalline, argillaceous in part, chalky to sucrosic, trace sparry calcite, mudstone to wackestone, tight.

660 - 680 m Limestone 100%, white, brittle to friable, very fine crystalline to microcrystalline, sucrosic to granular, pelletal, wackestone to packstone, 0-6% intercrystalline porosity, no show.

680 - 690 m Limestone 100%, as above, locally argillaceous, trace pyrite.

690 - 700 m Limestone 100%, grey/white to cream, hard to brittle, cryptocrystalline to locally microcrystalline, chalky, waxy, earthy, locally argillaceous, occasionally anhydritic, mudstone, tight.

700 - 710 m Limestone 80%, grey/white, brittle. cryptocrystalline to microcrystalline, chalky, waxy, sucrosic, pelletal, anhydritic, mudstone to wackestone, tight. Anhydrite 20%, grey/white, firm, amorphous, chalky.

710 - 730 m Limestone 100%, brown/white, brittle, microcrystalline to cryptocrystalline, sucrosic to chalky, locally waxy, pelletal, trace sparry calcite, wackestone, tight, locally 0-6% intercrystalline to vuggy porosity, trace patchy black oil staining, trace oil in mud, bright yellow fluorescence, slow streaming to blue/white cut fluorescence, POOR SHOW.

730 - 750 m Sandstone 70%, grey/green, brittle to friable, very fine to fine, subround to round, well sorted, 70% quartz, lithic fragments, bituminous specks, calcareous cement, 0-6% porosity, no show. Limestone 30%, as above.

750 - 760 m Sandstone 100%, dominately fine, as above, patchy black oil staining, bright yellow to gold fluorescence,

instant streaming to blue/white cut fluorescence,
POOR SHOW.

760 - 780 m Shale 100%, light green, firm, fissile, earthy to waxy.

780 - 790 m Shale 50%, as above. Limestone 50%, grey/brown, hard, cryptocrystalline, waxy to chalky, locally pelletal, mudstone, tight.

790 - 800 m Shale 70%, grey/green, dark grey, firm, subfissile, earthy. Limestone 30%, as above, locally microcrystalline, trace Crinoid.

800 - 810 m Limestone 70%, grey/brown, hard, cryptocrystalline, earthy, argillaceous, mudstone, tight. Shale 30%, black, grey/green, dark grey, as above.

810 - 820 m Shale 50%, Limestone 50%, as above.

820 - 835 m Shale 70%, black, firm, fissile, earthy to mottled. Limestone 30%, dark grey, hard to brittle, cryptocrystalline, earthy to mottled, argillaceous, mudstone, tight.

Set 219.1 mm casing @ 834.29 m.

835 - 860 m No sample.

Twin Falls 845.0 m (- 80.9 m)

860 - 870 m Limestone 100%, grey/white, hard, cryptocrystalline, chalky, waxy, locally marly, mudstone, tight.

870 - 880 m Limestone 100%, as above, becoming microcrystalline, sucrosic, and argillaceous.

880 - 900 m Limestone 100%, grey/white, hard to brittle, microcrystalline, sucrosic, argillaceous, mudstone, tight.

900 - 910 m Limestone 95%, as above. Shale 5%, dark grey, firm, subfissile, earthy, micaceous.

910 - 940 m Shale 50%, as above. Limestone 50%, dark grey, hard, cryptocrystalline, earthy, argillaceous, mudstone, tight, rare trace pyrite.

940 - 950 m Shale 100%, dark grey, firm, subfissile, earthy to mottled, calcareous.

950 - 960 m Limestone 60%, grey/brown, hard, cryptocrystalline, waxy, locally argillaceous, trace Crinoid, mudstone, tight. Shale 40%, as above.

960 - 970 m Shale 90%, dark grey, firm, subfissile, earthy, calcareous. Limestone 10%, as above.

970 - 980 m Limestone 80%, light grey, hard, cryptocrystalline, waxy, locally argillaceous, pelletal in part, trace pyrite, mudstone, tight. Shale 20%, as above.

980 - 1000 m Shale 100%, dark grey, firm, subfissile, earthy, micaceous, calcareous.

1000 - 1010 m Shale 100%, grey/green to dark grey, fissile to subfissile, as above.

1010 - 1040 m Shale 100%, green/grey, firm, fissile, earthy to mottled, slightly calcareous, micaceous in part.

1040 - 1060 m Shale 100%, grey/green, firm, fissile, micaceous, earthy.

1060 - 1080 m Shale 100%, as above, locally black, fissile, earthy.

1080 - 1090 m Shale 100%, grey/green to dark grey, firm, subfissile, earthy to mottled.

1090 - 1100 m Shale 100%, dark grey to black, firm, fissile, earthy, locally micaceous.

1100 - 1110 m Shale 90%, as above. Limestone 10%, dark grey, hard, cryptocrystalline, waxy, argillaceous, mudstone, tight.

1110 - 1140 m Limestone 50%, as above, becoming microcrystalline and sucrosic. Shale 50%, as above.

1140 - 1160 m Shale 70%, black to dark grey, firm, subfissile, earthy, micaceous. Limestone 30%, as above.

1160 - 1170 m Shale 100%, black, firm, fissile to subfissile, earthy, micaceous.

1170 - 1180 m Shale 60%, as above. Limestone 40%, dark grey, hard, microcrystalline to cryptocrystalline, sucrosic to waxy, argillaceous, mudstone, tight.

1180 - 1190 m Shale 100%, as above.

1190 - 1220 m Shale 100%, black, firm, fissile, earthy, micaceous.

1220 - 1250 m Shale 100%, black, firm, fissile to subfissile, earthy to mottled, locally micaceous.

1250 - 1270 m Shale 100%, black, dominately fissile, rarely micaceous, as above.

1270 - 1290 m Shale 100%, black, firm, fissile, earthy, waxy, mottled, micaceous in part.

Muskwa 1290.5 m (-526.4 m)

1290 - 1300 m Siltstone 90%, black, hard, blocky, earthy, bituminous, micaceous, slightly calcareous. Shale 10%, as above.

Mud up at 1299 m

1300 - 1305 m Shale 100%, black, firm, fissile, earthy.

1305 - 1315 m Shale 100%, dark grey to grey/green, black, firm, fissile, earthy to waxy, micaceous in part, trace dark grey, argillaceous, cryptocrystalline limestone, trace

Crinoid.

Waterways 1319.0 m (-554.9 m)

1315 - 1325 m Shale 100%, as above, with trace limestone, as above. Siltstone trace, dark brown, brittle, blocky, micaceous.

1325 - 1335 m Shale 70%, dark grey to black, firm, fissile, locally micaceous. Limestone 30%, grey/white, firm to hard, cryptocrystalline to locally microcrystalline, chalky, marly, sucrosic, argillaceous, trace Crinoid, mudstone, tight.

1335 - 1345 m Shale 50%, as above. Limestone 50%, light to dark grey, grey/brown, hard, cryptocrystalline, waxy, earthy, argillaceous, trace pyrite, mudstone, tight.

Slave Point 1345.0 m (-580.9 m)

1345 - 1350 m Limestone 70%, as above, becoming light to dark grey, dark brown, hard, cryptocrystalline to microcrystalline, waxy, sucrosic, pelletal, mudstone to wackestone, tight. Shale 30%, as above.

1350 - 1360 m Limestone 100%, dark brown to locally grey/brown, brittle to friable, microcrystalline to cryptocrystalline, sucrosic, waxy, marly, locally pelletal, good trace pyrite, wackestone to packstone, 0-6% small vuggy to intercrystalline porosity, trace dark brown oil staining, no fluorescence or cut.

1360 - 1370 m Limestone 90%, dark brown, brown/white, brittle to hard, cryptocrystalline, locally microcrystalline, waxy to marly, locally pelletal, anhydritic in part, mudstone, tight. Anhydrite 10%, brown/white, firm, amorphous, chalky.

1370 - 1375 m Limestone 100%, dark brown, locally brown/white, hard, cryptocrystalline, waxy, pelletal, locally bioclastic, mudstone, tight.

Fort Vermilion 1375.0 m (-610.9 m)

1375 - 1385 m Limestone 80%, Anhydrite 20%, as above.

1385 - 1390 m Limestone 60%, as above. Shale 40%, dark grey, firm, fissile, waxy, micaceous.

1390 - 1395 m Limestone 70%, grey/white, hard, microcrystalline to cryptocrystalline, sucrosic to waxy, mudstone to wackestone, argillaceous in part, tight. Shale 30%, as above.

Watt Mountain 1394.0 m (-629.9 m)

1395 - 1400 m Limestone 50%, grey/white, hard, cryptocrystalline, waxy to chalky, locally anhydritic, argillaceous in part, mudstone, tight. Shale 30%, dark grey to black,

light green, as above. Anhydrite 20%, white, firm, amorphous, chalky.

Sulphur Point 1395.0 m (-630.9 m)

1400 - 1405 m Shale 50%, dark grey, firm, fissile, earthy, micaceous. Limestone 50%, grey/white, hard to brittle, cryptocrystalline, waxy, locally anhydritic, pelletal in part, mudstone, tight, locally 0-6% vuggy porosity, no show.

1405 - 1410 m Dolomite 80%, buff to brown/white, brittle to locally friable, microcrystalline to cryptocrystalline, sucrosic to waxy, locally pelletal, locally anhydritic, mudstone to packstone, tight, locally 0-6% intercrystalline porosity, trace patchy light brown oil staining, 40% pale yellow to gold fluorescence, streaming blue/white to pale yellow cut fluorescence, POOR to FAIR SHOW. Shale 20%, as above.

1410 - 1415 m Dolomite 100%, dark brown, brittle to friable, very fine to fine crystalline, granular, abundant sparry calcite, grainstone, 0-6% intercrystalline to vuggy porosity, locally 6-12%, dark brown oil staining, 60% bright yellow fluorescence, streaming blue/white cut fluorescence, FAIR SHOW.

DST # 1 1391.0 - 1417.0 m

1415 - 1420 m 60% Cavings. Dolomite 100%, as above, show as above.

Muskeg 1420.0 m (-655.9 m)

1420 - 1430 m Dolomite 60%, light to dark brown, hard to brittle, microcrystalline to cryptocrystalline, sucrosic to waxy, pelletal in part, locally anhydritic, mudstone to wackestone, tight. Anhydrite 40%, white, soft to firm, amorphous to crystalline, sucrosic, locally very soluble.

1430 - 1435 m Anhydrite 80%, white to grey/white, as above, very soluble. Dolomite 20%, light brown, brittle to hard, cryptocrystalline, waxy to marly, anhydritic, mudstone, tight.

1435 - 1440 m Anhydrite 80%, white, firm, crystalline, sucrosic. Dolomite 20%, light brown, hard, cryptocrystalline, waxy, anhydritic, mudstone, tight.

1440 - 1450 m Dolomite 60%, as above, locally microcrystalline and sucrosic, locally with 0-6% intercrystalline to vuggy porosity, light brown oil staining, 30% pale yellow fluorescence, slow streaming blue/white cut fluorescence, POOR SHOW. Anhydrite 40%, as above.

1450 - 1455 m Dolomite 100%, light brown, brown/white, hard, crypto-

crystalline, waxy, anhydritic, mudstone, tight, locally microcrystalline, as above.

1455 - 1460 m Dolomite 60%, cryptocrystalline to microcrystalline, as above, show as above. Anhydrite 40%, white to brown/white, firm, amorphous, chalky.

1460 - 1465 m Dolomite 80%, dark brown, brittle, microcrystalline, sucrosic, sparry calcite, grainstone, tight, locally 0-6% intercrystalline porosity, light brown oil staining, pale yellow to gold fluorescence, slow streaming blue/white cut fluorescence, TRACE SHOW. Anhydrite 20%, as above.

1465 - 1470 m Anhydrite 80%, white to grey/white, firm, amorphous to crystalline, chalky to sucrosic. Dolomite 20%, brown/white, hard, cryptocrystalline waxy, anhydritic, mudstone, tight.

1470 - 1475 m Dolomite 80%, as above, locally microcrystalline and sucrosic, with 0-6% intercrystalline porosity, TRACE SHOW as above. Anhydrite 20%, as above.

1475 - 1480 m Dolomite 80%, brown/white, hard, cryptocrystalline, waxy, anhydritic, mudstone, tight. Anhydrite 20%, as above.

1480 - 1485 m Dolomite 100%, dark brown to brown/white, brittle to hard, cryptocrystalline to microcrystalline, waxy to sucrosic, locally anhydritic, trace sparry calcite, mudstone to packstone, tight, locally 0-6% intercrystalline and occasionally vuggy porosity, trace light brown oil staining, gold fluorescence, slow streaming pale yellow cut fluorescence, TRACE SHOW.

1485 - 1490 m Dolomite 90%, light to dark brown, brittle to hard, cryptocrystalline to locally microcrystalline, waxy to marly, occasionally sucrosic, pelletal in part, locally anhydritic, mudstone to locally wackestone, tight, trace 0-6% intercrystalline porosity, show as above. Anhydrite 10%, as above.

1490 - 1505 m Dolomite 70%, light brown to buff, hard, cryptocrystalline, waxy, anhydritic, mudstone, tight. Anhydrite 30%, brown/white, firm, amorphous, chalky.

1505 - 1510 m Dolomite 50%, Anhydrite 50%, as above.

Keq River 1510.0 m (-745.9 m)

1510 - 1520 m Dolomite 100%, dark brown, brittle, microcrystalline to very fine crystalline, sucrosic, sparry calcite, packstone, 0-6% intercrystalline porosity, patchy dark brown oil staining, 30% gold to dull yellow fluorescence, cloudy to hazy pale yellow cut fluorescence, POOR SHOW.

1520 - 1525 m Dolomite 100%, as above, locally cryptocrystalline and waxy, tight.

1525 - 1530 m Dolomite 100%, dark brown, friable to locally brittle, microcrystalline to cryptocrystalline, sucrosic to waxy, sparry calcite, mudstone to packstone, tight, locally 0-6% intercrystalline porosity, no show.

1530 - 1535 m Dolomite 100%, brown/black, brittle, microcrystalline to very fine crystalline, sucrosic to granular, locally argillaceous, sparry calcite, grainstone to packstone, tight, no show.

1535 - 1545 m Dolomite 100%, as above, becoming very fine to fine crystalline, granular, locally 0-6% intercrystalline porosity, patchy dark brown oil staining, no fluorescence or cut.

1545 - 1550 m Dolomite 100%, dark brown, locally brown/black, brittle to friable, microcrystalline to fine crystalline, sucrosic to granular, locally argillaceous, abundant sparry calcite, packstone to grainstone, tight to locally 0-6% intercrystalline porosity, no show, trace pyrite.

1550 - 1555 m Dolomite 80%, as above. Anhydrite 20%, white, firm, crystalline, sucrosic.

1555 - 1565 m Dolomite 90%, brown/black, brittle, very fine to fine crystalline, granular, sparry calcite, locally argillaceous, grainstone, tight. Anhydrite 10%, as above.

1565 - 1570 m Dolomite 80%, dark brown to brown/white, brittle to friable, microcrystalline, sucrosic, anhydrite, wackestone to packstone, tight. Anhydrite 20%, brown/white, grey/white, firm, crystalline, sucrosic.

Chinchaga 1568.0 m (-803.9 m)

1570 - 1575 m Dolomite 60%, brown/white, brittle to hard, cryptocrystalline, waxy, anhydritic, mudstone, tight. Anhydrite 40%, as above.

Pre-Devonian 1578.0 m (-813.9 m)

1575 - 1580 m Quartzite 60%, grey/black, hard, angular, argillaceous, siliceous cement, quartz overgrowths, tight, trace disseminated pyrite. Dolomite 30%, microcrystalline, as above. Granite Wash 10%, orange, lime/green, smokey, hard, angular, feldspar, quartz, chlorite.

1580 - 1591 m Quartzite 90%, Granite Wash 10%, as above, trace lime/green amphibolite.

Paramount et al Cameron N-28
Total Gas and Chromatograph Values

Depth m	Total Gas units	Chromatograph					nC4
		C1	C2	C3	iC4		
1305	6	479	24	-	-	-	-
1310	10	599	47	15	-	-	-
1313	13	889	59	30	-	-	-
1315	10	547	28	15	-	-	-
Waterways							
1320	8	410	26	13	-	-	-
1323	26	2053	94	50	-	-	7
1325	17	992	33	18	-	-	-
Connection Gas @ 1327 m = 14/17 units.							
1330	11	581	24	8	-	-	-
1335	6	342	24	-	-	-	-
1340	9	616	24	6	-	-	-
Slave Point							
1345	7	530	24	6	-	-	-
1350	9	616	24	6	-	-	-
1355	116	5472	236	119	-	-	-
1358	110	6412	295	75	-	-	-
1360	96	4959	236	25	-	-	-
1365	16	1368	35	13	-	-	-
Connection Gas @ 1365 m = 9/15 units.							
1368	30	2480	118	38	-	-	18
1370	12	855	59	13	-	-	-
Fort Vermilion							
1375	16	1112	59	13	-	-	-
1380	10	676	24	6	-	-	-
1385	10	676	24	6	-	-	-
1388	100	6840	295	100	-	-	-
1390	15	1339	118	31	-	-	-
1392	38	3648	177	94	-	-	-

Watt Mountain Sulphur Point

Paramount et al Cameron N-28
Total Gas and Chromatograph Values

Depth m	Total Gas units	Chromatograph				
		C1	C2	C3	iC4	nC4
1395	22	2052	118	38	-	-
1400	13	1240	59	16	-	-
1401	69	6472	212	69	-	36
1403	12	898	59	9	-	-
1404	140	10602	236	150	-	-
1405	44	3762	189	50	-	-
1406	16	983	53	-	-	-
1409	180	10260	354	75	-	-
1410	255	14022	714	238	-	-
1412	44	3420	118	75	-	-
1415	210	12825	566	175	50	-
1417	175	9675	531	219	84	-
Trip Gas @ 1417 m = 400/340 units.						
1419	700	13680	3304	1000	50	218
Muskeg						
1420	440	8379	944	500	-	36
1425	148	6669	354	125	-	36
1430	60	1141	59	25	-	-
1435	40	735	53	25	-	-
1440	47	1368	47	35	3	15
1445	74	6327	354	137	17	-
1446	115	7268	566	250	17	36
1450	28	2189	142	94	-	18
1451	151	7524	802	313	-	55
1455	17	1197	59	25	-	18
1460	58	4275	319	188	-	91
1465	14	1026	71	50	-	15
1470	20	1334	94	50	-	25
1472	56	4033	425	236	33	55
1475	12	992	47	25	-	-
1480	10	718	35	19	-	9
1484	84	6583	590	288	-	55

Paramount et al Cameron N-28
Total Gas and Chromatograph Values

Depth m	Total Gas units	Chromatograph				
		C1	C2	C3	iC4	nC4
1485	36	2650	271	125	-	55
1487	260	16312	826	478	67	109
1490	26	2026	130	81	-	36
1494	22	1625	130	100	-	10
1495	7	470	59	-	-	-
1500	8	624	59	16	-	-
1505	8	770	47	6	-	-
Keg River						
1510	4	342	6	-	-	-
1514	52	4275	153	63	-	18
1515	22	1881	71	13	-	-
1517	66	6013	295	125	-	-
1520	4	342	6	-	-	-
1523	38	3377	177	63	-	-
1525	11	1026	50	13	-	-
Trip Gas @ 1525 m = 36/4 units.						
1530	4	376	24	11	-	-
1534	11	1060	47	25	-	4
1535	4	342	24	13	-	-
1540	3	291	18	4	-	-
1543	16	1454	94	43	-	6
1545	5	479	28	13	-	-
1550	8	701	35	23	-	-
1555	15	1334	76	45	-	7
1560	8	694	47	25	-	-
1565	6	547	31	20	-	-
1570	12	684	47	25	-	29
1575	10	428	24	20	-	-
1580	14	906	47	40	-	-
1585	11	702	47	25	-	-
1590	7	478	31	10	-	-

E. WELL EVALUATION

1. Downhole Logs (In Pocket, At The End)

TABLE 3

DOWNHOLE LOG SUMMARY - Schlumberger

<u>DATE</u>	<u>RUN</u>	<u>TYPE</u>	<u>SCALE</u>	<u>INTERVAL (M)</u>
1990-03-	1	PHASOR-SP-GR	1-240 1-600	1588.6 - 834.2 1588.6 - 834.2
	*	BHCS-GR-CAL	1-240 1-600	1578.1 - 834.2 1578.1 - 834.2
	**	2 CNL-LDT-DAC-GR-CAL		1591.0 - 50.0
		2 MICROLOG	1-240	1583.0 - 1280.0

* Full Wave - from sonic to surface.

** GR-CNL to surface.

2. Other Logs (N/A)

3. Synthetic Seismograms

Not yet finalized.

4. Formation Stimulation (N/A)

5. Formation And Production Test Results (N/A)

F. ENVIRONMENTAL WELL REPORT (N/A)

G. APPENDICES TO WELL HISTORY REPORT

1. Oil, Gas, And Water Analyses (See Section E, 5.)
2. Reservoir Engineering Data (N/A)
3. Petrographic Record (N/A)
4. Details Of Formation And Production Testing (See Section E, 5.)
5. Petrological Reports (N/A)
6. Paleontological Reports (N/A)
7. Palynological Reports (N/A)
8. Geochemical Reports (N/A)
9. Age Determinations (K/Ar etc.) (N/A)
10. Processed Combination Of Well Logs (In Pocket)
11. Deviation Record (See Table 4, See Following Pages)
12. Gas Detector Log Or Mud Log Records
See Section G, 16. Tabulation of total gas and chromatograph valves, also refer to Composite Well Log (See Section G, 14. In Pocket).
13. Completion Data (See Section E, 4.)
14. Composite Well Record (In Pocket)
15. Final Survey Plat (In Pocket)
16. Mud Data (See Following Pages)

SECTION G, 11.

TABLE 4

PARAMOUNT ET AL CAMERON N-28

DEVIATION RECORD

TABLE 4

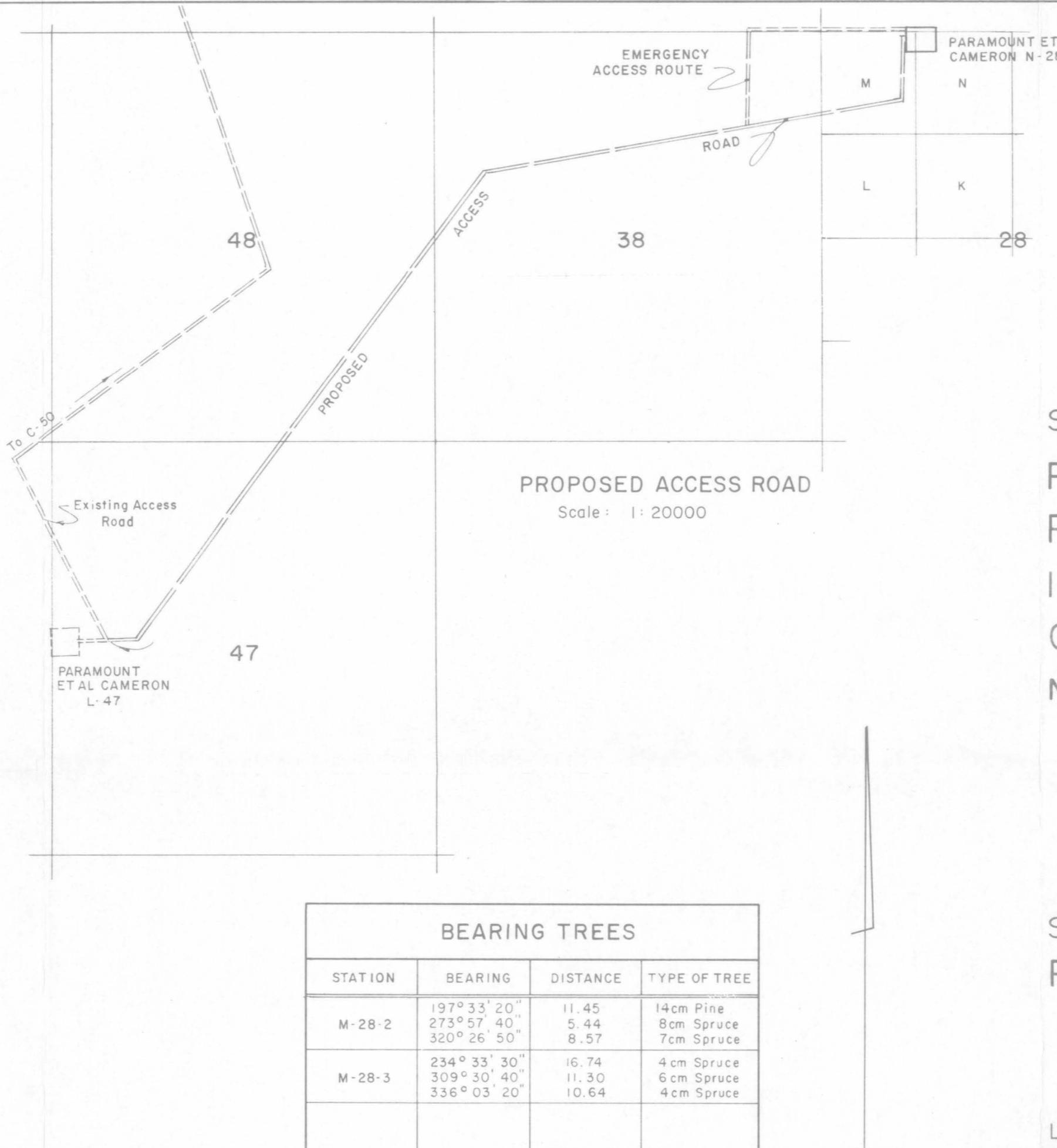
PARAMOUNT ET AL CAMERON N-28

DEVIATION RECORD

DEPTH (M)	DEVIATION (DEGREES)	DEPTH	DEVIATION
20	3/4	711	1/2
47	1/2	844	1
76	1	957	2 1/2
103	1 1/4	985	1 1/4
122	1	1014	1 1/2
132	3/4	1042	1 1/2
150	1/4	1070	2 1/4
187	1	1098	1 1/4
223	1 1/4	1127	1 1/2
214	1 1/4	1156	1 3/4
232	1	1184	1 3/4
250	3/4	1223	1 1/2
278	1/2	1255	1 1/4
305	1/2	1331	1
333	1/4	1350	1 1/4
361	1/2	1379	3/4
380	1/4	1407	1
390	1/2	1435	1/2
399	1/2	1492	1/2
576	1 1/4	1539	1/4

SECTION G, 14.

PARAMOUNT ET AL CAMERON N-28


COMPOSITE WELL RECORD

"STRIP LOG"

SECTION G, 15.

PARAMOUNT ET AL CAMERON N-28

FINAL SURVEY PLAN

SKEETCH PLAN SHOWING
PROPOSED EXPLORATORY WELL
PARAMOUNT ET AL CAMERON N-28
IN UNIT N, SECTION 28
GRID AREA 60°10', 117°30'
NORTHWEST TERRITORIES

SURVEYED FOR:
PARAMOUNT RESOURCES LTD.

LEGEND :

U.T.M. Co-ordinates are computed for Zone II, central meridian 117° W.
Distances are expressed in metres and decimals thereof.
Monuments found are shown thus: \blacktriangle (30cm Iron Spike)
Monuments planted are shown thus: \triangle (30cm Iron Spike) \lozenge (Iron Bar)
Distances shown in traverse are measured distances reduced to the horizontal or general ground level.
For the computation of co-ordinates measured distances have been reduced to the U.T.M. plane by multiplying them by an average combined scale factor of 0.99949.
Distances shown on grid area subdivisions are U.T.M. plane

EMERGENCY ACCESS ROUTE

PROPOSED ACCESS ROAD

Stn. M-28-3
I.B & BTs

**N. 6666204.41
E. 467448.44**

**270° 32' 31"
434.03**

269°

**180° 10' 05"
1017.26**

**180° 49' 30"
15.03**

89° 49' 30"

130.00

49' 30"

55.00

55.00

26.93

29.79

65.00

49'

65.00

30"

55.00

49'

55.00

179°

130.00

49' 30"

55.00

49'

55.00

359°

55.00

89°

65.00

89°

130.00

49' 30"

55.00

49'

55.00

**180° 30' 28"
464.05**

Lease is in Muskeg

Lease is in Spruce To 10cm

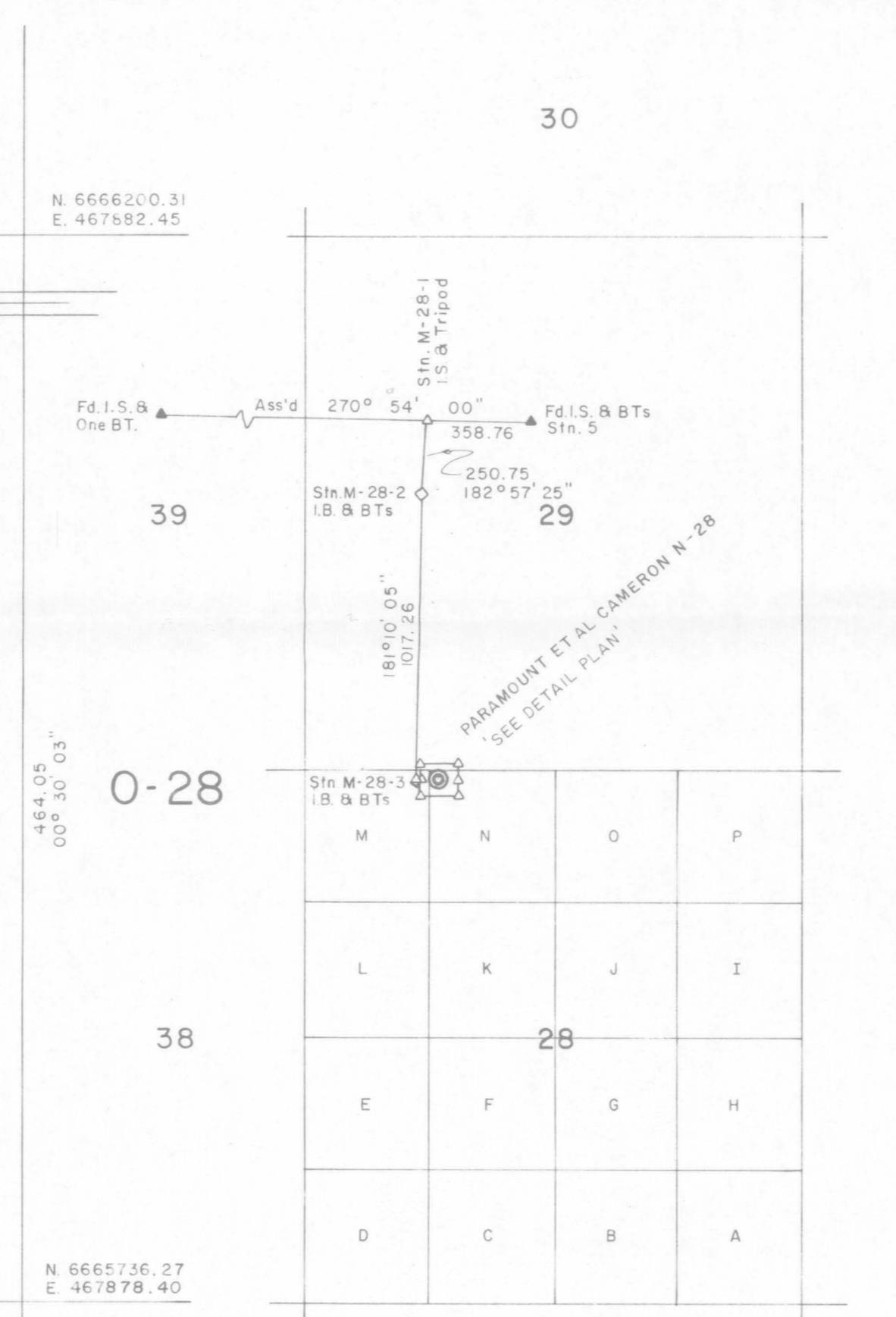
Well is located at SP 413 Line 84-1

Lease Corner Elev's

N.E. = 757.64

S.E. = 756.50

S.W. = 756.55


N.W. = 756.79

M- 28

N- 28

**N. 6665740.38
E. 467444.33**

**434.09
90° 32' 31"**

ELEVATION : 756.38 Ground

CO-ORDINATES: U.T.M. REF. MERIDIAN: 117°
NORTH: 6666174.37
EAST: 467475.11
LAT. 60° 07' 59.23"
LONG. 117° 35' 07.63"

AREAS: Well Site = 1.430 ha.

I certify that the survey represented by this plan is correct and true to the best of my knowledge and was completed on the 6th day of January, 1990.

Alberta Land Surveyor

OPERATOR:
PARAMOUNT RESOURCES LTD.

McELHANNEY LAND SURVEYS (ALTA) LTD.
138, 14315-118th Ave. Edmonton, Alberta
Phone: 451-3420

SECTION G, 16.

TABLE 5

PARAMOUNT ET AL CAMERON N-28

MUD DATA

TABLE 5

PARAMOUNT ET AL CAMERON N-28

MUD DATA

DATE	DEPTH	WT. (KG/M ³)	VIS.	W.L.	pH	COMMENTS
1990-02-01	22	1080	80		10.0	
1990-02-02	47	1190	150		9.5	
1990-02-03	121	1070	39		9.5	
1990-02-04	371	1150	46	8.6	8.5	
1990-02-05	402	1190	63	6.4	10.0	
1990-02-06	402	1190	96		9.0	
1990-02-07	402	1180	106		9.0	
1990-02-08	402	1165	107		9.5	
1990-02-09	403	1160	135		9.0	
1990-02-10	411	1170	105		9.0	
1990-02-11	416					
1990-02-12	416					
1990-02-13	521					
1990-02-14	779					
1990-02-15	1125	1025	80	7.0	10.5	
1990-02-16	1223	1040	45		9.5	
1990-02-17	1274	1080	72	8.0	8.5	
1990-02-18	1360	1100	52	8.0	10.5	
1990-02-19	1435	1080	82	11.2	10.5	
1990-02-20	1474	1100	72	8.8	11.5	
1990-02-21	1534	1125	53	11.6	11.0	
1990-02-22	1585	1100	70	8.0	10.0	
1990-02-23	1585	1110	77	8.2	10.0	
1990-02-24	1585					
1990-02-25	1585	1090	47	8.2	9.5	

SECTION E, 1.

PARAMOUNT ET AL CAMERON N-28

LOGS