

Nova Scotia	<input type="checkbox"/>	West Coast	<input type="checkbox"/>	Exploratory	<input checked="" type="checkbox"/>
Newfoundland	<input type="checkbox"/>	Northern	<input type="checkbox"/>	Development	<input type="checkbox"/>
Gulf of St. Lawrence	<input type="checkbox"/>	Hudson Bay	<input type="checkbox"/>	Delineation	<input type="checkbox"/>
				Service	<input type="checkbox"/>

AUTHORITY TO DRILL A WELL

APPLICATION

This application is submitted with Section 82 of the Canada Oil and Gas Drilling Regulations. When approved under Section 83 of the regulations, it is the requisite authority for the commencement of drilling operations.

Well Name in Full: CHEVRON EAST HUME RIVER I-20

Operator: CHEVRON CANADA RESOURCES Drilling Program No.: 9211-C4-1

Contractor: SHENTAI DRILLING Permit or Lease No.: (Land Use) N89A263

Drilling Rig or Unit: One (1) Estimated Well Cost: \$1 065 200

Location-Unit: 1 Section: 20 Grid Area: 66° 00' 129° 15'

Coordinates: Lat: N65° 59' 38.15" Long: W129° 17' 16.62"

Area: NORTHERN (N.W.T.) Field/Pool: Exploratory - Wildcat

Elevation-RTK/B: 100 m (ASL) Seafloor: N/A (BRT)

Approx. Spud Date: 1990-03-11 Estimated Days on Location: 12

Anticipated Total Depth: 430 m Target Horizon(s): Gilmore Lake Sandstone

UWI: 3001206600129150

EVALUATION PROGRAM

Ten-metre sample intervals Below 339.7 mm surface casing

Five-metre sample intervals Below 339.7 mm surface casing

Canned sample intervals N/A

Conventional cores at As per ADW Submission

Logs and Tests As per ADW Submission

CASING AND CEMENTING PROGRAM

O.D.	Weight:	Grade:	Setting Depth	Cementing Program (Volumes):
508.0 mm	139.9 kg/m	K-55	Below Seafloor: 40 m	* Alaskan Permafrost
339.7 mm	101.2 kg/m	K-55	240 m	* Alaskan Permafrost
177.8 mm	34.2 kg/m	K-55	430 m	** Class "G" + 0.75% CFR-3 + 0.5% Halad 344 + 2% CaCl2 * Cement to Surface ** Caliper + 25% Excess

B.O.P. Equipment: 346.1 mm, 21 000 kPa W.P.

1 - Hydrill "GK" Annular

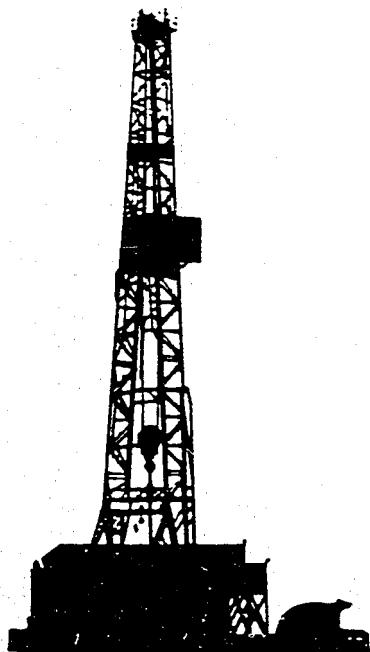
1 - Shafco "NRS" (double) Ram

Other Information: 1 - Shafco "NRS" (single) Ram

1 - Troy Series 600 Single Drum Drawworks

2 - Continental Enisco Model DB-550 7" x 16" Duplex Mud Pump

James H. Garman
Signed: J. H. GARMAN Title: Manager Drilling Division
Date: 1990-03-08 Company: CHEVRON CANADA RESOURCES

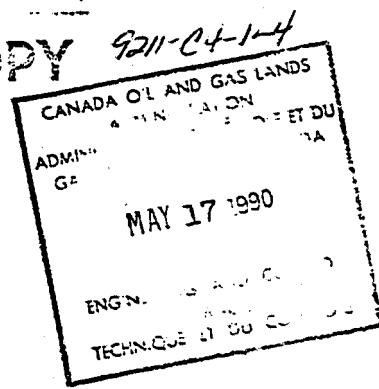

APPROVAL

An approved copy of this notice is to be posted at each wellsite.

John Thomas
Signed: John Thomas Date: 90-05-09 File: 9211-C4-1-4
Engineering Branch

Chevron Canada Resources

Final Well Report


Chevron East Hume River I-20

65° 59' 38.15" N

129° 17' 16.62" W

OTTAWA COPY

FINAL WELL REPORT

CHEVRON EAST HUME RIVER I-20

65° 59' 38.15" N

129° 17' 16.62" W

Grid Area 66° 00', 129° 15'

1990-04-25

TABLE OF CONTENTS

Introduction

General Data

Summary of Drilling Operations

Geology

Well Evaluation

Environmental Well Report

Appendices

Appendix 1	Wellsite Operations Summary
Appendix 2	Composite Well Record
Appendix 3	Sample Description
Appendix 4	Core Analysis
Appendix 5	Testing Results
Appendix 6	Locality Map
Appendix 7	Drilling Fluid Report
Appendix 8	Deviation Surveys
Appendix 9	Wellsite Rock Log
Appendix 10	Wellsite Hydrocarbon Report
Appendix 11	Water Analysis
Appendix 12	Logs

FINAL WELL REPORT

INTRODUCTION

i) Summary

The Chevron East Hume River I-20 well location is situated in the northeastern part of the landblock, with the primary objective being porous sands of the Lower Cretaceous Gilmore Lake Member.

The Gilmore Lake Member consists of fluvial, well sorted, medium grained quartzose sandstone with associated shale, coal and sandstone deposited in an interfluvial environment. Porosity in this sand is intergranular and averages 12% with excellent permeability. The trap is stratigraphic with tight Gilmore Lake shale, coal and sandstone forming the lateral seal, and tight Arctic Red sandstone creating the vertical seal. The source rock is believed to be shales of the Gilmore Lake.

ii) Operator, Contractor, and Drilling Unit Used

See General Data

iii) Wellsite Operations

(Refer to Appendix 1)

iv) Formations Penetrated

(Refer to Appendices 2, 3 and 4)

v) Testing Results

(Refer to Appendix 5)

vi) Locality Map

(Refer to Appendix 6)

GENERAL DATA

i) Well Name:

Exploration Agreement Number:
Federal Designation:

Chevron East Hume River I-20

EL322

N 65° 59' 38.15"/W 129° 17' 16.62"
Unit I, Section 20
Grid Area 66° 00', 129° 15'

ii) Well Location:

Wellsite Location

The well was staked at theoretic shot point 3672X line 60X between SP 3663X and 3690X.

Legal Survey Requirements

The well location was surveyed using found stations N-10-1 and N-10-2 from the survey of Chevron Hume River N-10 using conventional methods. The survey was conducted between February 24 and February 26th 1990.

Computations

All coordinates are UTM grid on NAD27 datum and were computed assuming the coordinates of stations N-10-1 and N-10-2.

iii) Unique Well Identifier

Drilling Program No.: 9211-C4-1
Land Use Permit No.: N89A263

iv) Operator and Drilling Contractor

(OPERATOR)

Chevron Canada Resources
500 5 Avenue S.W.
CALGARY, Alberta
T2P 0L7
Phone 234-5000

(CONTRACTOR)

Shehtah Drilling Limited
P.O. Box 1467
YELLOKNIFE, N.W.T.
X1A 2P1

General Manager: Mr. R. F. (Dick) Gajek
Telephone: (403) 873-4225

v) Drilling Unit

Name:	Shehtah 1E
Type:	2 800 m capacity, Troy Series 600 (600 hp)
Registry:	N/A
Year Built:	1982
Shipyard:	N/A

vi) Position Keeping - N/A

vii) Aircraft Support

a) Company

The Chevron Aircraft which supported the drilling operations consisted of a Hawker Siddeley HS-748, a Cessna Citation C-2 and a Twin Otter.

The Hawker Siddeley and Citation were based in Calgary while the Twin Otter remained at Norman Wells.

b) Charter

Charter Aircraft consisted of North-Wright's Twin Otter and Okanagan's Bell 206B Helicopter. These services supplemented our Company aircraft and were contracted as required.

c) Commercial

Canadian Airlines had daily flights from Calgary to Norman Wells return, which were used periodically to transport supplies, groceries, and equipment.

viii) Drilling Unit Performance - N/A

ix) Difficulties and Delays

a) Conductor Hole

The 660.4 mm conductor hole was drilled to 6 m when circulation was lost. Lost circulation material was mixed, but circulation could not be regained. The hole was drilled to 17 m. A 7.3 m³ (9 t) Dowell Arctic Set cement plug was mixed to 1800 kg/m³, pumped, and allowed to set. After waiting on cement, the hole was redrilled with full circulation to 44 m. Circulation was again lost at 44 m, but regained with lost circulation material prior to running 508 mm casing.

Time to drill 660.4 mm conductor hole
and regain circulation = 31 3/4 hours*
Time to run and cement 508.0 mm conductor casing = 8 hours

TOTAL 39 3/4 hours
= 12 3/4 hours

*Estimated Delay Time

SUMMARY OF DRILLING OPERATIONS

i) Elevations

Ground:	68.96 m
Fill:	0.70 m
KB to Ground:	5.46 m
KB Elevation:	75.12 m

ii) Total Depth

Drilled:	365 m
Logged:	365 m
Plugged Back:	18 m

iii) Date Spudded

1990-03-12-02:30 hours.
Notified COGLA Yellowknife of spud.

iv) Date Drilling Completed

Drilling was completed 1990-03-19

v) Date of Rig Release

Shehtah Rig 1E was released at 12:00 hrs 1990-03-24

vi) Well Status

Abandoned.

vii) Hole Size and Depth

	<u>Hole</u>	<u>Size</u>	<u>Depth</u>
a)	Conductor	660.4 mm (26")	44 m (144 ft)
b)	Surface	444.5 mm (17 1/2")	234 m (768 ft)
c)	Main	215.9 mm (8 1/2")	365 m (1198 ft)

viii) Casing and Cementing Record

HOLE	SIZE	WEIGHT	GRADE	MAKE	NO. OF JTS.	THREAD TYPE	DATE SET	DEPTH SET (m)	CEMENT TYPE & VOLUME
Conductor	508.0 mm	139.9 kg/m	K-55		4	Buttress	90-03-13	42.7	3m ³ SAPP Water pre-flush followed by 14.0m ³ (17.3t) Alaskan Class "G" Permafrost cement c/w 0.15% permafrost retarder mixed to 1760 kg/m ³ slurry density
Surface	339.7 mm	101.2 kg/m	K-55	US Steel	19	ST&C	90-03-17	232.7	3m ³ SAPP water pre-flush followed by 36.4m ³ (44.9t) Alaskan Class "G" Permafrost cement c/w 0.15% permafrost retarder mixed to 1760kg/m ³ slurry density

ix) Side Tracked Hole - N/A

x) Drilling Fluid
(Refer to Appendix 7)

HOLE	SIZE mm (in)	TYPE	PROPERTIES									
			Density	Vis- cosity	W-L.	pH	PV	YP	Gel in/10min	Solids	Oil	Cl
Conduc- tor	660.4 (26)	Gel- Chemical	1160	53	14.8	9	13	4	3.5/12	10%	Nil	180
Surface	444.5 (17 1/2)	Gel- Chemical	1120	80	7.8	9.5	33	16	5/10	8%	Nil	200
Main	215.9 (8 1/2)	Gel- Chemical	1110	68	8	9	27	13	4.5/12	7%	Nil	250

xi) Fishing Operations - N/A

xii) Well Kicks

When pulling out of hole after drilling to T.D., the well kicked. The bit was at 251 m, SIDPP = 100 kPa, SICP = 100 kPa. The hole was circulated with original 1120 kg/m³ mud, holding 400 kPa overkill on the choke. Upon opening the well to atmosphere, a very minor flow was observed. After installing the inside BOP, the pipe was stripped in. A bridge was encountered at 308 m and the hole was then circulated with 1180 kg/m³ mud. The hole was observed dead after circulation was complete.

xiii) Formation Leak-Off Tests (FLOT)

CASING SIZE mm (in)	SHOE DEPTH	FLUID DENSITY (kg/m ³)	MAXIMUM SURFACE PRESSURE (kPa)	EQUIVALENT GRADIENT (kPa/m)	EQUIVALENT MUD DENSITY (kg/m ³)	DATE FLOT CONDUCTED
508.0 (20)	42.7 m				N/A	N/A
339.7 (13 3/8)	232.7 m	1120	4 950	32.2	3280	90-03-18

xiv) Time Distribution

	<u>HOURS</u>	<u>DAYS</u>
<u>DRILLING OPERATIONS</u>		
1. Drilling	27 1/2	1.2
2. Tripping	1 1/2	0.1
3. Coring	-	-
4. Deviation Surveys	6 1/4	0.2
5. Rig Service and Tests	1 1/2	0.1
<u>DEAD TIME</u>		
1. Drillstem Testing	56 1/4	2.3
2. Logging	29 1/2	1.2
3. Circulating Samples	1/4	-
4. Casing, Cementing and WOC	129	5.4
5. Hole Conditioning	10 1/4	0.4
6. Rig Move, Up, Down	59 1/2	2.5
7. Completing	-	-
<u>LOST TIME</u>		
1. Fishing	-	-
2. Lost Circulation	26	1.1
3. Repairs	1/2	-
4. Waiting	-	-
5. Miscellaneous	9	0.4
TOTAL:	357	14.9

xv) Deviation Surveys
(Refer to Appendix 8)

xvi) Abandonment Plugs

PLUG NUMBER	INTERVAL	LENGTH (m)	FLUID BETWEEN PLUGS	FORMATION ISOLATED
1	365m - 200m	165 m		Bottom hole
EZSV	133m			
2	133m - 103m	30 m	Water	In 339.7mm surf. csg
3	48m - 18m	30 m	Water	In 339.7mm surf. csg
4	17m - 7m	10 m	Water	In 339.7mm surf. csg
WELD ON CAP ON 339.7 mm SURFACE CASING 1m BELOW GROUND				

xvii) Composite Well Record

(Refer to Appendix 2)

SUMMARY REPORT

<u>WELL NAME</u>	Chevron East Hume River I-20
<u>LOCATION</u>	Unit I, Sec. 20
<u>COORDINATES</u>	N 65° 59' 38.15" W 129° 17' 16.62" (longitude)
<u>GROUND ELEVATION</u>	68.96 m Fill 0.7 m
<u>KB TO GROUND LEVEL</u>	5.46 m
<u>KB ELEVATION</u>	75.12 m
<u>TOTAL DEPTH</u>	365 m
<u>STATUS</u>	Dry and Abandoned
<u>SPUDDED</u>	1990-03-12-02:30
<u>RIG RELEASE</u>	1990-03-24-12:00
<u>GEOLOGIST</u>	Dave Hendry
<u>ENGINEERS</u>	Bill Marsh, Rod Uchytil, Bill Meyer, Kevin Anderson
<u>CONTRACTOR</u>	Shehtah 1E
<u>MUD LOGGER</u>	Datalog
<u>HOLE SIZE</u>	660 mm Surface to 44 m 444.5 mm 44 m to 234 m 215.9 mm 234 mm to 365 m
<u>CONDUCTOR CASING</u>	Ran 4 joints of 508 mm, 139.9 kg/m, K-55, Buttress. Landed at 42.77 m. Total string 43.02 m. Cemented with 17.3 tonnes of class "G" permafrost cement.
	C.I.P. 1990-03-13-21:45
<u>SURFACE CASING</u>	Ran 19 joints of 339.7 mm, 101.2 kg/m, K-55, 8rnd, ST & C casing. Landed at 232.7 m. Total string 227.1 m. Cemented with 44.9 tonnes of permafrost cement plus 0.15% retarder.
	C.I.P. 1990-03-17-08:40

ABANDONMENT PLUGS

<u>Plug #1</u>	365 m	-	200 m
<u>Plug #2</u>	133 m	-	103 m
<u>Plug #3</u>	48 m	-	18 m

DITCH SAMPLES

5 m intervals

One set of vailed samples for Chevron Canada Resources and one set of bagged samples, one set of vailed samples, and one set of canned samples for the COGLA. Samples stored at ISPG.

SAMPLE DESCRIPTION

Ground zero - 365 m (Refer to Appendix 3)

WELL SITE ROCK LOG DESCRIPTION

Ground zero - 365 m (Refer to Appendix 9)

CORED INTERVALS

(Refer to Appendix 4) Side wall cores at 299.5 m, 300.25 m, 302 m, 305 m.

LITHOLOGY

(Refer to Appendix 10)

LOST CIRCULATION

While drilling conductor hole at 6, 9, 17 and 44 m.

FORMATION TESTS

DST #1 297 m to 302.96 m Arctic Red Sandstone
Inflate Straddle - Baker Oil Tools
Closed Chamber - The Evaluators

Times: 10, 56, 59, 178

Preflow: Closed Chamber.

Valve Open: Closed Chamber.

Recovery: 9 m gassified drilling fluid.

Pressures: IHP	3 724	1st IFP	362	1st FFP	422
(In Kpa) ISIP	1 129	2nd IFP	414	2nd FFP	448
FSIP	2 526	FHP	3 698		

Recorder at 300 m BHT 19.1°C

DST #2 58 m to 133 m Surface Sand
Dual Conventional Bottom Hole - Baker Oil Tools
Closed Chamber - The Evaluators

Misrun - lost packer seat during preflow

Recovery: 40 m fluid water from casing

DST #3 58 m to 133 m Surface Sand
Dual Conventional Bottom Hole - Baker Oil Tools

Misrun - Charts indicate pipe was full when tool was opened.

Recovery: 47 m muddy water from casing.

DST #4 58 m to 132.5 m Surface Sand
Inflate Bottom Hole - Baker Oil Tools

Times: 16, 29.5, 60, 93

Preflow: Strong air blow, immediately decreasing to nil in four minutes. No gas to surface.

Valve Open: Very weak air blow decreasing to nil in three minutes. No gas to surface.

Recovery: 15 m muddy water.

Pressures: IHP	776	1st IFP	457	1st FFP	491	
(In Kpa)	ISIP	509	2nd IFP	500	2nd FFP	500
	FSIP	500	FHP	767		

Recorder at 61 m BHT 15°C

BIOSTRATIGRAPHIC DATA

N/A

GEOLOGICAL MARKERS
Chevron East Hume River I-20
KB Elevation 75 m (Actual KB 75.12 m)

<u>Formation</u>	<u>Samples</u>	<u>Depth - m</u>	<u>Log</u>	<u>Elevation- m</u>
			<u>Depth - m</u>	
1. Arctic Red Sandstone	294	288		-213
2. Gilmore Lake Sandstone	302	299		-224
3. Gilmore Lake Shale & Coal	308	307		-232
4. Imperial Shale	324	323		-248
TOTAL DEPTH	365	365		-290

(i) LOGGING

By Computalog (Refer to Appendix 12)

Run #1 - 1990-03-20

DIL-SP	365	m -	232	m
SLD-CNS-SGR-XYCAL	365	m -	232	m
CNS-SGR	365	m -	232	m
MEL-GR	365	m -	232	m
BCS-GR-CAL	365	m -	232	m
SSL-GR-CAL	365	m -	232	m
RSWCT-GR	305	m		
	302	m		
	300.25	m		
	299.5	m		

(ii) FORMATION
STIMULATION

N/A

(iii) FORMATION &
PRODUCTION
TEST RESULTS

N/A

Environmental Well Report: N/A

APPENDIX 1

WELLSITE OPERATIONS SUMMARY

DAILY PROGRESS SUMMARY

DATE: 12-03-90

K.B.: 75.12m

OPERATIONS SUMMARY: Continue moving rig to CHEVRON EAST HUME RIVER I-20, Rig up and prepare to spud.

MIDNIGHT DEPTH: 0

DAY: 0

GRD: 68.96m

RIG: SHEHTAH 1E

DATE: 13-03-90

K.B.: 75.12m

OPERATIONS SUMMARY: Prepare to spud. SPUD 12-03-90 at 02:30, drill 1m to 6m, loss circulation, drill to 9m, loss circulation, spot LCM, mix mud, spot LCM slug, drill to 17m, loss circulation, build volume, spot LCM material, circulate hole before cementing, rig in cementers & pump 9t cement until returns to surface, WOC, drill out cement, circulate out contaminated mud, build volume.

MIDNIGHT DEPTH: 17m

DAY: 01

GRD: 68.96m

RIG: SHEHTAH 1E

OPERATION: Building volume PROGRESS: 17m

DATE: 14-03-90

K.B.: 75.12m

OPERATIONS SUMMARY: Drill to 44m, lost circulation, mix LCM pill and pump, wiper trip, mix LCM pill and pump, wiper trip, mix LCM pill and pump, POOH to run csg, rig out table and install false floor, run csg, RIH w/drill pipe to tag in adaptor, circ, cement through drill pipe, CIP: 21:45, tag in adaptor did not hold, POOH, mud level static, install circulating head on csg, WOC.

MIDNIGHT DEPTH: 44m

DAY: 02

GRD: 68.96m

RIG: SHEHTAH 1E

OPERATION: Wait on cement

PROGRESS: 27m

DATE: 15-03-90

K.B.: 75.12m

OPERATIONS SUMMARY: WOC, nipple up diverter, RIH w/bit, displace hole, pressure test, drill out cement, displace to mud, cement contaminated mud, dump clobbered mud, build volume, drill ahead.

MIDNIGHT DEPTH: 60m

DAY: 03

GRD: 68.96m

RIG: SHEHTAH 1E

OPERATION: Drilling PROGRESS: 16m

DATE: 16-03-90

K.B.: 75.12m

OPERATIONS SUMMARY: Drill to 102m, with surveys, POOH for survey barrel RIH, POOH for plugged jets, RIH, circ out sand, clean to bottom and circ out sand, drill ahead with surveys.

MIDNIGHT DEPTH: 195m

DAY: 04

GRD: 68.96m

RIG: SHEHTAH 1E

OPERATION: Drilling PROGRESS: 135m

DATE: 17-03-90

K.B.: 75.12m

OPERATIONS SUMMARY: Drill to 222m, POOH laying down 9" collars, pick up monel and 6" collars, RIH taking directional surveys every 50m, drill ahead to 234m, attempt to POOH, very tight, pump out pipe and collars to 110m, pull up into casing, RIH to 100m, could not pump, POOH and unplug bit and monel, RIH breaking circulation every stand, circ on bottom, POOH for casing, rig to run casing, start to run casing.

MIDNIGHT DEPTH: 234m

DAY: 05

GRD: 68.96m

RIG: SHEHTAH 1E

OPERATION: Begin running casing PROGRESS: 39m

CHEVRON EAST HUME RIVER 1-20

DATE: 18-03-90 DAY: 06 RIG: SHEHTAH 1E
K.B.: 75.12 m GRD: 68.96 m

OPERATIONS SUMMARY: Run casing, circulate casing, rig in cementers, cement with 44.9t of Permafrost cement with 0.15% permafrost retarder. CIP at 08:40 17-03-90, rig out cementers, WOC, slack off landing joint, nipple down diverter, cut conductor, install BOP's, nipple up.
MIDNIGHT DEPTH: 234 m OPERATION: Nipple up PROGRESS: 0.0 m

DATE: 19-03-90 DAY: 07 RIG: SHEHTAH 1E
K.B.: 75.12 m GRD: 68.96 m

OPERATIONS SUMMARY: Finish nipping up BOP's and manifold, pressure test, RIH with 311mm bit, pressure test, POOH, wait on welder rebuilding flow nipple, drill out cement and formation to 238m, displace hole to mud, run formation leak off test, POOH, change to 216mm bit, RIH.
MIDNIGHT DEPTH: 238 m OPERATION: Drilling PROGRESS: 4 m

DATE: 20-03-90 DAY: 08 RIG: SHEHTAH 1E
K.B.: 75.12 m GRD: 68.96 m

OPERATIONS SUMMARY: Drill to 365m, circ bottoms up, survey at 355m, pull 2 tight stands, survey, pull 2 more tight stands, well kicked, installed stabbing valve and kelly, well stabilized at 100 kPa, circ well to 1120kg mud with 400 kPa overkill, opened well, minor flow, shut in well and stripped in, hit bridge, circ to 1180kg mud, well dead on check, ream to bottom, circ hole to 1250kg mud for appropriate trip margin, POOH to log, log with Computalog.

MIDNIGHT DEPTH: 365 m OPERATION: Logging PROGRESS: 127 m

DATE: 21-03-90 DAY: 09 RIG: SHEHTAH 1E
K.B.: 75.12 m GRD: 68.96 m

OPERATIONS SUMMARY: Continue logging with Computalog until 13:00, RIH, circ and condition mud, POOH to DST, make up DST tool, RIH, run DST #1 over 297m-302m interval.

MIDNIGHT DEPTH: 365 m OPERATION: Testing PROGRESS: 0.0 m

DATE: 22-03-90 DAY: 10 RIG: SHEHTAH 1E
K.B.: 75.12 m GRD: 68.96 m

OPERATIONS SUMMARY: Continue DST #1, POOH with DST, lay down tool, RIH for clean out trip, POOH, rig up loggers for SFT, SFT parted when picking it up from catwalk, tool broken internally, switched to sidewall cores, RIH and cut 4 sidewall cores, POOH, rig out loggers, lay down collars and pick up drill pipe to cement off hole back to surface casing, run abandonment plug #1. POOH.

MIDNIGHT DEPTH: 365 m OPERATION: POOH PROGRESS: 0.0 m

DATE: 23-03-90 DAY: 11 RIG: SHEHTAH 1E
K.B.: 75.12 m GRD: 68.96 m

OPERATIONS SUMMARY: Run and set EZSV bridge plug at 133m on drill pipe, inside 339.7mm casing, POOH with DP. Pressure test plug to 10500 kPa. RIH with 80m of DP and blow water out of casing with air. Wait on perforators. Run GR-CCL correlation log. Correlate on depth to SLD-CNS-SGR log dated 90-03-19. RIH perforating guns and perforate the intervals 67.0m-73.5m and 60.0m-63.5m with charges at 90 degree phasing.

MIDNIGHT DEPTH: 365 m OPERATION: FU to DST PROGRESS: 0.0 m

CHEVRON EAST HUME RIVER 1-20

DATE: 24-03-90 DAY: 12 RIG: SHEHTAH 1E
K.B.: 75.12 m GRD: 68.96 m

OPERATIONS SUMMARY: Pick up and RIH with bottom hole conventional tool and set packers, run DST #2, packer seat failed, POOH with DST tools. RIH with bottom hole conventional tool and set packers, run DST #3, POOH with DST tools, charts indicated valve was open on tool when RIH, test results were invalid. Pick up bottom hole inflate tools and RIH, run DST #4, POOH and lay down test tools, test was successful. RIH with open ended DP to 133m, run abandonment plug #2. POOH. Run and set EZSV bridge plug at 48m on wireline. Pressure test plug to 10500 kPa. RIH with open ended DP to 48m and run abandonment plug #3. Cement mousehole. Rig out cementers, POOH and lay down DP. Nipple down BOP's.

MIDNIGHT DEPTH: 365 m OPERATION: L/D BOP's PROGRESS: 0.0 m

DATE: 25-03-90 DAY: 13 RIG: SHEHTAH 1E
K.B.: 75.12 m GRD: 68.96 m

OPERATIONS SUMMARY: Nipple down BOP's. Clean mud tanks and cellar. Dig down and cut 339.7mm casing off 1 m below ground level. Fill casing with 10 m cement plug to surface. Weld cap on 339.7mm casing, weld name plate and post on casing cap. Lay down derrick at 11:30 hours. Rig released at 12:00 hours, 1990-03-24.

MIDNIGHT DEPTH: 365 m OPERATION: Tearing Out PROGRESS: 0.0 m

APPENDIX 2
COMPOSITE WELL RECORD

APPENDIX 3

SAMPLE DESCRIPTION

SAMPLE DESCRIPTIONS

5-10 LOST CIRCULATION at 6m & 9m.
SANDSTONE: brown, loose grains, medium to very coarse grained, black argillite, black chert, clear quartz, orange stained quartz, very fine sandstone, volcanic greenstone? reddish granitic grains, mica, chloritic grains, brownish limestone, moderately sorted, angular, subangular, subrounded and rounded grains, no recovered cement, probably good porosity, no stain or cut.

10-15 SANDSTONE: as above.

15-20 SANDSTONE: medium-coarse-very coarse grained, clear, white and rusty quartz, dark grey and black argillite and chert, very fine sandstone grains, granitic grains, microcrystalline limestone, yellow dolomite, loose grains only, unconsolidated, angular, subangular, subrounded and rounded, no stain or cut.

20-25 SANDSTONE: as above, medium to very coarse grained, increasing yellow microcrystalline to very finely crystalline silty dolomite grains, unconsolidated, no stain or cut.

25-30 MUDSTONE: brown, silty, sandy, swells and breaks apart in water. The washing and sieving tends to wash away the mudstone leaving a sample biased towards sand.
SANDSTONE: medium to coarse grained as above.

30-35 MUDSTONE/CLAY: brown, silty, very fine quartz sand grains, bentonitic, totally breaks apart in water, calcareous, medium to coarse sand grains are probably all cavings.

35-40 VERY POOR SAMPLE, overwashed, wood from loss circulation material, cement, coarse sand cavings.
MUDSTONE/CLAY: brown, silty, very fine quartz grains, bentonitic, calcareous.

40-44 VERY POOR SAMPLE
MUDSTONE/CLAY: as above, coarse sand cavings.

45-50 POOR SAMPLE, cement, coarse sand grains, wood from lost circulation material.
MUDSTONE: silty, sandy.

50-55 POOR SAMPLE, cement coarse sand grains, wood from lost circulation material.
MUDSTONE: silty, sandy.

55-60 VERY POOR SAMPLE
MUDSTONE: as above.

60-65 MUDSTONE: brown, silty, slightly sandy, trace carbonaceous specks.

65-70 SANDSTONE: fine-medium-coarse grained, locally pebbles, only loose grains, unconsolidated, clear quartz, orange stained quartz, black chert, dark argillite, mica, very fine sandstone grains, granitic grains, dark brown carbonaceous shale grains, brown and grey microcrystalline limestone, trace pyrite, subrounded, subangular, angular, good porosity, no stain or cut.

70-75 SANDSTONE: medium to very coarse grained, with pebbles, quartz very common rusty grains, granitic grains, mica, dark argillite, minor limestone, trace pyrite, rare sandstone grains with cut.

75-80 SANDSTONE: generally as above, loose grains, no cement recovered spotty cut from brown stained sandstone grains, very fine grained and siltstone, calcareous.
SHALE: 5%, medium grey, very silty, micromicaceous, slight carbonaceous specks.

80-85 SANDSTONE: as above, unconsolidated, medium to very coarse grained, with pebbles, clear quartz, rusty granitic grains, dark chert and argillite, mica, 1-2% brown oil stained grains, very fine grained sandstone, calcareous and siliceous, siltstone in part.
SHALE: medium grey, minor amounts.

85-90 SANDSTONE: medium to very coarse grained, minor with clear silica cement, rare grains of sandstone as above with cut.

90-95 SANDSTONE: coarse to very coarse grained, with pebbles, quartz, granitic grains, increasing grey and butt limestone, argillite, mica, rare very fine sandstone grains with oil stain and cut.
SHALE: 15-20%, medium grey, silty to very silty, micromicaceous, trace carbonaceous, locally pyritic.

95-100 SANDSTONE: generally as above, increasing microcrystalline limestone and microcrystalline to very fine crystalline dolomite grains, trace oil stained very fine sandstone grains with good cut.
SHALE: as above.

100-105 SHALE: medium grey, slightly silty, with silty beds, slightly micromicaceous, trace coal flakes, locally very fine disseminated pyrite. Pebbles of quartz, limestone, granite and dolomite are all cavings probably.

105-110 SHALE: slightly silty, with few silty beds, pyrite blebs. Sandstone grains as above are probably all cavings, loose fine to coarse grains, clear quartz, rusty quartz, black argillite and chert, no cement recovered, no stain or cut.

110-115 SHALE: as above.

115-120 SHALE: medium grey, slightly silty, with silty beds, small pyrite blebs, slightly bentonitic, non-calcareous. Loose sandstone grains are probably all cavings, no stain or cut.

120-125 SHALE: as above, sandstone cavings.

125-130 SHALE: slightly silty, slight carbonaceous specks, trace pyrite, trace bentonitic, being brown, microcrystalline dolomite nodules or laminae. Sandstone cavings, loose grains, trace oil stained, brown, very fine sandstone with cut.

130-135 SHALE: very slightly silty, trace carbonaceous specks, increasing pyrite blebs. Loose sandstone cavings.

135-140 SHALE: medium grey, slightly silty, carbonaceous specks, trace coal flakes, pyrite blebs and disseminated pyrite in part, mica flakes.

140-145 SHALE: as above.

145-150 SHALE: slight decrease in silt, being 5% brown, microcrystalline dolomite nodules or laminae, argillaceous.

150-155 SHALE: as above, with 15% brown, sideritic dolomite nodules/concretions or laminae.

155-160 SHALE: medium grey, slightly silty, slight carbonaceous specks locally pyrite blebs, minor sideritic dolomite nodules.

160-165 SHALE: as above.

165-170 SHALE: as above, trace bentonitic, trace micromicaceous, only slightly silty.

170-175 SHALE: as above. Increasing loose sand grains, probably all cavings, medium to very coarse grained, quartz, limestone, dolomite, granitic grains.

175-180 QUESTIONABLE SAMPLE

SHALE: 50%, as above.

SANDSTONE: probably all cavings? medium to coarse grained, occasional very coarse grains, clear quartz, rusty grains, dark chert, brown limestone, loose grains, subangular, subrounded and rounded, moderate sorting, no stain or cut.

180-185 SHALE: medium grey, slightly silty, very slightly bentonitic.
Abundant cavings of loose sandstone grains.

185-190 SHALE: as above. Abundant sandstone grains as above, trace grains with cut.

190-195 SHALE: medium grey, slightly silty, trace micromicaceous, carbonaceous specks, minor pyrite, decreasing bentonitic. Sandstone grains cavings.

195-200 SHALE: as above. Decreasing sandstone grains.

200-205 SHALE: increasing silty beds, trace sandy, increasing carbonaceous specks, pyritic laminae and blebs locally, few brown sideritic dolomite nodules.

205-210 SHALE: silty beds, trace sandy.

210-215 SHALE: as above. Abundant loose sand cavings.

215-220 SHALE: increasing silty beds, trace sandy, slightly micromicaceous, trace carbonaceous, trace pyrite.

220-225 SHALE: as above.

225-230 SHALE: medium to dark grey, slightly silty with silty beds, trace micromicaceous and carbonaceous specked, locally pyritic.

230-234 SHALE: as above.

T.D. for SURFACE CASING 234m

234-240 SHALE: medium grey, very slightly silty, trace pyritic, trace carbonaceous, subplaty, firm.

240-245 SHALE: as above, platy, subplaty, with brown, cryptocrystalline sideritic dolomite nodules.

245-250 SHALE: medium grey, very slightly silty, slightly bentonitic, trace pyritic.

250-255 SHALE: becoming slightly darker, increase carbonaceous specks, increasing pyrite, slightly silty, with 5% brown, cryptocrystalline, sideritic dolomite nodules, slightly argillaceous, pyrite blebs.

255-260 SHALE: generally as above, decreasing dolomite nodules.

260-265 SHALE: medium grey, slight increase in silt, trace glauconite, pyrite blebs and disseminated pyrite, with brown, sideritic dolomite nodules.

265-270 SHALE: medium grey, silty beds throughout, rare floating rounded quartz sand grains, increasing disseminated pyrite, slightly glauconitic, trace laminae very glauconitic shale.

270-275 SHALE: silty, pyritic beds throughout, with glauconitic grains, trace rounded very fine and fine quartz grains, few sandy laminae, trace very fine grained sandstone, argillaceous, silty, pyritic, glauconitic, trace dolomitic, tight, no stain or cut.

275-280 SHALE: silty, disseminated pyrite throughout, with very silty beds, slightly sandy, pyritic blebs and disseminated, glauconite, grading to siltstone, trace sandstone laminae, very fine grained, argillaceous, silty, pyritic, glauconitic, tight.

280-285 SHALE: slightly darker, silty, disseminated pyrite.

SILTSTONE: laminae, argillaceous, very pyritic, trace glauconite, sandy laminae, slightly micromicaceous and carbonaceous specked, with trace very fine grained sandstone as above. Trace brown dolomite nodules.

285-290 SHALE: silty, pyritic, grading to siltstone.

SILTSTONE: increasing thin beds, very argillaceous, grading to very silty shale, disseminated pyrite and blebs, trace glauconite, part slightly sandy, trace sandstone laminae.

290-295 SHALE: silty, pyritic, with very silty laminae, very pyritic locally, trace floating fine to medium sand grains.

SANDSTONE: 5%, light grey, very fine grained, silty, argillaceous with cleaner laminae, carbonaceous specks, predominantly quartz, trace mica, trace pyrite, trace glauconite, slightly calcareous, tight, no stain or cut.

SILTSTONE: laminae in shale, minor amounts, argillaceous, slightly sandy.

ARCTIC RED SANDSTONE 294m (-219m)

295-300 SANDSTONE: very light brownish, predominantly very fine to barely fine grained, quartz, floating medium to coarse grains, slightly dolomitic and siliceous, glauconite grains common, trace argillaceous, subangular, poor sorting, tight, very slight dead stain, no cut, trace bitumen,

SANDSTONE: white, very light, part loose grains, fine to medium grained, with coarse to very coarse grains, rare pebbles, quartz, decreasing glauconite to trace, very clean, siliceous, trace dolomitic, minor patchy kaolin, trace carbonaceous/bitumen infill with pyrite, subangular to angular, well sorted, only poor porosity, loose grains suggest possibly better porosity locally, trace dead stain, barely visible fluorescence, trace very slow, weak cut.

SHALE: slightly silty, very slightly sandy, trace glauconite, pyrite, increasing carbonaceous specked.

300-305 SANDSTONE: decreasing abundance, white, clear, fine to medium grained, quartz, trace glauconite, very clean, patchy slight disseminated pyrite, rare kaolin, slightly siliceous, very slight dead stain specks, poor porosity, patchy 4-8%, no cut, trace black bitumen coating grains and filling porosity, subangular, well sorted.

SANDSTONE: light brownish, very fine to fine grained, with medium grains, quartz, glauconite, slight patchy argillaceous, light brown microcrystalline clay, trace carbonaceous, trace mica, slightly siliceous, tight, slight dead stain, part with very weak slow cut.

SHALE: medium to dark grey, slightly darker, silty, trace sandy, trace micromicaceous, carbonaceous specked, pyrite blebs.

GILMORE LAKE SANDSTONE 302m (-227m)

305-310 SANDSTONE: brown, very fine to fine grained, argillaceous, silty, quartz, trace glauconite, trace mica, carbonaceous locally, tight, dead stain, no fluorescence or cut.

SANDSTONE: 15%, clear, white, loose grains in part, fine to medium grained, very clean, quartz, slightly siliceous, patchy kaolin, minor dark brown, dead oil stain, poor porosity, 4-6%, patchy 6-8%, rare chips with 10% porosity, no cut or fluorescence. Coal flakes locally in sandstones. Trace grey chert pebbles and very coarse quartz grains suggest thin conglomerate band.

SHALE: 40%, increasing abundance, medium grey, brownish grey, slightly silty, increasing carbonaceous laminae.

COAL: 5%.

GILMORE LAKE COAL & SHALE 308m (-233m)

310-315 SHALE: medium brownish grey, silty, carbonaceous partings, trace sandy.

SANDSTONE: brownish grey, very fine grained, with fine grains, quartz, trace glauconite, coal flakes, coal laminae, argillaceous, silty, siliceous, trace dolomitic, brown microcrystalline clays, tight, slight dead stain, barely visible cut. Grading to siltstone in part.

SANDSTONE: 25%, thin bed, white, clear, fine to medium grained, few loose grains, trace very coarse quartz, very clean, quartz, siliceous, 4-8% porosity, slight dead stain specks, no cut.

COAL: 5%.

315-320 SHALE: brownish grey, silty, sandy, carbonaceous flakes, coal partings.

SANDSTONE: 30%, part clear, white, fine grained with medium grains, very clean, quartz, trace glauconite, slightly siliceous, minor carbonaceous patches and coal laminae, tight to poor porosity, slight dead stain, no cut. Also part brownish, finer, very fine to fine grained, silty, patchy argillaceous, carbonaceous, tight, slight dead stain, barely visible cut.

COAL: 30%.

320-325 SANDSTONE: light brownish, light grey, very fine grained and very fine to fine grained, floating medium grains, silty, quartz, carbonaceous specked, coal flakes, only slightly argillaceous, slightly siliceous, dead stain specks, no cut. Also loose medium-coarse-very coarse quartz grains with few pebbles, well rounded frosted grains, trace siliceous, patchy white kaolin, fair porosity, slight dead stain, no cut.

SHALE: 25-30%, as above.

COAL: 5%.

325-330 SHALE: medium grey, platy, slightly micromicaceous, trace silty, trace brown dolomite nodules. Also brownish shale as above, carbonaceous, silty beds.
SANDSTONE: very fine grained, silty, argillaceous, carbonaceous, coal laminae, Also loose medium to coarse quartz grains, with few very coarse grains, well rounded, slightly siliceous, slightly kaolinitic, coal flakes, poor to fair porosity, slight dead stain specks, no cut, this may all be cavings from the bed above.

IMPERIAL SHALE 324m (-249m)

330-335 SHALE: medium grey, micromicaceous, slightly dolomitic, platy, with 10% brown, microcrystalline dolomite laminae or nodules. Sandstone and coal cavings.

335-340 SHALE: medium grey, part trace silty, slightly dolomitic, slight carbonaceous specks, 10-15% brown, microcrystalline dolomite nodules or laminae.
SILTSTONE: thin beds, brownish grey, argillaceous, carbonaceous specked.

340-345 SHALE: medium grey, micro-carbonaceous specked, trace silty. With brown, microcrystalline dolomite nodules and laminae, 10-15%, part rusty reddish brown stained ironstone.

SANDSTONE: 5%, grey, very fine to fine grained, quartz, carbonaceous, coal flakes, tight, no stain or cut, probably all cavings. Also loose coarse to very coarse quartz cavings.

345-350 SHALE: medium grey, slight carbonaceous specks, part trace silty, platy, decreasing brown dolomite. Sandstone as above, probably all cavings.

350-355 SHALE: predominantly trace silty, part silty and carbonaceous specked, decreasing brown dolomite nodules.

355-360 SHALE: as above, part silty with carbonaceous specks, slightly micromicaceous, trace pyrite, subplaty.

360-365 SHALE: as above.

TOTAL DEPTH 365m

APPENDIX 4

CORE ANALYSIS

AGAT Laboratories
Core Services Division

SIDEWALL CORE ANALYSIS REPORT

CHEVRON EAST HUME RIVER I-20
65-59 / 38-15

Prepared for:

CHEVRON CANADA RESOURCES LIMITED

RC2767
April 1990

3801-21st Street NE
Calgary, Alberta
T2E 6T5
Tel. 291-2428

4954-89th Street
Edmonton, Alberta
T6E 5K1
Tel. 465-0265

9625-115th Street
Grande Prairie
T0J 0J0
Tel. 362-5422

COMPANY: CHEVRON CANADA RESOURCES
 WELL: CHEVRON EAST HUME RIVER I-20
 LOCATION: 65-59/38-15
 FORMATION:
 DRILLING FLUID:

AGAT LABORATORIES

Page: 1
 W/O No: RC2767
 Date: 09-04-90

FINAL CORE ANALYSIS DATA

Sample	Interval (m)			Rep Thick (m)	Sample Length (m)	Gas Permeability			Porosity	Density (kg/m ³)	Residual Saturation	Oil Water	Remarks	
	Top	Base	Kmax (mD)			K90 (mD)	Vertical (mD)							
SP001	299.50	-	-	-	-	71.2 *	-	-	.132	2260	2600	-	-	ss;frac;sidewall Core 1
SP002	300.25	-	-	-	-	15.3	-	-	.115	2340	2640	-	-	ss;sidewall Core 2
SP003	302.00	-	-	-	-	62.8 *	-	-	.128	2250	2580	-	-	ss;frac;sidewall Core 3
SP004	305.00	-	-	-	-	10.4	-	-	.142	2250	2620	-	-	ss;sidewall Core 4

* - Affected by fracture or crack as mentioned in remarks

AGAT LABORATORIES CORE SERVICES

SAMPLE HANDLING AND ANALYSIS INFORMATION

Company: CHEVRON CANADA RESOURCES
Well: CHEVRON EAST HUME RIVER I-20
Location: 65-59/38-15
Field:

Coring Equipment:
Coring Fluid:
Core Diameter:
Total Cored:
Total Recovered:

Job Number: RC2767
Date: April 9, 1990

HANDLING

Cleaning Solvent: Toluene
Extraction: Vapor Phase
Cleaning Time: 48 Hours
Drying Equipment: Convectional Oven
Drying Time: 8 Hours at 108°C

ANALYSIS

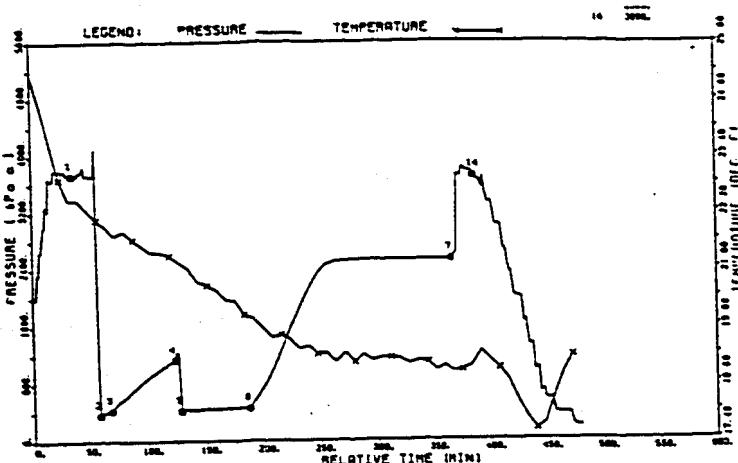
Grain volume measured by Boyle's Law using helium
Bulk volume measured by Archimedes principle using Hg on non-cylindrical samples
Permeability measured on 25 mm diameter drilled plugs

REMARKS

Four sidewall cores analyzed for porosity and permeability

SIDEWALL CORES

CORE #	DEPTH	SIZE	
1	299.5m	0.5cm	SANDSTONE: very light grey, fine to barely medium grained, predominantly clear quartz, few glauconite grains, trace dark argillite/shale grains, slightly siliceous, non-calcareous, non-dolomitic, subangular, well sorted, very slight brown, dead stain, porosity 15%, no cut or fluorescence. Small tight fracture may be induced.
2	300.25m	3.5cm	SANDSTONE: very light grey, fine grained, some barely medium grains, quartz, glauconite grains, trace soft, dark brown and black argillite/shale, minor light grey grains, slightly siliceous, trace kaolin, subangular, well sorted, very slight dead stain, 15% porosity, no cut or fluorescence.
3	302m	0.5cm	SANDSTONE: light grey, fine to barely medium grained, quartz, slightly glauconitic, minor dark grains, spotty very light brown kaolin, subangular to subrounded, well sorted, slight brown dead stain, 12-15% porosity, no cut or fluorescence. One tight fracture may be induced.
4	305m	0.75cm	SANDSTONE: very light grey, fine to barely medium grained, trace floating coarse grains, quartz, glauconite grains, minor dark grains, trace mica, subangular to subrounded, well sorted, intergranular specks and one very fine streak probably along a fracture of soft dark brown bitumen?, may be carbonaceous, slight dead stain, 8-10% porosity, no cut or fluorescence.


APPENDIX 5

TESTING RESULTS

CHEVRON EAST HUME RIVER I-20
 400/ 65.594 / 129.172 /00
 DST#01
 297.00m to 301.96m
 ARCTIC RED SANDSTONE

DEPTH: 300.00m

RECORDER # 001767

PRESSURE
kPa(a)

- 1) Initial Hydro : 3724.
- 2) 1st Flow Start: 362.
- 3) 1st Flow End : 422.
- 4) END 1st Shutin: 1129.
- 5) 2nd Flow Start: 414.
- 6) 2nd Flow End : 448.
- 7) END 2nd Shutin: 2526.
- 14) Final Hydro. : 3698.

TEST TIMES (MIN)

1stFLOW	:	10.0
SHUTIN	:	56.0
2ndFLOW	:	59.0
SHUTIN	:	178.0

RECOVERY DATA

TOTAL FLUID RECOVERY CONSISTED OF 9 METERS OF GASIFIED DRILLING FLUID. THIS TEST WAS RUN UNDER CLOSED CHAMBER CONDITIONS WITH THE EVALUATORS.

REMARKS AND TEST SUMMARY

Test results indicate a mechanically successful test. Bottom hole pressures and the shape of the shut-in curves suggest LOW PERMEABILITY within the interval tested. The results also suggest formation damage. Minor plugging during the flows. This did not affect the test results. The initial shut-in was not extrapolated due to insufficient curve development and the final shut-in was not extrapolated as it stabilized.

TABLE OF CONTENTS

PAGE 1	PAGE 2	PAGE 3	PAGE 4
General Data	Tool Sequence	PRESSURE	Plot Summary
Blow Description	Recorder Summary	-TIME	Reservoir Calculations
Liquid Recovery	Mud and Hole Data	LISTING	-Parameters used
Gas Measurements			-Results

***** RECORDER PAGES & FIGURES *****

BAKER OIL TOOLS CANADA
DST#01 REPORT

p.1

Well name : CHEVRON EAST HUME RIVER I-20
Location : 400/ 65.594 / 129.172 /00
Interval : 297.00m to 301.96m
Test Date : 90/03/20
Test Type : INFLATE STRADDLE
Formation : ARCTIC RED SANDSTONE

K.B.Elevation : 75.12m
Grd.Elevation : 68.96m
TD @ test Date: 365.00m
Ticket Number : 81212
Unit Number :

Started in hole at : 1815 hrs
Tool opened at : 1940 hrs
Reverse circulated?: NO
Contractor & Rig No: SHEHTAH #1E
Baker#1 : 1 of 1 on the same trip.

Operator: CHEVRON CANADA RESOURCES LIMITED
14TH FLOOR
500 - 5TH AVE. S.W.
CALGARY, ALBERTA
T2P0L7
Company Rep : ANDERSON K
Testers : FORBES G
5 REPORTS(S) TO: BRIAN GLOVER
Company:

BLOW DESCRIPTION

Closed Chamber with the Evaluators.

TOTAL LIQUID RECOVERY : 9.00m

For DST# 1 through DST# 1
3 Fluid Samples
Sent to: GEO TECH

Btm. Hole Sampler #: 186
Sent to: GEO TECH

9.00m GASIFIED DRILLING FLUID.

GAS MEASUREMENTS

No Gas Measurements

TOOL SEQUENCE

RECORDER SUMMARY

SUB	LENGTH (m)	1) NUMBER : 001767 TYPE : DMRB LOCATION: OUTSIDE RANGE: 34500.00kPa(a) DEPTH : 300.00m	ELECTRONIC GAUGE.
PUMP OUT SUB	.40		
CROSS OVER SUB	.36		
INSIDE RECORDER	1.38		
CHOKE SUB	.31		
HYDRAULIC TOOL	1.50		
BTM HOLE SAMPLER	1.03	2) NUMBER : 001785 TYPE : DMRB LOCATION: OUTSIDE RANGE: 68900.00kPa(a) DEPTH : 300.00m	ELECTRONIC GAUGE.
INSIDE RECORDER	1.38		
HYDRAULIC JARS	2.22		
SAFETY JOINT	.65		
INFLATE PUMP	2.28		
SCREEN	1.16		
TOP INFLATE PACKER	1.78	3) NUMBER : 014156 TYPE : K-3 LOCATION: OUTSIDE RANGE: 13700.00kPa DEPTH : 300.00m	
PACKER STICK DOWN	.82		
PORTED COMB SUB	.30		
OUTSIDE RECORDER	2.06		
SPACING	1.28		
PACKER STICK UP	.50		
BTM INFLATE PACKER	1.90	4) NUMBER : 021150 TYPE : K-3 LOCATION: INSIDE RANGE: 20500.00kPa DEPTH : 284.00m	ABOVE HYDRAULIC TOOL.
INSIDE RECORDER	2.68		
BELLY SPRING	2.00		
<hr/>		5) NUMBER : 021162 TYPE : K-3 LOCATION: INSIDE RANGE: 21900.00kPa DEPTH : 289.00m	ABOVE INTERVAL.
<hr/>		6) NUMBER : 021347 TYPE : K-3 LOCATION: INSIDE CAPACITY: 22000.00kPa DEPTH : 307.00m	BELOW INTERVAL.

***** TOOL TOTAL 25.93

DRILL COLLARS

ID= 75.0mm: 167.34
ID= :

DRILL PIPE

OD=114.3mm: 121.46
OD= :

COLLAR-PIPE TOTAL 288.80

STICK UP ABOVE TABLE : 6.19
 TOOL ABOVE INTERVAL : 14.39
 TOTAL INTERVAL : 4.96
 BOTTOM CHOKE SIZE: 12.70 mm

MUD AND HOLE DATA

Caliper Hole Size @ Test Depth: 220.00mm Water Loss : 7.0cc/s
 Hole Condition at Test Time : GOOD Filter Cake: 1.5 mm
 Hole Conditioned Prior to Test? : YES
 Mud Weight : 1250.0 kg/m³ Main Hole Size: 216.00mm
 Type : GEL CHEMICAL
 Viscosity : 100.0s/1 Temperature @300.00m = 19.1C

DST#01
 CHEVRON EAST HUME RIVER I-20
 297.00 m to 301.96 m

p.3

Location: 400/ 65.594 / 129.172 /00
 Well Type: INFLATE STRADDLE
 Formation: ARCTIC RED SANDSTONE

Recorder Number: 001767
 Recorder Depth: 300.00 m
 Subsea Depth: -224.88 m

TIME-PRESSURE LISTING

CHART LABEL	COMMENTS	TIME MIN.	DELTA P kPa	PRESSURE(T+dt)/dt kPa(a)	PRESSURE SQUARED kPa(a) ² /10 ⁻⁶
1	INITIAL HYDROSTATIC			3724	
2	START OF 1st FLOW	0.0		362	
		1.0		379	
		2.0		388	
		3.0		388	
		4.0		397	
		5.0		405	
		7.0		405	
		8.0		414	
		9.0		414	
3	END OF 1st FLOW	10.0		422	
	1st SHUTIN PERIOD	0.0		422	
		2.0	43	466	6.0000
		5.0	104	526	3.0000
		7.0	129	552	2.4286
		9.0	155	578	2.1111
		11.0	181	603	1.9091
		14.0	224	647	1.7143
		16.0	250	672	1.6250
		18.0	285	707	1.5556
		21.0	319	741	1.4762
		23.0	345	767	1.4348
		25.0	371	793	1.4000
		27.0	397	819	1.3704
		30.0	431	853	1.3333
		32.0	457	879	1.3125
		34.0	483	905	1.2941
		37.0	517	940	1.2703
		39.0	535	957	1.2564
		41.0	552	974	1.2439
		43.0	578	1000	1.2326
		46.0	612	1035	1.2174
					1.0000
					1.0702

* VALUES USED FOR EXTRAPOLATIONS

DST#01
CHEVRON EAST HUME RIVER I-20
297.00 m to 301.96 m

p.3a

Location: 400/ 65.594 / 129.172 /00
Well Type: INFLATE STRADDLE
Formation: ARCTIC RED SANDSTONE

Recorder Number: 001767
Recorder Depth: 300.00 m
Subsea Depth: -224.88 m

TIME-PRESSURE LISTING

CHART LABEL	COMMENTS	TIME MIN.	DELTA P kPa	PRESSURE (T+dt)/dt kPa(a)	PRESSURE SQUARED kPa(a) ² /10 ⁻⁶
4	END OF 1st SHUTIN	48.0	629	1052	1.1061
		50.0	655	1078	1.1612
		53.0	681	1103	1.2175
		55.0	698	1121	1.2560
		56.0	707	1129	1.2753
5	START OF 2nd FLOW	0.0		414	
		2.0		422	
		4.0		440	
		6.0		422	
		9.0		440	
		11.0		448	
		13.0		440	
		16.0		440	
		18.0		448	
		20.0		448	
		22.0		440	
		25.0		422	
		27.0		448	
		29.0		431	
		32.0		448	
		34.0		431	
		36.0		448	
		38.0		440	
		41.0		457	
		43.0		457	
		45.0		440	
		48.0		457	
		50.0		457	
		52.0		466	
		54.0		457	
		57.0		466	
6	END OF 2nd FLOW	59.0		448	
	2nd SHUTIN PERIOD	0.0		448	

* VALUES USED FOR EXTRAPOLATIONS

DST#01
 CHEVRON EAST HUME RIVER I-20
 297.00 m to 301.96 m

p.3b

Location: 400/ 65.594 / 129.172 /00
 Test Type: INFLATE STRADDLE
 Formation: ARCTIC RED SANDSTONE

Recorder Number: 001767
 Recorder Depth: 300.00 m
 Subsea Depth: -224.88 m

TIME-PRESSURE LISTING

CHART LABEL	COMMENTS	TIME MIN.	DELTA P kPa	PRESSURE (T+dt)/dt kPa(a)	PRESSURE SQUARED kPa(a) ² /10 ⁻⁶
		3.0	78	526	24.0000
		7.0	164	612	10.8571
		10.0	250	698	7.9000
		14.0	353	802	5.9286
		17.0	440	888	5.0588
		21.0	569	1017	4.2857
		24.0	672	1121	3.8750
		27.0	785	1233	3.5556
		31.0	931	1379	3.2258
		34.0	1043	1491	3.0294
		38.0	1198	1647	2.8158
		41.0	1310	1759	2.6829
		45.0	1457	1905	2.5333
		48.0	1560	2009	2.4375
		51.0	1655	2103	2.3529
		55.0	1767	2216	2.2545
		58.0	1853	2302	2.1897
		62.0	1931	2379	2.1129
		65.0	1983	2431	2.0615
		69.0	2026	2474	2.0000
		72.0	2043	2491	1.9583
		75.0	2060	2509	1.9200
		79.0	2060	2509	1.8734
		82.0	2069	2517	1.8415
		86.0	2069	2517	1.8023
		89.0	2069	2517	1.7753
		93.0	2078	2526	1.7419
		96.0	2078	2526	1.7188
		99.0	2078	2526	1.6970
		103.0	2078	2526	1.6699
		106.0	2078	2526	1.6509
		110.0	2078	2526	1.6273
		113.0	2078	2526	1.6106
		117.0	2078	2526	1.5897
		120.0	2078	2526	1.5750
		123.0	2078	2526	1.5610

* VALUES USED FOR EXTRAPOLATIONS

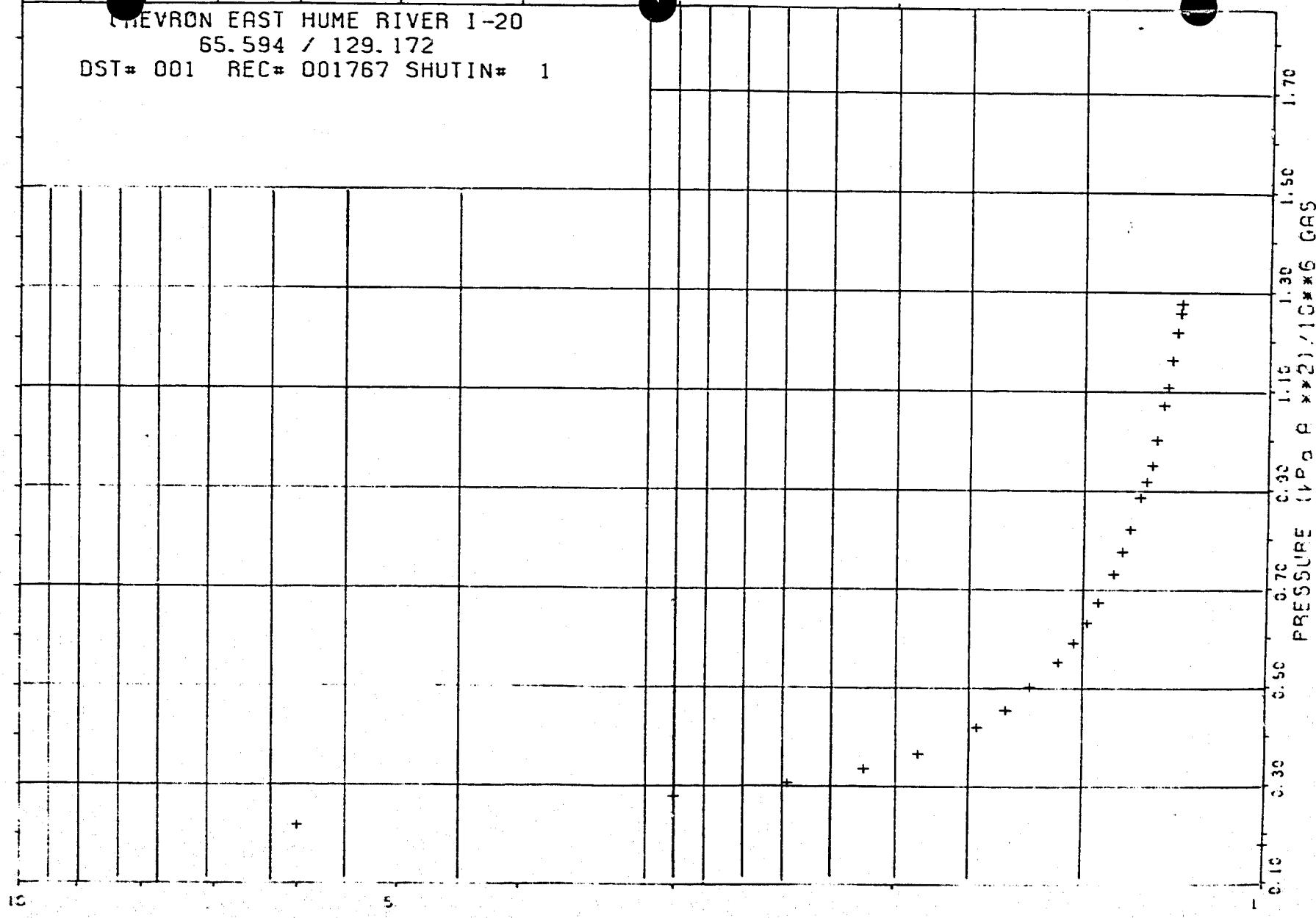
DST#01

p.3c

CHEVRON EAST HUME RIVER I-20
297.00 m to 301.96 mLocation: 400/ 65.594 / 129.172 /00
Test Type: INFLATE STRADDLE
Formation: ARCTIC RED SANDSTONERecorder Number: 001767
Recorder Depth: 300.00 m
Subsea Depth: -224.88 m

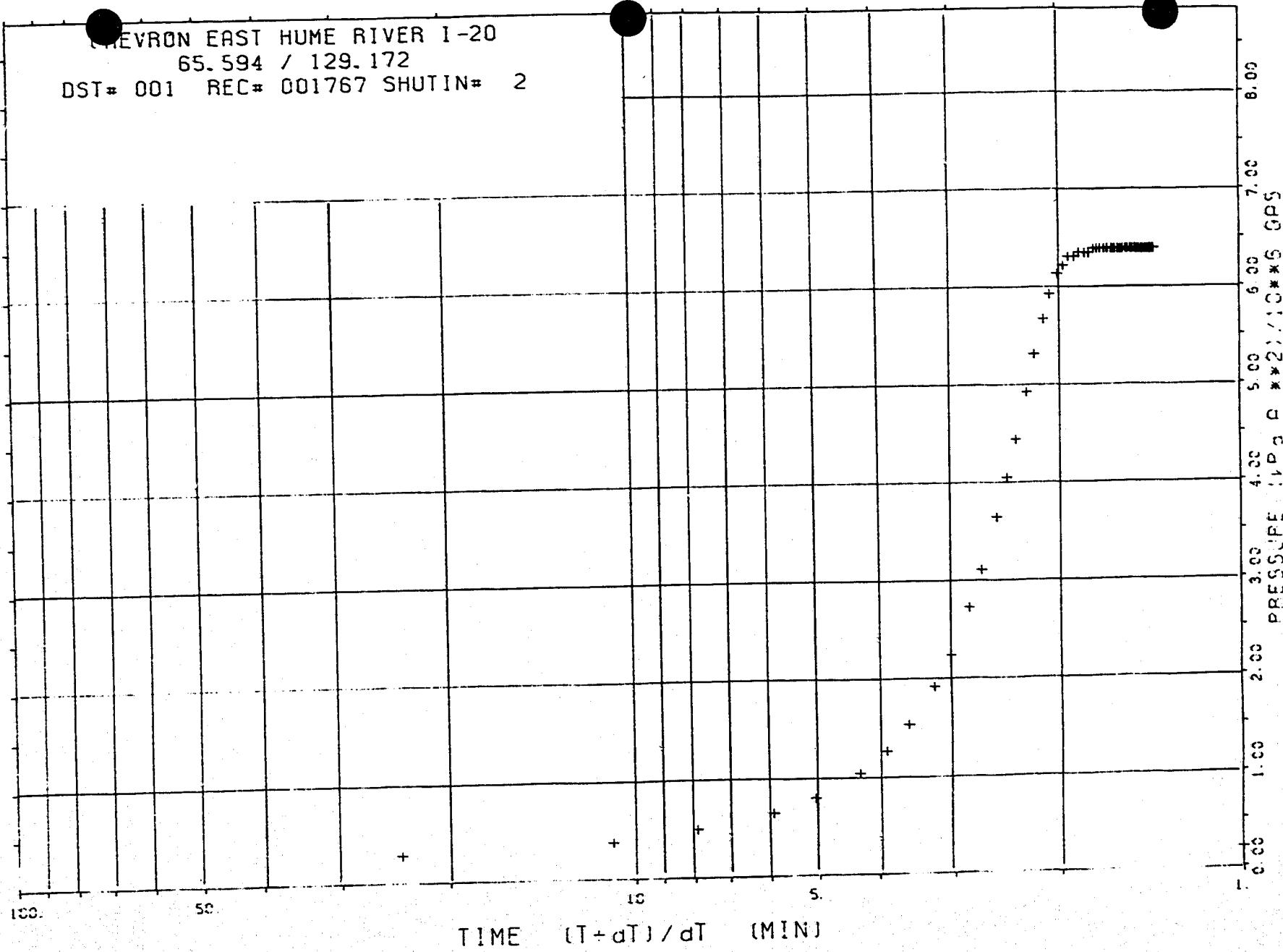
TIME-PRESSURE LISTING

CHART LABEL	COMMENTS	TIME MIN.	DELTA P kPa	PRESSURE(T+dt)/dt kPa(a)	ABSCISSA	PRESSURE SQUARED kPa(a)^2/10^6
		127.0	2078	2526	1.5433	6.3802
		130.0	2078	2526	1.5308	6.3802
		134.0	2078	2526	1.5149	6.3802
		137.0	2078	2526	1.5036	6.3802
		141.0	2078	2526	1.4894	6.3802
		144.0	2078	2526	1.4792	6.3802
		147.0	2078	2526	1.4694	6.3802
		151.0	2078	2526	1.4570	6.3802
		154.0	2078	2526	1.4481	6.3802
		158.0	2078	2526	1.4367	6.3802
		161.0	2078	2526	1.4286	6.3802
		165.0	2078	2526	1.4182	6.3802
		168.0	2078	2526	1.4107	6.3802
		171.0	2078	2526	1.4035	6.3802
		175.0	2078	2526	1.3943	6.3802
7	END OF 2nd SHUTIN	178.0	2078	2526	1.3876	6.3802


FINAL HYDROSTATIC

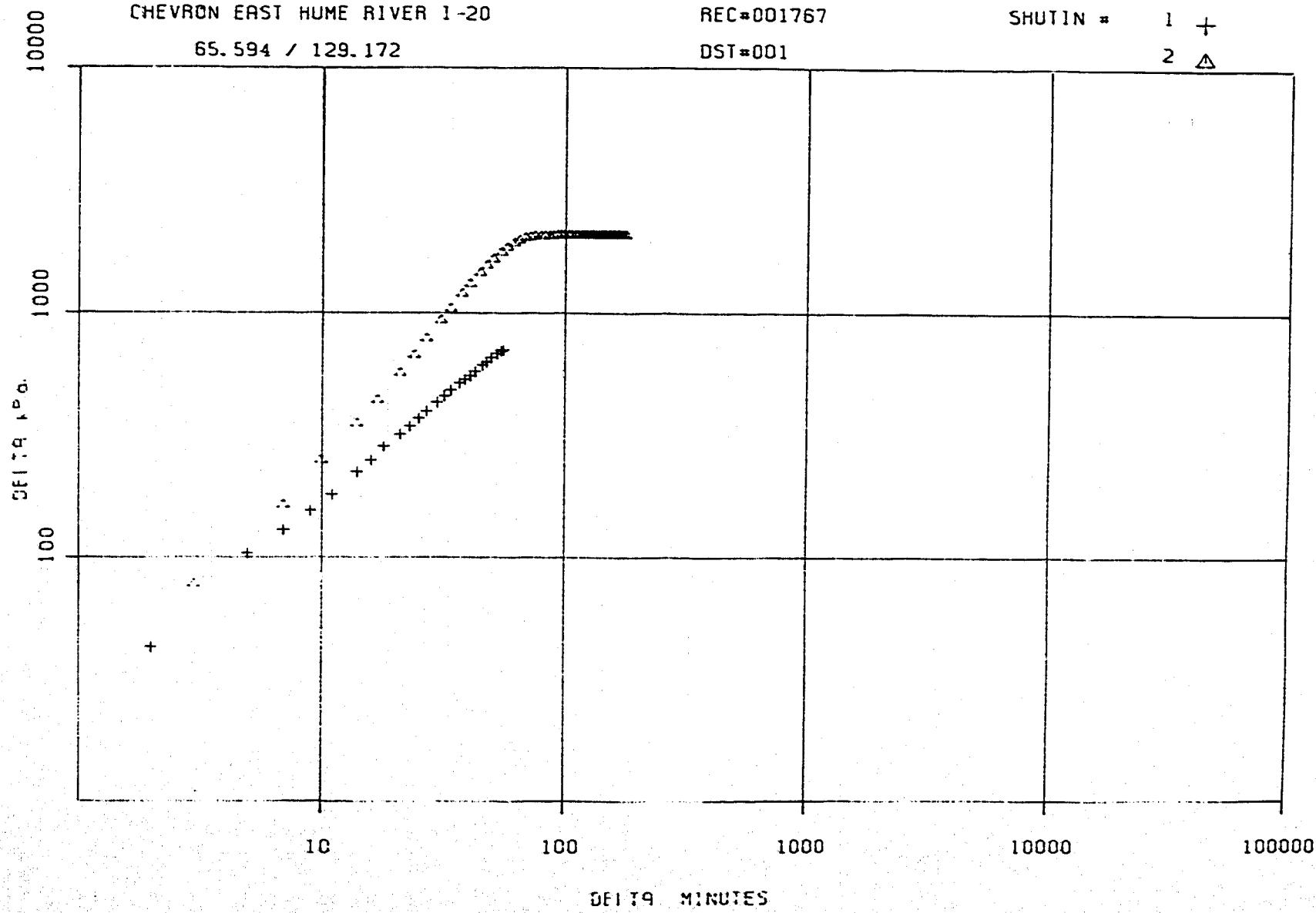
3698

* VALUES USED FOR EXTRAPOLATIONS

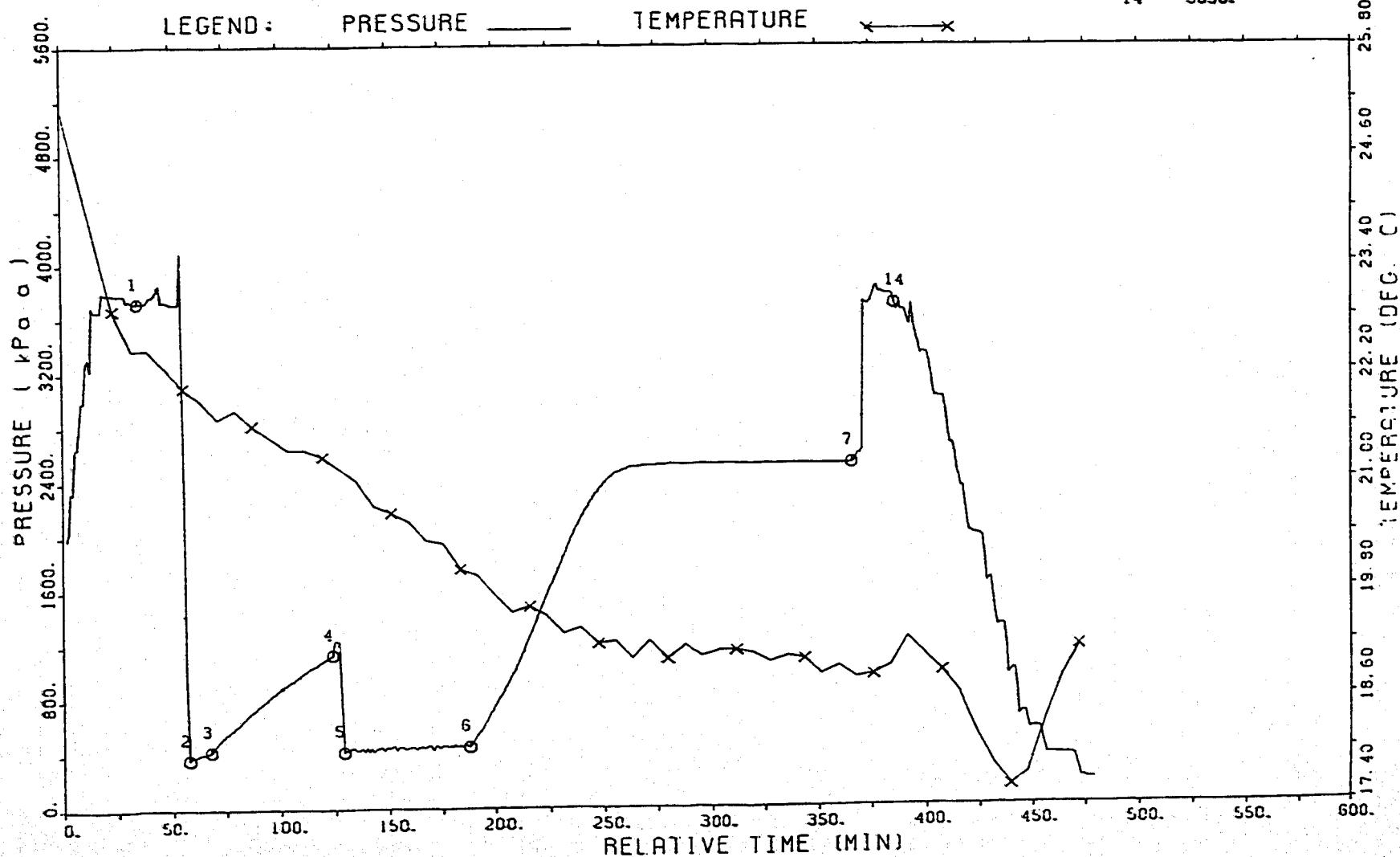

1st SHUT-IN
HORNER EXTRAPOLATION .00 kPa(a)
HORNER SLOPE .00000 (kPa(a)**2/10**6)/CYCLE2nd SHUT-IN
HORNER EXTRAPOLATION .00 kPa(a)
HORNER SLOPE .00000 (kPa(a)**2/10**6)/CYCLE

CHEVRON EAST HUME RIVER I-20
65.594 / 129.172
DST# 001 REC# 001767 SHUTIN# 1

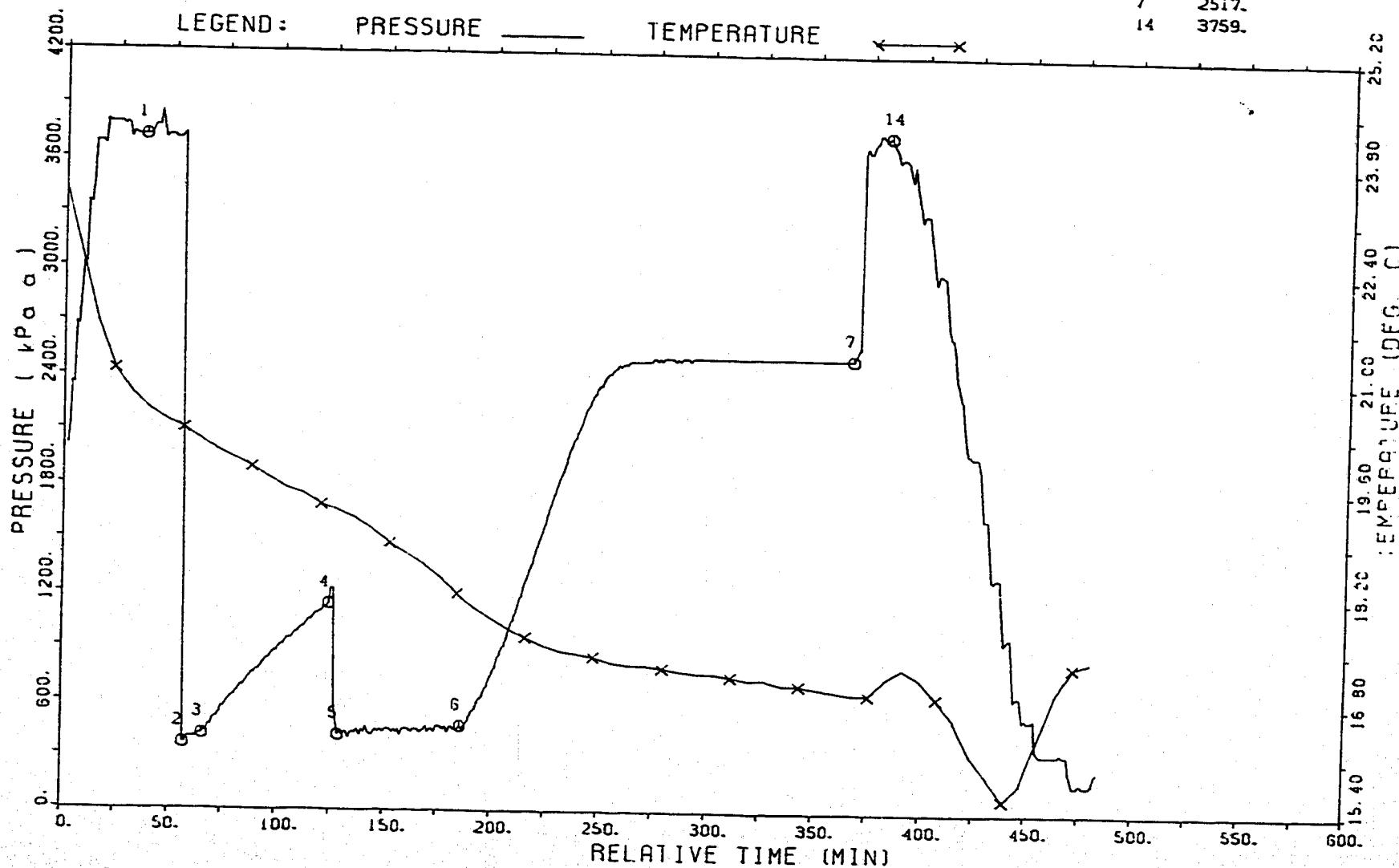
TIME $(T + dT)/dT$ (MIN)


CHEVRON EAST HUME RIVER I-20
65.594 / 129.172
DST# 001 REC# 001767 SHUTIN# 2

CHEVRON EAST HUME RIVER 1-20
65.594 / 129.172


REC#001767
DST#001

SHUTIN # 1 +
2 △


CHEVRON EAST HUME RIVER I-20
65.594/129.172 DST #1
ELECTRONIC GAUGE #1767

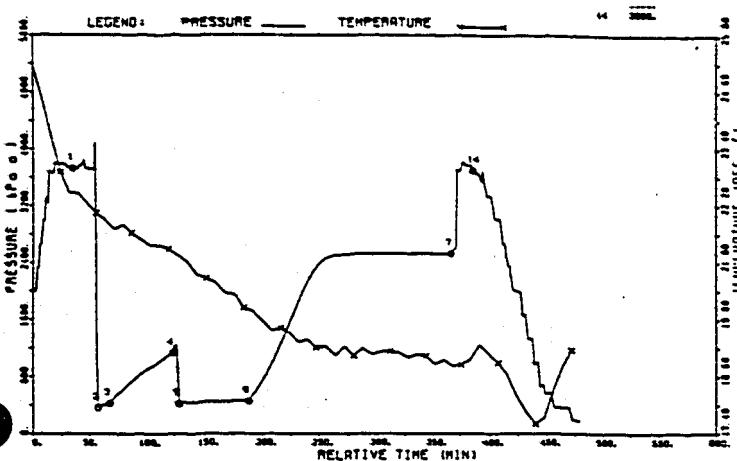
LEGEND. O 1 = 3724. Paed
2 362.
3 422.
4 1129.
5 414.
6 448.
7 2526.
14 3698.

CHEVRON EAST HUME RIVER I-20
 65.594/129.172 DST #1
 ELECTRONIC GAUGE #1785

LEGEND. O 1 = 3724. ^{Pa}₀
 2 362.
 3 414.
 4 1138.
 5 414.
 6 466.
 7 2517.
 14 3759.

DST#01
 CHEVRON EAST HUME RIVER I-20
 297.00m to 301.96m

PRESSURE RECORDER NUMBER : 001767


DEPTH : 300.00m
 TYPE : DMRB

LOCATION : OUTSIDE
 CAPACITY : 34500.00kPa(a)

***** TEMPERATURE AT RECORDER DEPTH = 19.1 C

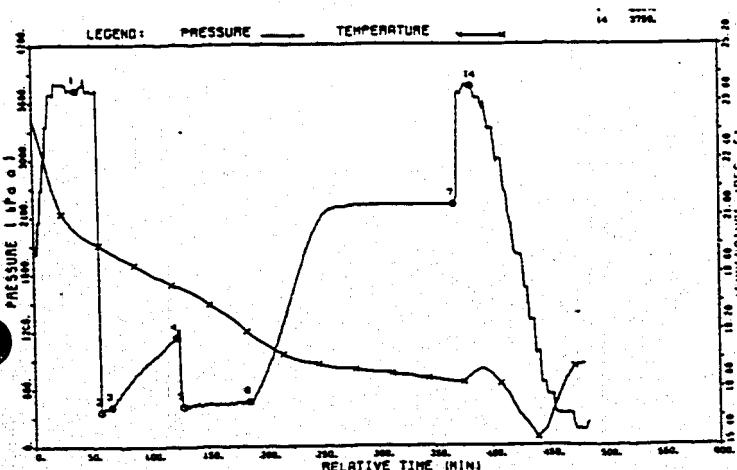
PRESSURE
 kPa(a)

- 1) Initial Hydro : 3724.
- 2) 1st Flow Start: 362.
- 3) 1st Flow End : 422.
- 4) END 1st Shutin: 1129.
- 5) 2nd Flow Start: 414.
- 6) 2nd Flow End : 448.
- 7) END 2nd Shutin: 2526.
- 14) Final Hydro. : 3698.

ELECTRONIC GAUGE.

TEST TIMES (MIN)
 1st FLOW : 10.0
 SHUTIN: 56.0
 2nd FLOW : 59.0
 SHUTIN: 178.0

PRESSURE RECORDER NUMBER : 001785


DEPTH : 300.00m
 TYPE : DMRB

LOCATION : OUTSIDE
 CAPACITY : 68900.00kPa(a)

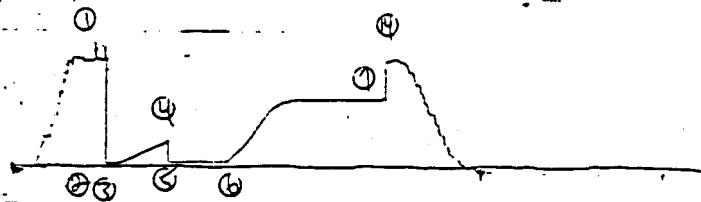
***** TEMPERATURE AT RECORDER DEPTH = 17.1 C

PRESSURE
 kPa(a)

- 1) Initial Hydro : 3724.
- 2) 1st Flow Start: 362.
- 3) 1st Flow End : 414.
- 4) END 1st Shutin: 1138.
- 5) 2nd Flow Start: 414.
- 6) 2nd Flow End : 466.
- 7) END 2nd Shutin: 2517.
- 14) Final Hydro. : 3759.

ELECTRONIC GAUGE.

DST#01
CHEVRON EAST HUME RIVER I-20
297.00m to 301.96m


PRESSURE RECORDER NUMBER : 014156

DEPTH : 300.00m
TYPE : K-3

LOCATION : OUTSIDE
CAPACITY : 13700.00 kPa

PRESSURE
kPa

1) Initial Hydro :	3604.
2) 1st Flow Start:	342.
3) 1st Flow End :	308.
4) END 1st Shutin:	955.
5) 2nd Flow Start:	355.
6) 2nd Flow End :	344.
7) END 2nd Shutin:	2330.
14) Final Hydro. :	3570.

TEST TIMES (MIN)

1st FLOW :	10.0
SHUTIN:	56.0
2nd FLOW :	59.0
SHUTIN:	178.0

PRESSURE RECORDER NUMBER : 021150

DEPTH : 284.00m
TYPE : K-3

LOCATION : INSIDE
CAPACITY : 20500.00 kPa

PRESSURE
kPa

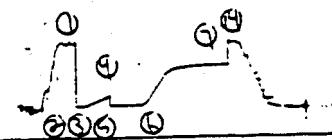
1) Initial Hydro :	
2) 1st Flow Start:	9.
3) 1st Flow End :	31.
4) END 1st Shutin:	
5) 2nd Flow Start:	41.
6) 2nd Flow End :	154.
7) END 2nd Shutin:	154.
14) Final Hydro. :	

ABOVE HYDRAULIC
TOOL.

666 66

DST#01
CHEVRON EAST HUME RIVER I-20
297.00m to 301.96m

PRESSURE RECORDER NUMBER : 021162


DEPTH : 289.00m
TYPE : K-3

LOCATION : INSIDE
CAPACITY : 21900.00 kPa

PRESSURE
kPa

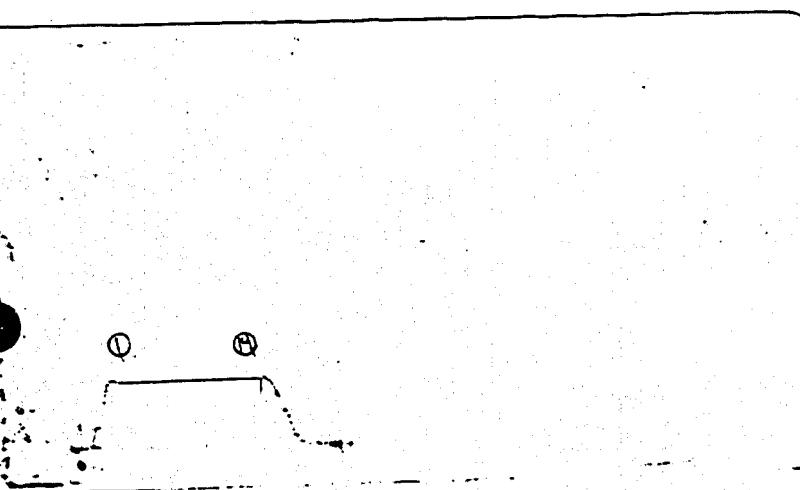
1) Initial Hydro : 3487.
2) 1st Flow Start: 226.
3) 1st Flow End : 238.
4) END 1st Shutin: 772.
5) 2nd Flow Start: 252.
6) 2nd Flow End : 260.
7) END 2nd Shutin: 2241.
14) Final Hydro. : 3455.

AL

ABOVE INTERVAL.

TEST TIMES (MIN)

1st FLOW : 10.0
SHUTIN: 56.0
2nd FLOW : 59.0
SHUTIN: 178.0


PRESSURE RECORDER NUMBER : 021347

DEPTH : 307.00m
TYPE : K-3

LOCATION : INSIDE
CAPACITY : 22000.00 kPa

PRESSURE
kPa

1) Initial Hydro : 3632.
14) Final Hydro. : 3611.

BELOW INTERVAL.

CLOSED CHAMBER TESTING
DST FLUID ANALYSIS
HORNER ANALYSIS
PH: 433-3443

THE EVALUATORS

CHEVRON EAST HUME RIVER

I-20

DST #1

FORMATION: ARCTIC RED SAND

INTERVAL: 297-302

REPORT FOR: Brian Glover
PREPARED BY: Greg Zinter

TEST DATE:
3/21/90

WELL DATA

HOLE (in) 216
TD (ft) 365
RE (ft) 68.96
CB (ft) 75.12
FORMATION TEMP (DEG C) 22
FORMATION POROSITY (%) 15

MUD INFORMATION

MUD TYPE Gel/Kelzan
WEIGHT (kg/m³) 1250
VISCOSITY (SEC) 100
WATER LOSS (cc) 7.0
FILTRATE pH 9.3
FILTRATE SALINITY(ppm Cl⁻) 250
CUSHION TYPE none
CUSHION AMOUNT
CUSHION SALINITY(ppm Cl⁻)

ON SITE PERSONNEL

COMPANY REPRESENTATIVE K Anderson/B Meyers
EVALUATOR Greg Zinter
TESTING COMPANY Baker
TESTER Barnett Forbes
DRILLING CONTRACTOR Shetah 1

CHEVRON EAST HUME RIVER

I-20 DST #1

TEST TIMES: 10-60-60-180

CLOSED CHAMBER PRESSURES:

PF: -2.6 to -.6 kPa
ISI: no pressure increase
FF: -.8 to 24.1 kPa
FSI: no pressure increase

PIPE RECOVERY:

9 m Gassified Drilling Fluid
Filtrate Salinity: 250 ppm Cl⁻
Maximum Recovery Salinity: 250 ppm Cl⁻

CLOSED CHAMBER MASS BALANCE:

	PF	FF
Average Gas Rates (scm/d)	0	7.0
GLR (scm/m ³)	n/a	70
Average Liquid Rates (m ³ /d)		.1

CHART PRESSURES: (k3 #14156 outside)

IH	3,439 kPa
PF	58 kPa
	87 kPa
ISI	754 kPa
FF	110 kPa
	110 kPa
FSI	2,128 kPa
FH	3,417 kPa

COMMENTS:

Formation cleaned up during test.

CLOSED CHAMBER REPORT

PRETEST:

The test times were initially planned to be 10-60-60-180. The times were to be adjusted during the test to maximize test results.

The goals of the test were:

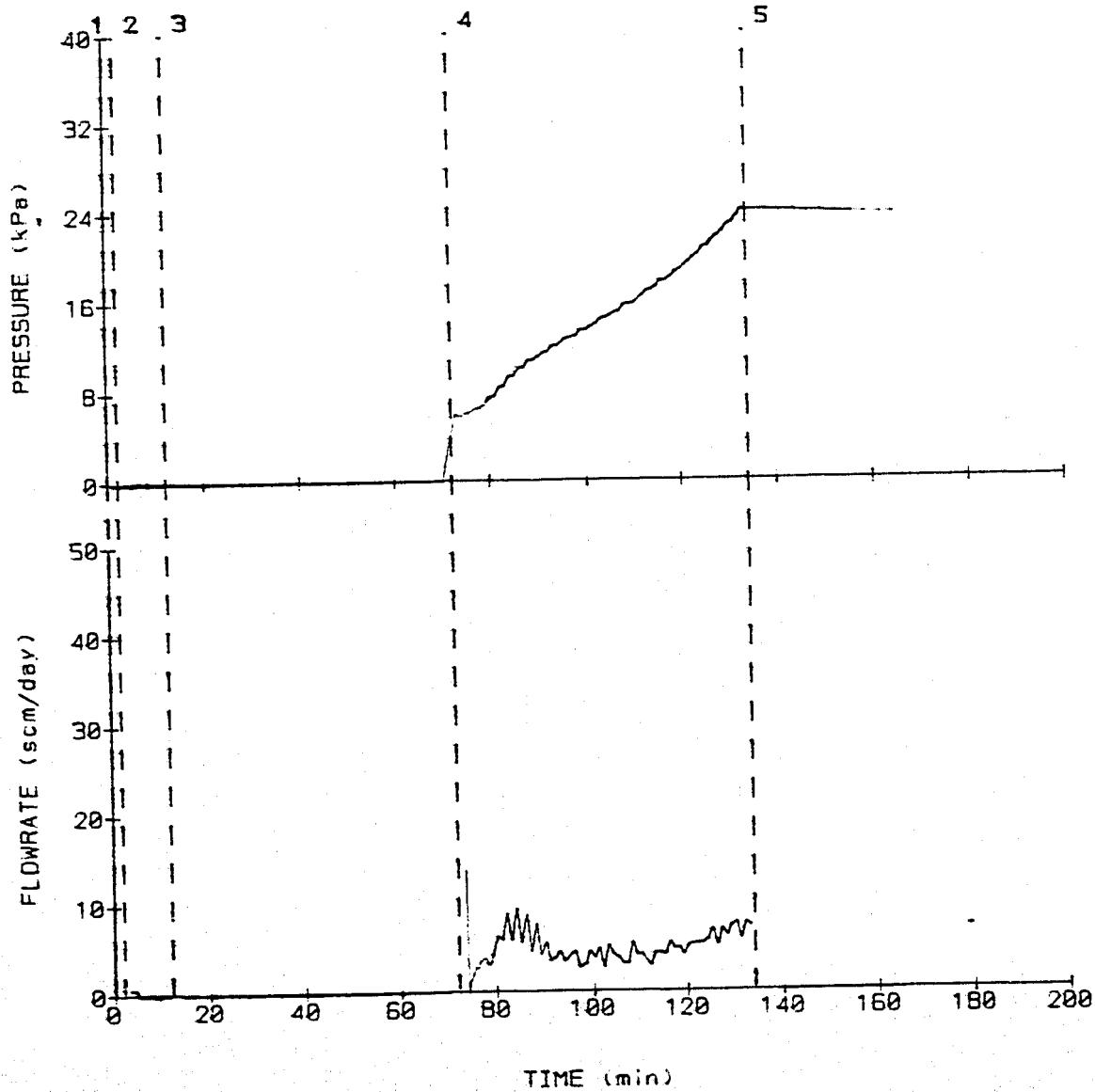
1. Obtain an accurate flowrate
2. Obtain a formation fluid sample (if possible)
3. Prevent the well from killing itself

PREFLOW/INITIAL SHUTIN:

There was no pressure response when the valve opened for the preflow period. The pressure was double checked with the bubble bucket which showed a pressure of approximately 2 kPa. A quick inspection of the pressure hoses revealed a blocked line. This was promptly cleared and by the start of the initial shutin the pressure was reaching the instruments. No data was lost in this case.

The pressure increased from -2.6 to -.6 kPa during the 10 minute PF. The negative pressure is not significant. The absolute value of the change in pressure is the important information.

The closed chamber mass balance resulted in the following rates:


Average Gas Rate	Not Measurable
Average Liquid Rate	5.2 m ³ /day

FINAL FLOW/FINAL SHUTIN:

A gas huff on valve open confirmed the production of gas. The pressure increased to 24.1 kPa during the 60 minute final flow period. There was no further increase in pressure during the 180 minute final shutin.

The closed chamber mass balance resulted in the following rates:

Average Gas Rate	7.0 scm/day
Average Liquid Rate	.1 m ³ /day
GLR	70 scm/m ³

SURFACE PRESSURE
and FLOWRATE vs
ELAPSED TEST TIME
for a
CAS flow

EVON CANADA
Well Name:
Chevron E Hume River
Location: I-28
Formation: Arctic Red
Interval (m): 297-302
DST #1 Date: 83/23/90

1 Pretest
2 Preflow
3 Initial Shutin
4 Final Flow
5 Final Shutin

THE EVALUATORS

PIPE RECOVERY

A total of 9 m (.04 m³) of fluid was recovered. The effective rathole volume was .115 m³.

The pipe recovery was made up of 9 m of gassified drilling fluid. A specific ion analysis of the pipe recovery as done on location by the mud man. The salinity (250 ppm Cl⁻) and the nitrate content (80 ppm NO₃) of the pipe recovery was the same as the mud filtrate sample taken before the test began.

PRESSURE TRANSIENT ANALYSIS

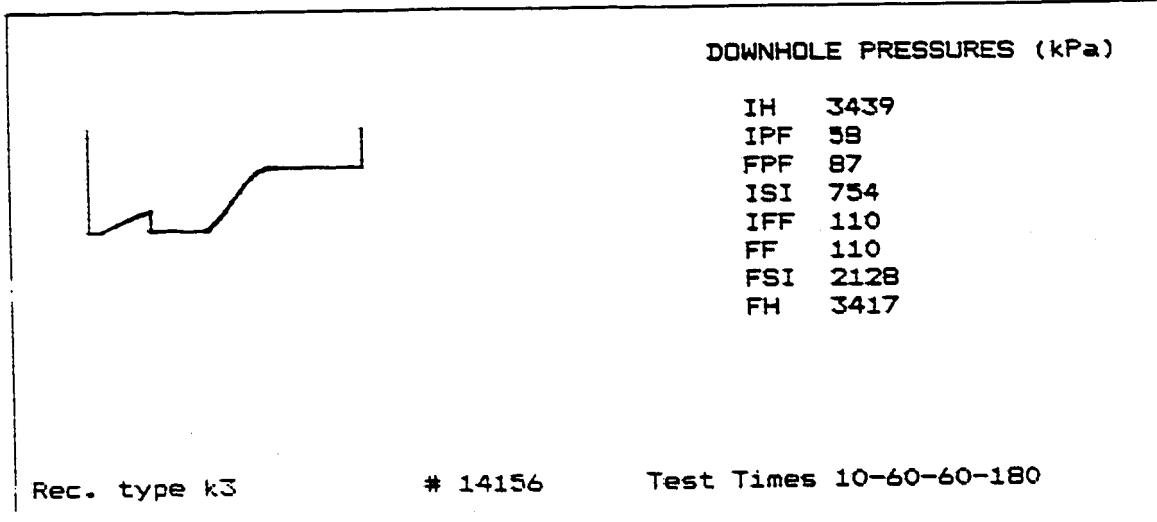
A Horner analysis was performed on the FF/FSI data. This analysis assumes that the shutin data was still building at a rate that was less than the resolution of the pressure recorded and digitizer. Although gas was assumed to be the predominant flow, a formation gas saturation of 60% was assumed. The input parameters are listed below:

Horner Slope:	6 kPa/cycle
P*:	2,129 kPa
P(wf):	110 kPa
Gas Flow Rate:	7 scm/d
Formation Volume Factor:	.043
System Compressibility:	300 x 10 ⁻⁶ /kPa
Viscosity of gas @ est res cond:	.0103 cp
Porosity	15%
Pay Thickness	1.5 m
Hole Diameter	216 mm

The following values were calculated:

Transmissibility:	118 md.m/cp
Mobility:	78 md/cp
Permeability:	.8 md
Radius of Investigation:	4.5 m

DOWNHOLE CHART SUMMARY


Chevron E Hume River

I-20

DST #1

Formation: Arctic Red

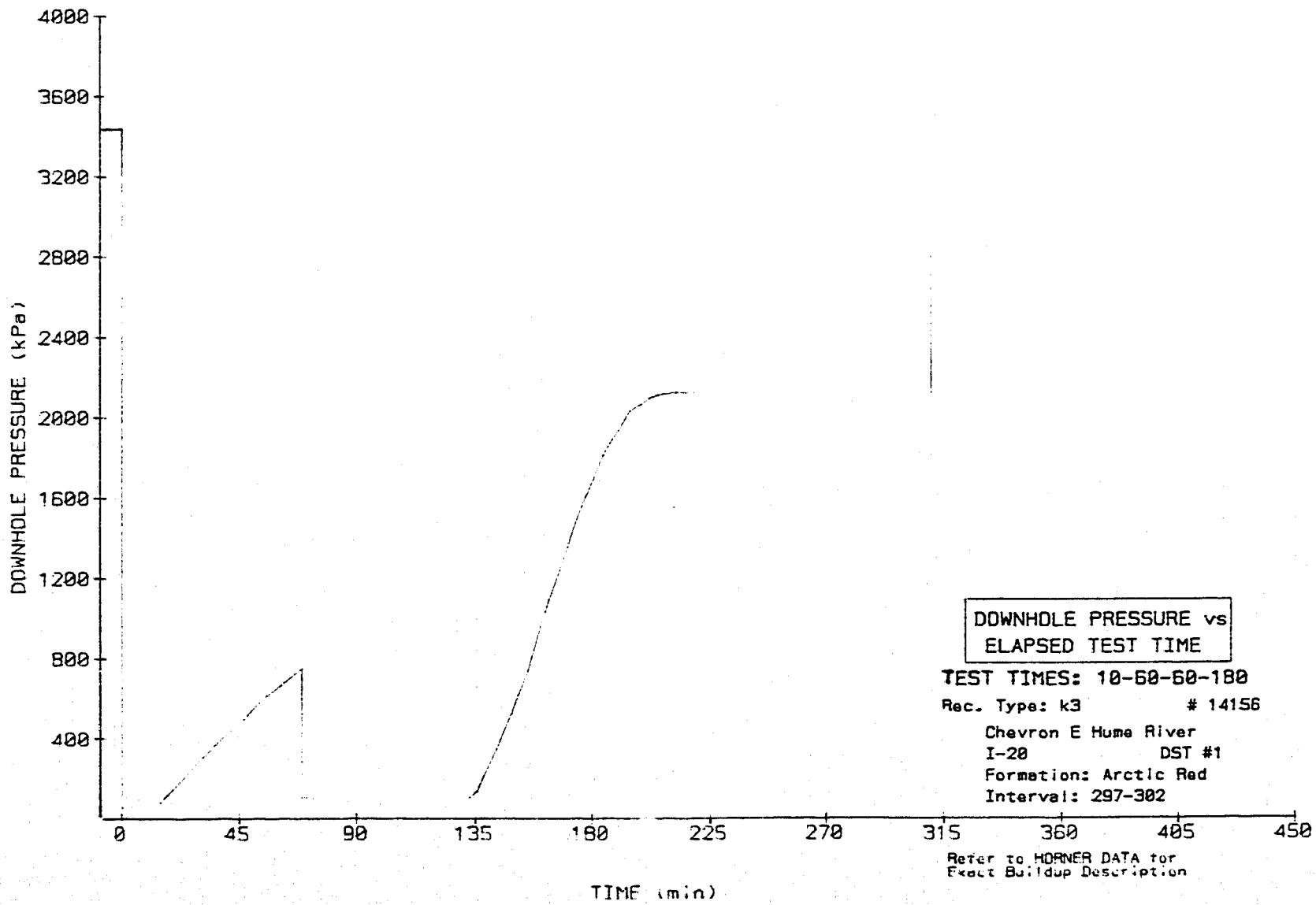
Interval: 297-302

HORNER DATA

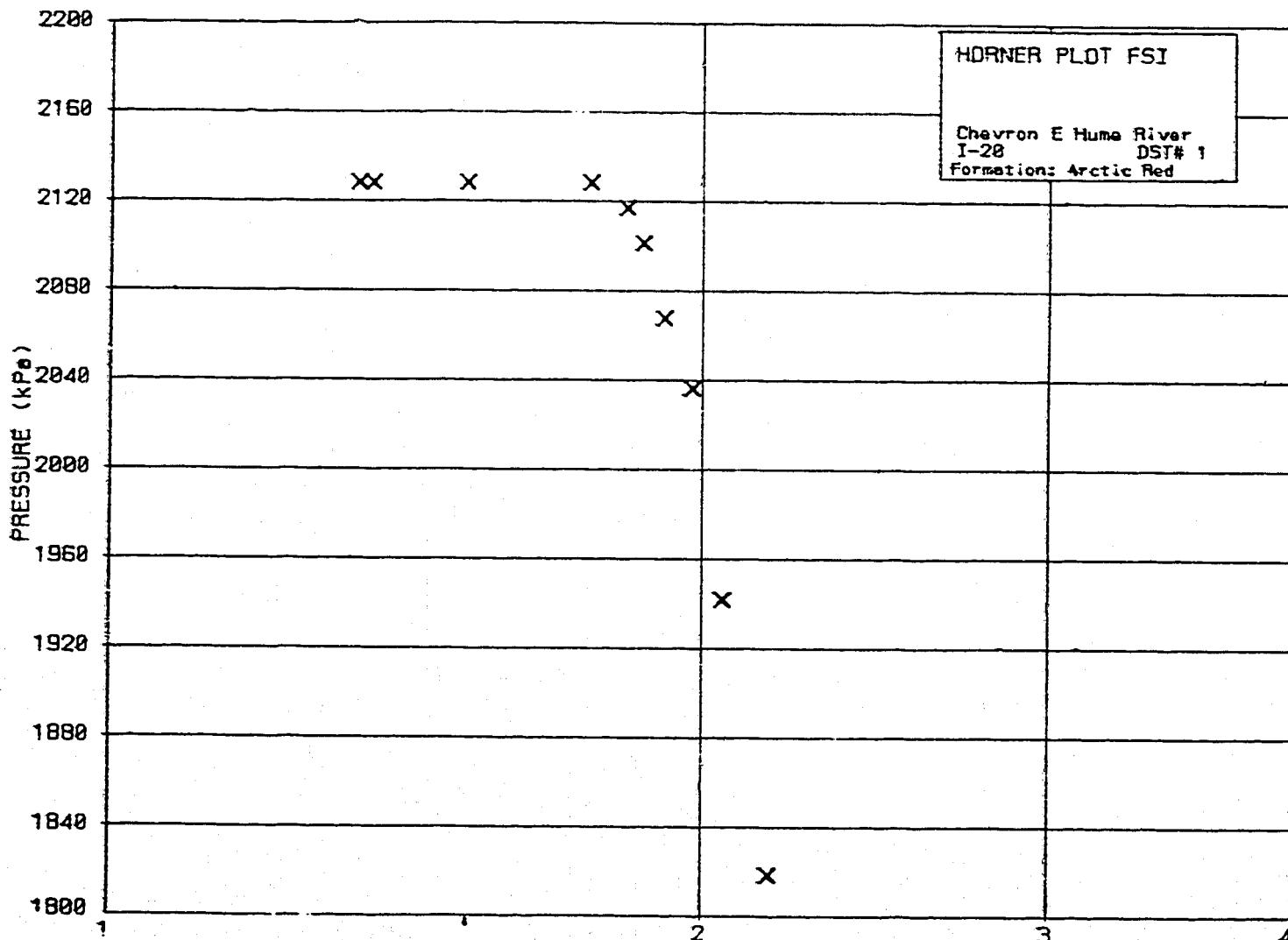
151

$t_B = 10 \text{ min}$ $g = 0 \text{ m}^3/\text{d}$

P(kPa) $dt(\text{min})$ $dt+tp/dt$


FSI

$t_B = 60 \text{ min}$ $q = 7 \text{ m}^3/\text{d}$


P(kPa) dt(min) dt+tp/dt

88	0.0	0.00
312	16.5	1.61
303	32.0	1.31
620	40.8	1.24
671	46.0	1.22
733	54.0	1.19

110	0.0	0.00
139	2.7	23.30
353	10.2	6.88
330	16.2	4.70
748	22.4	3.68
1040	29.3	3.03
1361	37.8	2.39
1565	43.3	2.39
1819	51.6	2.16
1942	57.2	2.05
2036	61.4	1.98
2068	65.7	1.91
2102	69.2	1.87
2117	72.2	1.83
2128	79.3	1.75
2128	113.7	1.32
2128	166.3	1.36
2128	177.3	1.34

THE EVALUATORS

dt + tp/dt

THE EVALUATORS

RESERVOIR ANALYSIS

A kick was encountered at approximately this depth during the drilling operation. To deal with the kick, the mud weight was increased from 1,190 kg/m³ to 1,250 kg/m³. The formation was exposed to this mud for about 24 hours prior to the test. Additionally, the formation was exposed to 1,190 kg/m³ mud for 24 hours before the kick. In both cases, the formation is underbalanced compared to the hydrostatic pressures. It is unlikely that the kick came from this zone.

The pipe recovery volume of .04 m³ was much less than the effective rat hole volume (.15 m³). There was not enough pipe recovery produced to displace the rat hole mud. There was no change in salinity or nitrate content in the pipe recovery to indicate connate water production. The pipe recovery shows no quantifiable evidence of filtrate invasion or formation water production.

The pipe recovery chart indicated that almost all of the fluid produced during this test was produced in the preflow. This suggests that the source of this fluid may be temporary, like invaded filtrate. It is also possible that the 9 m of drilling fluid may have been displaced into the pipe by gas production. A gas bubble then may have kept the recovery from draining out of the pipe. Such a small recovery illustrates the lower limit of recording test results.

80 minutes after the start of the FSI, the pressure stabilized at 2,128 kPa. This resulted in a horizontal Horner slope (i.e. slope = 0). If the resolution of the pressure recorder and the digitizer is estimated to be about 2 kPa, it is possible that the FSI curve was still building during the straight line portion of the curve and it was not detected by the measuring devices used. The data from the electronic recorder may help answer this question.

If filtrate invasion was minimal there are 2 ways to interpret the test results:

1. The FSI did express static reservoir pressure and the true Horner slope was zero. In this case Horner analysis is invalid. The static reservoir pressure was 2,128 kPa and formation characteristics are clearly demonstrated by this test.
2. The pressure was building slightly and the Horner slope was small. Assuming a Horner slope of 6, mobility was calculated at 78 md/cp. The skin calculation is invalid for this scenario. P^* is 2,129 kPa. If the total fluid production was filtrate, this test drained the reservoir .034 m away from the wellbore. With a radius of investigation of 4.5 m, this test saw past the invaded zone. This also would be a good measure of formation characteristics.

It is also possible that filtrate invaded the formation deeper than the radius of investigation. If the fluid saturations after the invasion were still below the irreducible levels then no fluid would be produced back. In this event the test would not have measured past the invaded filtrate and true formation properties would not be measured.

The test results are ambiguous. Further investigation is recommended. The resistivity log may help to quantify filtrate invasion.

TEST STRING INFORMATIONCLOSED CHAMBER:

NO.	COMPONENT NAME	ID (MM)	OD (MM)	LENGTH (M)	VOLUME (M3)
1	Chicksans	38		12	0.0136
2	Drillpipe	86		9.3	0.0540
3	Heavyweight	73		121.46	0.5084
4	Drill Collars	73		158.04	0.6615
5	Tools Above	25		3.89	0.0019

RATHOLE:

1	Tools Below	25	127	10.5	0.00515
2	Interval Tool	25	127	.82	0.00040
3	Perf	25	127	.3	0.00015
4	Interval Tools	25	127	3.84	0.00000

TOTAL CLOSED CHAMBER VOLUME: 1.24 M3

TOTAL RATHOLE VOLUME: 0.125 M3

THE INITIAL PARAMETERS ARE:

AVERAGE DRILLING FLUID TEMPERATURE: 30 C
 ATMOSPHERIC PRESSURE: 101 kPA
 N1: 1.18 scm

MINIMUM SURFACE PRESSURE WHEN RATHOLE VOLUME
 HAS BEEN PRODUCED THROUGH SHUTIN TOOLS: 11.29 kPA

MAXIMUM UNRECORDABLE FLOWRATE = 0.2 scm/day

Pretest

TIME min	SURFACE PRESSURE kPa	dP/dt kPa/min	GAS FLOWRATE scm/day	CUMULATIVE PRODUCTION scm
1.00	0.00	0.00		
1.50	0.00	0.00		

Preflow

TIME min	SURFACE PRESSURE kPa	dP/dt kPa/min	GAS FLOWRATE scm/day	CUMULATIVE PRODUCTION scm
2.00	-0.06	-0.13	-2.11	-0.00
2.50	-0.06	0.00	0.00	-0.00
3.00	0.00	0.13	2.11	0.00
4.00	0.00	0.00	0.00	0.00
4.50	0.00	0.00	0.00	0.00
5.00	-0.13	-0.25	-4.22	-0.00
5.50	-0.56	-0.88	-14.77	-0.01
6.00	-2.38	-3.63	-61.17	-0.03
6.50	-2.44	-0.13	-2.11	-0.03
7.00	-2.50	-0.13	-2.11	-0.03
7.50	-2.50	0.00	0.00	-0.03
8.00	-2.56	-0.13	-2.11	-0.03
8.50	-2.56	0.00	0.00	-0.03
9.00	-2.63	-0.13	-2.11	-0.03
9.50	-2.63	0.00	0.00	-0.03
10.00	-2.63	0.00	0.00	-0.03
10.50	-2.69	-0.13	-2.11	-0.03
11.00	-2.69	0.00	0.00	-0.03
11.50	-2.69	0.00	0.00	-0.03

Initial Shutin

TIME min	SURFACE PRESSURE kPa	dP/dt kPa/min	BREAKOUT		CUMULATIVE PRODUCTION SCB
			GAS FLOWRATE scf/day		
12.00	-2.69	0.00	0.00		-0.03
13.00	-2.73	-0.06	-1.05		-0.03
13.50	-2.81	-0.13	-2.11		-0.03
14.00	-2.81	0.00	0.00		-0.03
14.50	-2.81	0.00	0.00		-0.03
15.00	-2.81	0.00	0.00		-0.03
15.50	-2.88	-0.13	-2.11		-0.03
16.00	-2.88	0.00	0.00		-0.03
17.00	-2.44	0.44	7.38		-0.03
20.02	-0.63	0.60	10.14		-0.01
20.50	-0.63	0.00	0.00		-0.01
21.00	-0.63	0.00	0.00		-0.01
22.00	-0.63	0.00	0.00		-0.01
24.00	-0.63	0.00	0.00		-0.01
26.00	-0.63	0.00	0.00		-0.01
28.00	-0.63	0.00	0.00		-0.01
30.00	-0.69	-0.03	-0.53		-0.01
32.00	-0.69	0.00	0.00		-0.01
34.00	-0.69	0.00	0.00		-0.01
36.00	-0.73	-0.03	-0.53		-0.01
38.00	-0.69	0.23	0.53		-0.01
40.00	-0.73	-0.03	-0.53		-0.01
42.00	-0.69	0.03	0.53		-0.01
44.00	-0.73	-0.03	-0.53		-0.03
46.00	-2.44	-0.84	-14.24		-0.03
48.00	-2.44	0.00	0.00		-0.03
50.00	-2.38	0.03	0.53		-0.03
60.00	-0.81	0.16	2.64		-0.01
70.00	-0.94	-0.01	-0.21		-0.01

Final Flow

TIME min	SURFACE PRESSURE kPa	dP/dt kPa/min	GAS FLOWRATE scf/day	CUMULATIVE PRODUCTION scf
72.75	6.00	2.52	42.58	0.07
73.00	5.94	-0.25	-4.22	0.07
73.50	5.94	0.00	0.00	0.07
74.00	5.88	-0.13	-2.11	0.07
74.50	6.00	0.25	4.22	0.07
75.00	6.06	0.13	2.11	0.07
75.50	6.13	0.13	2.11	0.07
76.00	6.25	0.25	4.22	0.07
76.50	6.38	0.25	4.22	0.07
77.50	6.56	0.19	3.17	0.08
78.00	6.63	0.13	2.11	0.08
78.50	6.75	0.25	4.22	0.08
78.75	6.81	0.25	4.22	0.08
79.00	6.88	0.25	4.22	0.08
80.00	7.30	0.63	10.55	0.09
81.00	7.69	0.19	3.17	0.09
82.00	8.44	0.75	12.66	0.10
83.00	8.56	0.13	2.11	0.10
84.00	9.38	0.81	13.72	0.11
85.00	9.44	0.06	1.06	0.11
86.00	10.13	0.69	11.61	0.12
87.00	10.19	0.06	1.06	0.12
88.00	10.81	0.63	10.55	0.13
89.00	10.88	0.06	1.06	0.13
90.00	11.19	0.31	5.28	0.13
91.00	11.44	0.25	4.22	0.13
92.00	11.56	0.13	2.11	0.14
93.00	12.00	0.44	7.39	0.14
94.00	12.06	0.06	1.06	0.14
96.00	12.69	0.31	5.28	0.15
97.00	12.81	0.13	2.11	0.15
98.00	12.94	0.13	2.11	0.15
99.00	13.50	0.36	9.50	0.16
100.00	13.50	0.00	0.00	0.16
101.00	13.81	0.31	5.28	0.16
102.00	14.00	0.19	3.17	0.16
103.00	14.44	0.44	7.39	0.17
104.00	14.56	0.13	2.11	0.17
105.00	14.69	0.13	2.11	0.17
106.00	15.00	0.31	5.28	0.18
107.00	15.13	0.13	2.11	0.18

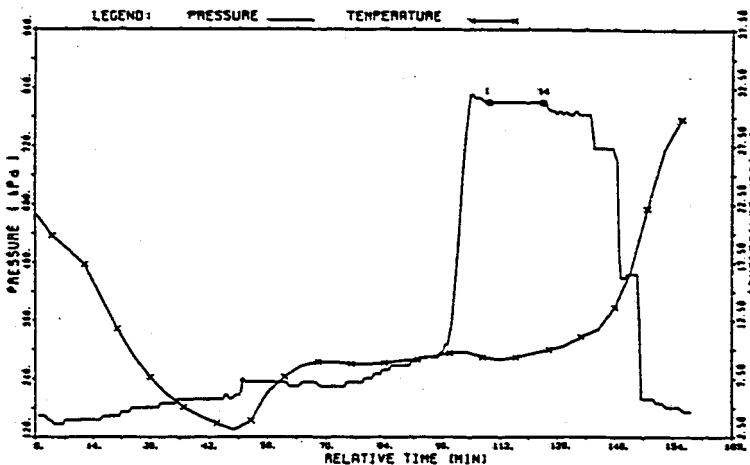
TIME min	SURFACE PRESSURE kPa	dP/dt kPa/min	GAS FLOWRATE scm/day	CUMMULATIVE PRODUCTION scm
108.00	15.69	0.56	9.50	0.18
109.00	15.75	0.06	1.06	0.18
110.00	15.88	0.13	2.11	0.19
112.00	16.36	0.34	5.81	0.19
113.00	16.88	0.31	5.28	0.20
114.00	17.00	0.13	2.11	0.20
115.00	17.31	0.31	5.28	0.20
116.00	17.88	0.56	9.50	0.21
117.00	17.88	0.00	0.00	0.21
118.00	18.19	0.31	5.28	0.21
119.00	18.63	0.44	7.39	0.22
120.00	18.81	0.19	3.17	0.22
122.00	19.50	0.34	5.81	0.23
123.00	19.94	0.44	7.39	0.23
124.00	20.19	0.25	4.22	0.24
125.00	20.75	0.56	9.51	0.24
126.00	20.88	0.13	2.11	0.24
127.00	21.44	0.56	9.51	0.25
128.00	21.68	0.44	7.39	0.26
129.00	22.19	0.31	5.28	0.26
130.00	22.81	0.63	10.56	0.27
131.00	22.94	0.13	2.11	0.27
132.00	23.36	0.63	10.56	0.28
133.00	24.13	0.56	9.51	0.28

Final Shutin

TIME min	SURFACE PRESSURE kPa	dP/dt kPa/min	BREAKOUT GAS FLOWRATE scm/day	CUMMULATIVE PRODUCTION scm
134.00	24.06	-0.06	-1.06	0.28
135.00	24.06	0.00	0.00	0.28
138.00	24.06	0.00	0.00	0.28
141.00	24.00	-0.02	-0.35	0.28
144.00	24.00	0.00	0.00	0.28
147.00	23.94	-0.02	-0.35	0.28
150.00	23.94	0.00	0.00	0.28
153.00	23.88	-0.02	-0.35	0.28
156.00	23.81	-0.02	-0.35	0.28
159.00	23.81	0.00	0.00	0.28
162.00	23.73	-0.02	-0.35	0.28

REF#: C-76-999-00888-66

TEST DATE: 90/03/23


CHEVRON EAST HUME RIVER I-20
400/ 65.594 / 129.172 /00
DST#02
58.00m to 133.00m
SURFACE SAND

DEPTH: 63.00m

RECORDER # 001767

PRESSURE
kPa(a)

1) Initial Hydro : 810.
14) Final Hydro. : 810.

RECOVERY DATA

TOTAL FLUID RECOVERY CONSISTED OF 40.00 M OF FLUID WATER FROM CASING. NO GAS TO SURFACE.

REMARKS AND TEST SUMMARY

Misrun - lost the packer seat during the preflow.

TABLE OF CONTENTS

PAGE 1	PAGE 2	PAGE 3	PAGE 4
General Data	Tool Sequence	PRESSURE	Plot Summary
Blow Description	Recorder Summary	-TIME	Reservoir Calculations
Liquid Recovery	Mud and Hole Data	LISTING	-Parameters used
Measurements			-Results

***** RECORDER PAGES & FIGURES *****

BAKER OIL TOOLS CANADA
DST#02 REPORT

p.1

Well name : CHEVRON EAST FUME RIVER I-20
Location : 400/ 65.594 / 129.172 /00
Interval : 58.00m to 133.00m
Test Date : 90/03/23
Test Type : DUAL CONVENTIONAL BOTTOM HOLE
Formation : SURFACE SAND

K.B.Elevation : 75.12m
Grd.Elevation : 68.96m
TD @ test Date: 133.00m
Ticket Number : 81213
Unit Number :

Started in hole at : 0100 hrs
Tool opened at : 0133 hrs
Reverse circulated?: NO
Contractor & Rig No: SHEHTAH #1E
Baker#2 : 1 of 1 on the same trip.

Operator: CHEVRON CANADA RESOURCES LIMITED
14TH FLOOR
500 - 5TH AVE. S.W.
CALGARY, ALBERTA
T2P0L7

Company Rep : ANDERSON K
Testers : FORBES G
5 REPORTS(S) TO: BRIAN GLOVER
Company:

BLOW DESCRIPTION

PREFLOW: Very weak air blow decreasing throughout. No gas to surface.

TOTAL LIQUID RECOVERY : 40.00m

For DST# 2 through DST# 2

40.00m MUDDY WATER FROM CASING.

GAS MEASUREMENTS

No Gas Measurements

TOOL SEQUENCE

SUB	LENGTH (m)
CROSS OVER SUB	.30
SHUT-IN TOOL	2.58
BTM HOLE SAMPLER	1.03
HYDRAULIC TOOL	1.50
INSIDE RECORDER	1.69
CROSS OVER SUB	.30
CONV. PACKER	1.24
PACKER STICK DOWN	1.04
CROSS OVER SUB	.30
PERFORATIONS	1.53
SPACING	2.38
OUTSIDE RECORDER	2.06
CROSS OVER SUB	.30
DRILL PIPE	65.18
CROSS OVER SUB	.49
BIT SUB	.87
CROSS OVER SUB	.30
BULL NOSE	.55

*****RECORDER SUMMARY*****

1) NUMBER : 001767	ELECTRONIC GAUGE.
TYPE : DMRB	
LOCATION: OUTSIDE	
RANGE: 34500.00kPa(a)	
DEPTH : 63.00m	
2) NUMBER : 001785	ELECTRONIC GAUGE.
TYPE : DMRB	
LOCATION: INSIDE	
RANGE: 68900.00kPa(a)	
DEPTH : 56.00m	
3) NUMBER : 014156	ABOVE INTERVAL.
TYPE : K-3	
LOCATION: OUTSIDE	
RANGE: 13700.00kPa	
DEPTH : 63.00m	

***** TOOL TOTAL 83.64

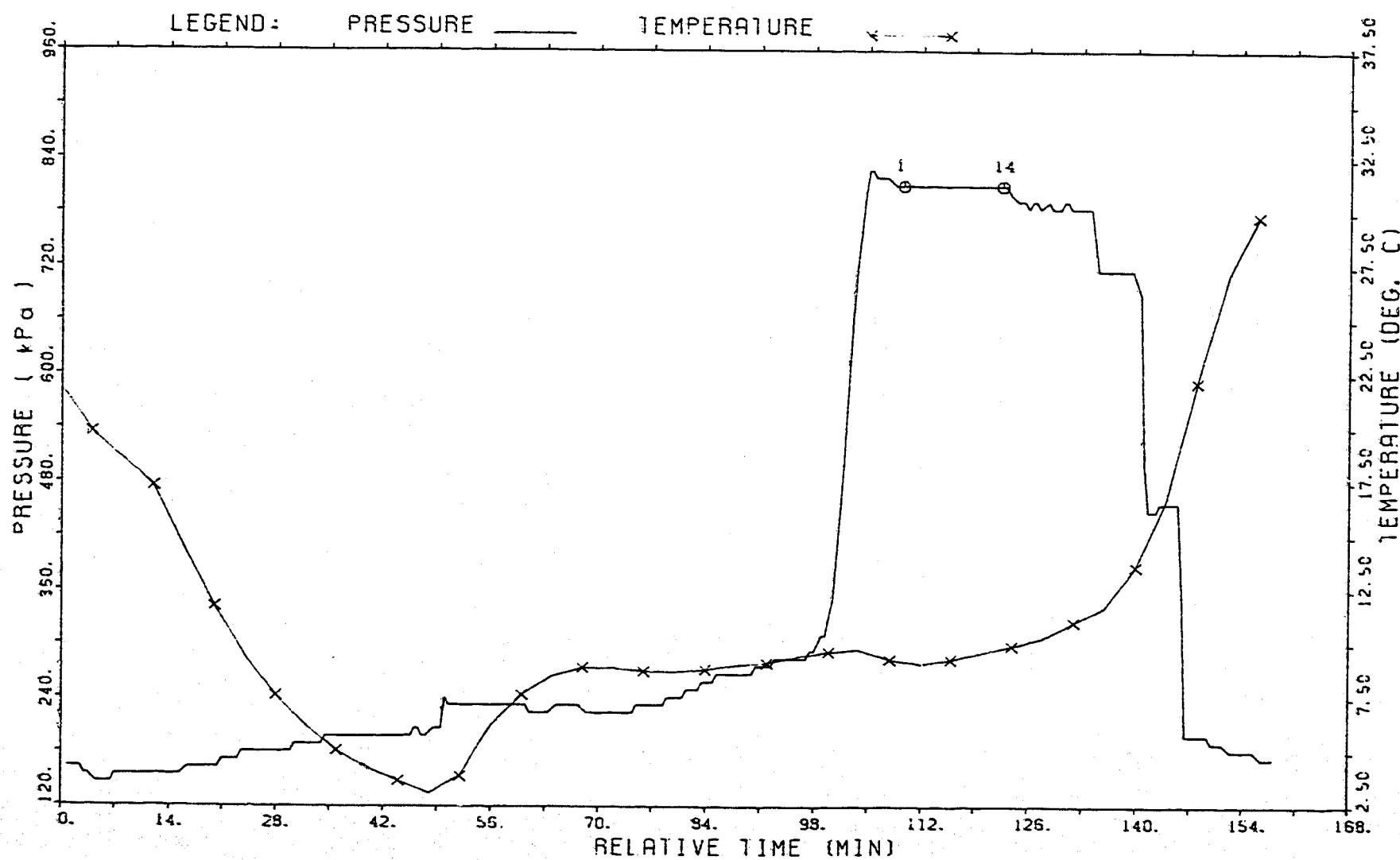
DRILL COLLARS

ID= 75.0mm: 45.72
 ID= :

DRILL PIPE

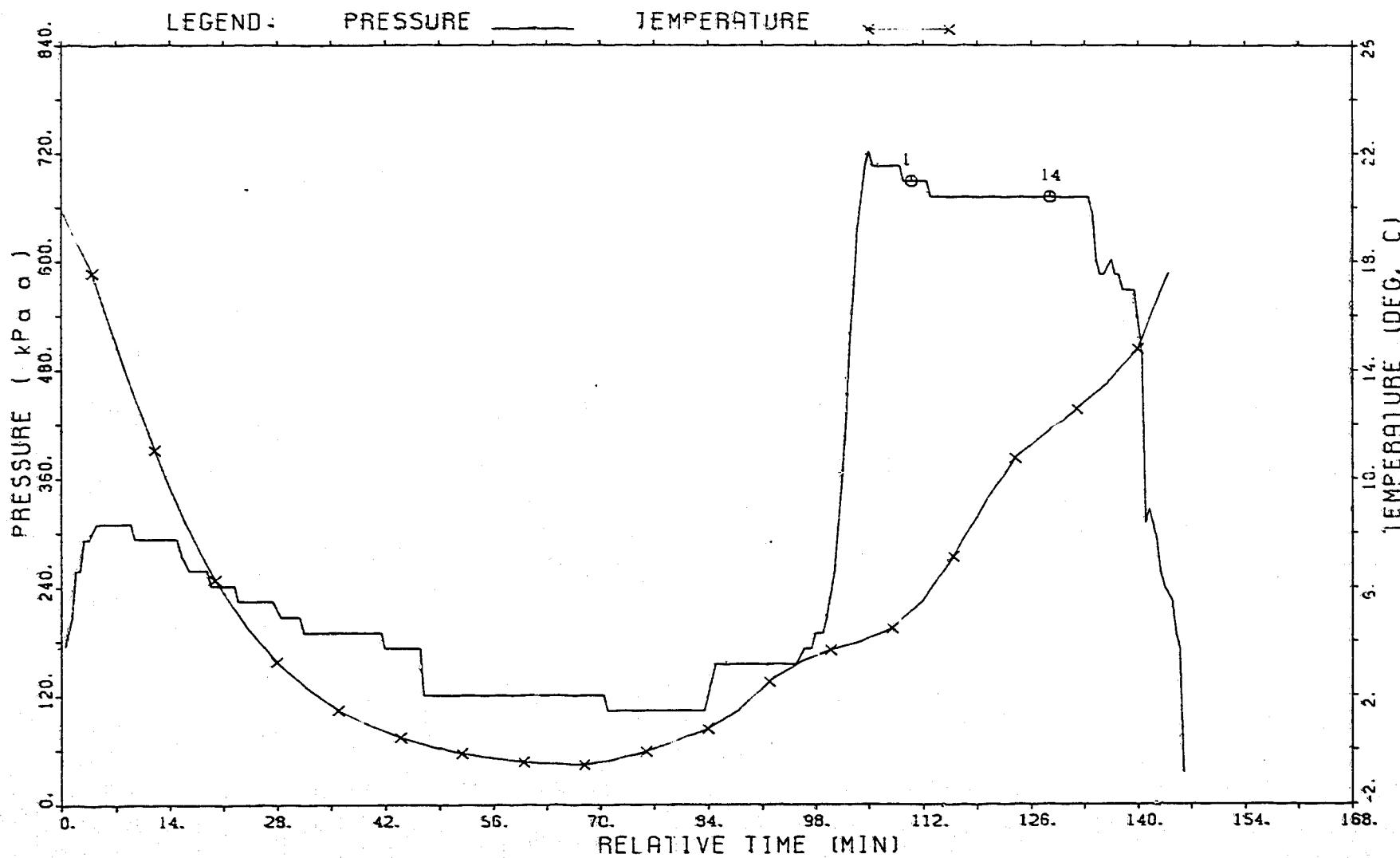
OD=114.3mm: 9.24
 OD= :

COLLAR-PIPE TOTAL 54.96


STICK UP ABOVE TABLE : 5.60
 TOOL ABOVE INTERVAL : 8.64
 TOTAL INTERVAL : 75.00
 BOTTOM CHOKE SIZE: 12.70 mm

MUD AND HOLE DATA

Caliper Hole Size @ Test Depth: 220.00mm	Water Loss :
Hole Condition at Test Time : EXCELLENT	Filter Cake:
Hole Conditioned Prior to Test? : YES	
Mud Weight : 1000.0 kg/m ³	Main Hole Size: 216.00mm
Mud Type : WATER	
Viscosity :	Temperature @63.00m = 9.6C


CHEVRON EAST HUME RIVER
65.594/129.172 DST #2
ELECTRONIC GAUGE #1767

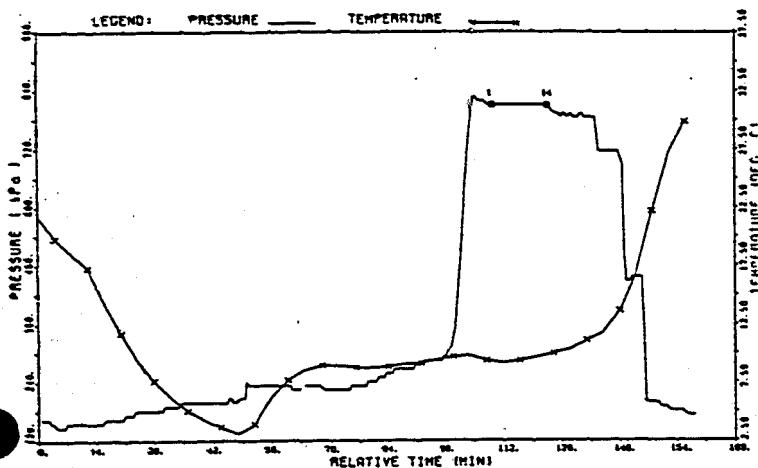
LEGEND. O 1 = SIC. 1 Pa
14 SIC.

CHEVRON EAST HUME RIVER
65.594/129.172 DST #2
ELECTRONIC GAUGE #1785

LEGEND: \odot 1 = 690. \odot 14 = 672

DST#02
CHEVRON EAST HUME RIVER I-20
58.00m to 133.00m

PRESSURE RECORDER NUMBER : 001767


DEPTH : 63.00m
TYPE : DMRB

LOCATION : OUTSIDE
CAPACITY : 34500.00kPa(a)

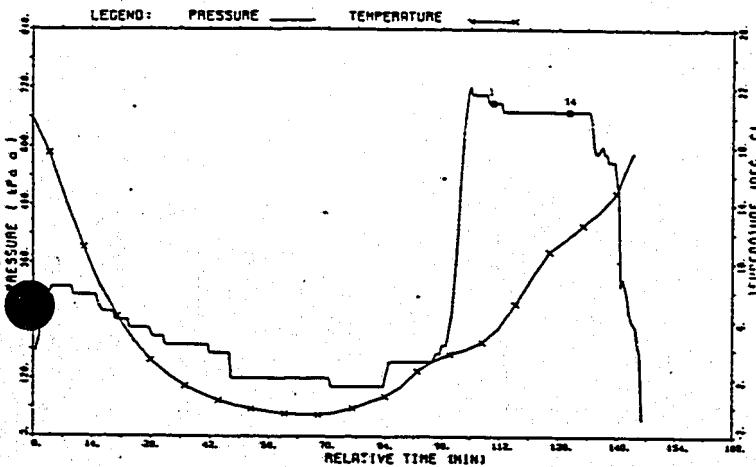
PRESSURE
kPa(a)

***** TEMPERATURE AT RECORDER DEPTH = 9.6 C

1) Initial Hydro : 810.
14) Final Hydro. : 810.

ELECTRONIC GAUGE.

PRESSURE RECORDER NUMBER : 001785


DEPTH : 56.00m
TYPE : DMRB

LOCATION : INSIDE
CAPACITY : 68900.00kPa(a)

PRESSURE
kPa(a)

***** TEMPERATURE AT RECORDER DEPTH = 4.5 C

1) Initial Hydro : 690.
14) Final Hydro. : 672.

ELECTRONIC GAUGE.

DST#02
CHEVRON EAST HUME RIVER I-20
58.00m to 133.00m

PRESSURE RECORDER NUMBER : 014156

DEPTH : 63.00m
TYPE : K-3

LOCATION : OUTSIDE
CAPACITY : 13700.00 kPa

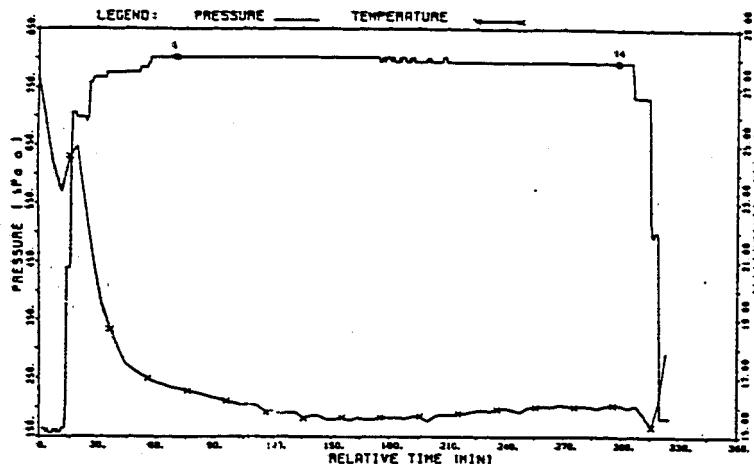
PRESSURE
kPa

1) Initial Hydro : 561.
14) Final Hydro. : 536.

① H

REF#:C-76-999-00888-66

TEST DATE: 90/03/23


CHEVRON EAST HUME RIVER I-20
400/ 65.594 / 129.172 /00
DST#03
58.00m to 133.00m
SURFACE SAND

DEPTH: 63.00m

RECORDER # 001767

PRESSURE
kPa(a)

1) Initial Hydro : 802.
14) Final Hydro. : 793.

RECOVERY DATA

TOTAL FLUID RECOVERY CONSISTED OF 47.00 M OF MUDDY WATER FROM CASING. NO GAS TO SURFACE.

REMARKS AND TEST SUMMARY

Misrun - lost no mud on the flows, but the charts indicate the pipe was full when the tool was opened.

TABLE OF CONTENTS

PAGE 1	PAGE 2	PAGE 3	PAGE 4
General Data	Tool Sequence	PRESSURE	Plot Summary
Blow Description	Recorder Summary	-TIME	Reservoir Calculations
Liquid Recovery	Mud and Hole Data	LISTING	-Parameters used
s Measurements			-Results

***** RECORDER PAGES & FIGURES *****

BAKER OIL TOOLS CANADA
DST#03 REPORT

p.1

Well name : CHEVRON EAST HUME RIVER I-20
Location : 400/ 65.594 / 129.172 /00
Interval : 58.00m to 133.00m
Test Date : 90/03/23
Test Type : DUAL CONVENTIONAL BOTTOM HOLE
Formation : SURFACE SAND

K.B.Elevation : 75.12m
Grd.Elevation : 68.96m
TD @ test Date: 133.00m
Ticket Number : 81214
Unit Number :

Started in hole at : 0300 hrs
Tool opened at : 0337 hrs
Reverse circulated?: NO
Contractor & Rig No: SHEHTAH #1E
Baker#3 : 1 of 1 on the same trip.

Operator: CHEVRON CANADA RESOURCES LIMITED

14TH FLOOR
500 - 5TH AVE. S.W.
CALGARY, ALBERTA
T2P0L7

Company Rep : ANDERSON K
Testers : FORBES G

5 REPORTS(S) TO: BRIAN GLOVER
Company:

BLOW DESCRIPTION

PREFLOW: Strong air blow immediately decreasing to nil in 2 minutes. No gas to surface.

FINAL FLOW: Strong air blow immediately, decreasing to nil in 90 seconds. No to surface.

TOTAL LIQUID RECOVERY : 47.00m

For DST# 3 through DST# 3
3 Fluid Samples
Sent to: GEO TECH

Btm. Hole Sampler #: NO #
Sent to: RERAN

47.00m MUDDY WATER FROM CASING.

GAS MEASUREMENTS

No Gas Measurements

DST#03
CHEVRON EAST HUME RIVER I-20
58.00m to 133.00m

p.2

TOOL SEQUENCE

SUB	LENGTH (m)
CROSS OVER SUB	.30
SHUT-IN TOOL	2.58
BTM HOLE SAMPLER	1.03
HYDRAULIC TOOL	1.50
INSIDE RECORDER	1.69
CROSS OVER SUB	.30
CONV. PACKER	1.24
PACKER STICK DOWN	1.04
CROSS OVER SUB	.30
PERFORATIONS	1.53
SPACING	2.38
OUTSIDE RECORDER	2.06
CROSS OVER SUB	.30
DRILL PIPE	65.18
CROSS OVER SUB	.49
BIT SUB	.87
CROSS OVER SUB	.30
BULL NOSE	.55

RECORDER SUMMARY

1)	NUMBER : 001767	ELECTRONIC GAUGE.
	TYPE : DMRB	
	LOCATION: OUTSIDE	
	RANGE: 34500.00kPa(a)	
	DEPTH : 63.00m	
2)	NUMBER : 001785	ELECTRONIC GAUGE.
	TYPE : DMRB	
	LOCATION: INSIDE	
	RANGE: 68900.00kPa(a)	
	DEPTH : 56.00m	

***** TOOL TOTAL 83.64

DRILL COLLARS

ID= 75.0mm: 45.72

ID= :

DRILL PIPE

OD=114.3mm: 9.24

OD= :

COLLAR-PIPE TOTAL 54.96

STICK UP ABOVE TABLE : 5.60

TOOL ABOVE INTERVAL : 8.64

TOTAL INTERVAL : 75.00

BOTTOM CHOKES SIZE: 12.70 mm

MUD AND HOLE DATA

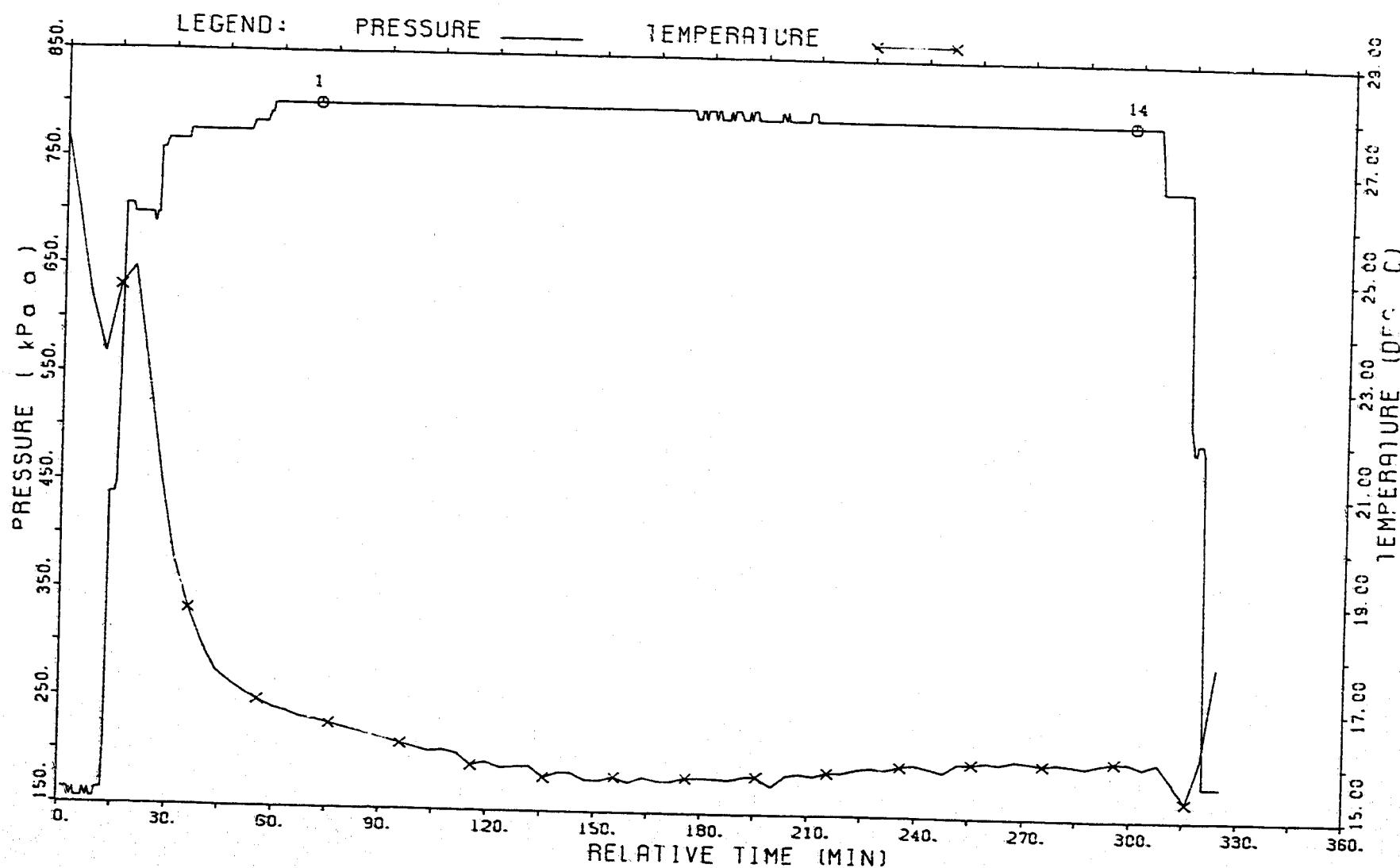
Caliper Hole Size @ Test Depth: 220.00mm Water Loss :

Hole Condition at Test Time : EXCELLENT Filter Cake:

Hole Conditioned Prior to Test? : NO

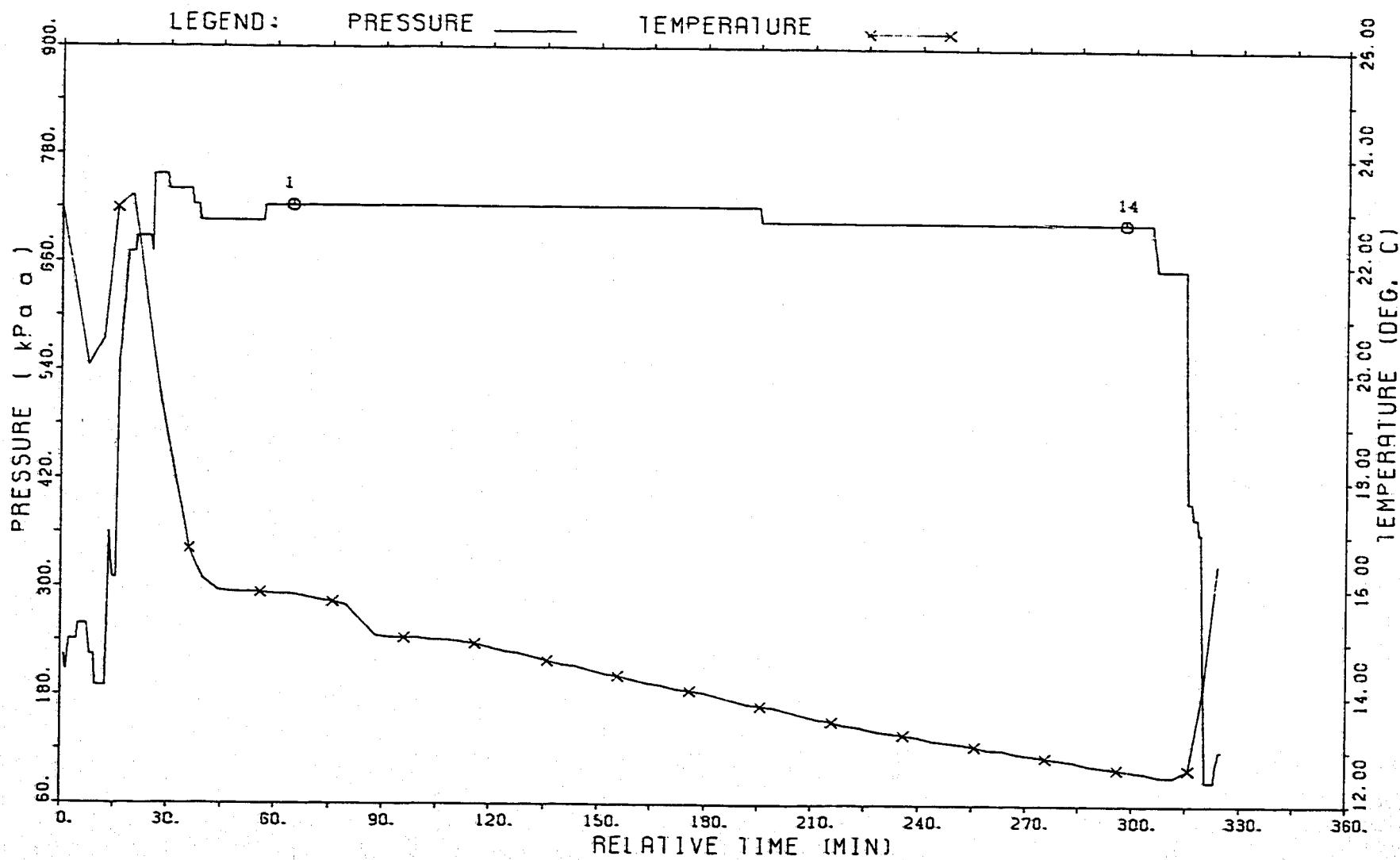
Mud Weight :

Main Hole Size: 216.00mm


Mud Type : WATER

Temperature @63.00m = 15.7C

Viscosity :


CHEVRON EAST HUME RIVER
65.594/129.172 DST #3
ELECTRONIC GAUGE #1767

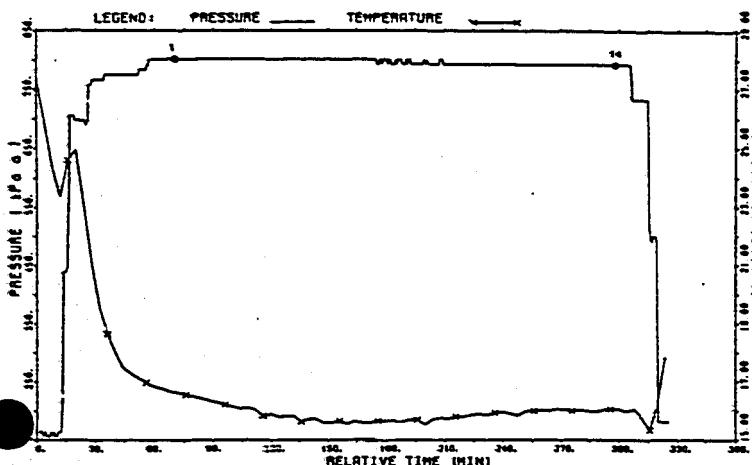
LEG. NO. ① 1 = 902
14 733.

CHEVRON EAST HUME RIVER
65.594/129.172 DST #3
ELECTRONIC GAUGE #1785

LEGEND: \circ 1 = 724. \circ 14 = 707.

DST#03
CHEVRON EAST HUME RIVER I-20
58.00m to 133.00m

PRESSURE RECORDER NUMBER : 001767


DEPTH : 63.00m
TYPE : DMRB

LOCATION : OUTSIDE
CAPACITY : 34500.00kPa(a)

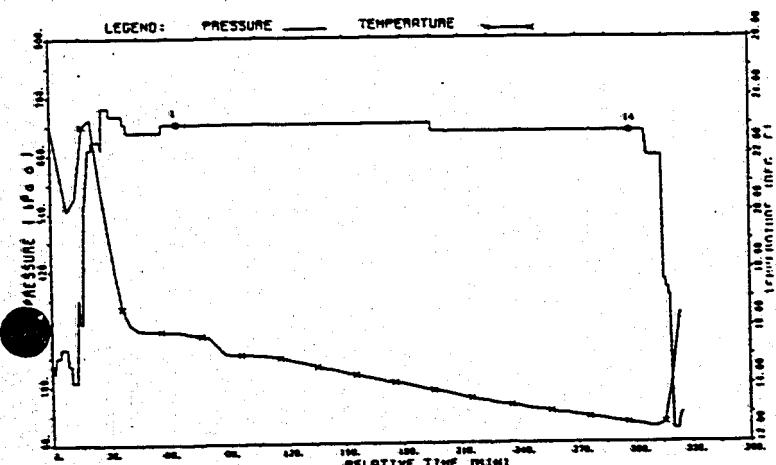
PRESSURE
kPa(a)

***** TEMPERATURE AT RECORDER DEPTH = 15.7 C

1) Initial Hydro : 802.
14) Final Hydro. : 793.

ELECTRONIC GAUGE.

PRESSURE RECORDER NUMBER : 001785


DEPTH : 56.00m
TYPE : DMRB

LOCATION : INSIDE
CAPACITY : 68900.00kPa(a)

PRESSURE
kPa(a)

***** TEMPERATURE AT RECORDER DEPTH = 14.4 C

1) Initial Hydro : 724.
14) Final Hydro. : 707.

ELECTRONIC GAUGE.

CHEVRON EAST HUME RIVER I-20
 400/ 65.594 / 129.172 /00
 DST#04
 58.00m to 132.50m
 SURFACE SAND

DEPTH: 61.00m

PRESSURE
 kPa(a)

RECODER # 001767

LEGEND: PRESSURE — TEMPERATURE —

1) Initial Hydro : 776.
 2) 1st Flow Start: 457.
 3) 1st Flow End : 491.
 4) END 1st Shutin: 509.
 5) 2nd Flow Start: 500.
 6) 2nd Flow End : 500.
 7) END 2nd Shutin: 500.
 14) Final Hydro. : 767.

TEST TIMES (MIN)

1stFLOW	:	16.0
SHUTIN	:	29.5
2ndFLOW	:	60.0
SHUTIN	:	93.0

RECOVERY DATA

TOTAL FLUID RECOVERY CONSISTED OF 15.00 M OF MUDDY WATER. NO GAS TO SURFACE.

REMARKS AND TEST SUMMARY

Test results indicate a mechanically successful test. Bottom hole pressures and the shape of the shut-in curves suggest HIGH PERMEABILITY within the interval tested. The fluid recovery equalized with the formation pressure during the preflow.

TABLE OF CONTENTS

PAGE 1	PAGE 2	PAGE 3	PAGE 4
General Data	Tool Sequence	PRESSURE	Plot Summary
Blow Description	Recorder Summary	-TIME	Reservoir Calculations
Liquid Recovery	Mud and Hole Data	LISTING	-Parameters used
Gas Measurements			-Results

***** RECORDER PAGES & FIGURES *****

BAKER OIL TOOLS CANADA
DST#04 REPORT

p.1

Well name : CHEVRON EAST HUME RIVER I-20
Location : 400/ 65.594 / 129.172 /00
Interval : 58.00m to 132.50m
Test Date : 90/03/23
Test Type : INFLATE BOTTOM HOLE
Formation : SURFACE SAND

K.B.Elevation : 75.12m
Grd.Elevation : 68.96m
TD @ test Date: 133.00m
Ticket Number : 81215
Unit Number :

Started in hole at : 1030 hrs
Tool opened at : 1103 hrs
Reverse circulated?: NO
Contractor & Rig No: SHEHTAH #1E
Baker#4 : 1 of 1 on the same trip.

Operator: CHEVRON CANADA RESOURCES LIMITED

14TH FLOOR
500 - 5TH AVE. S.W.
CALGARY, ALBERTA
T2P0L7

Company Rep : ANDERSON K

Testers : FORBES G

5 REPORTS(S) TO: BRIAN GLOVER
Company:

BLOW DESCRIPTION

PREFLOW: Strong air blow immediately decreasing to nil in 4 minutes. No gas to surface.

FINAL FLOW: Very weak air blow decreasing to nil in 3 minutes. No gas to surface.

TOTAL LIQUID RECOVERY : 15.00m

For DST# 4 through DST# 4

3 Fluid Samples
Sent to: GEO TECH

Btm. Hole Sampler #: NO #
Sent to: GEO TECH

15.00m MUDDY WATER.

GAS MEASUREMENTS

No Gas Measurements

TOOL SEQUENCE

SUB	LENGTH (m)
CROSS OVER SUB	.30
HYDRAULIC TOOL	1.50
BTM HOLE SAMPLER	1.03
SPACING	.31
INSIDE RECORDER	1.38
INFLATE PUMP	2.28
SCREEN	1.16
TOP INFLATE PACKER	1.78
PACKER STICK DOWN	.82
PORTED COMB SUB	.30
OUTSIDE RECORDER	2.06
BLANK SPACING	.31
SPACING	2.37
CROSS OVER SUB	.30
DRILL PIPE	65.18
CROSS OVER SUB	.49
BIT SUB	.37
CROSS OVER SUB	.30
BELLY SPRING	2.00

RECORDER SUMMARY

1) NUMBER : 001767	ELECTRONIC GAUGE.
TYPE : DMRB	
LOCATION: OUTSIDE	
RANGE: 68900.00kPa(a)	
DEPTH : 61.00m	
2) NUMBER : 001785	ABOVE INTERVAL.
TYPE : DMRB	
LOCATION: INSIDE	
RANGE: 68900.00kPa(a)	
DEPTH : 52.00m	

***** TOOL TOTAL 84.24
 DRILL COLLARS
 ID= 75.0mm: 45.72
 ID= :
 DRILL PIPE
 OD=114.3mm: 9.24
 OD= :
 COLLAR-PIPE TOTAL 54.96

STICK UP ABOVE TABLE : 6.70
 TOOL ABOVE INTERVAL : 9.74
 TOTAL INTERVAL : 74.50
 BOTTOM CHOCK SIZE: 12.70 mm

MUD AND HOLE DATA

Caliper Hole Size @ Test Depth: 339.00mm	Water Loss :
Hole Condition at Test Time : EXCELLENT	Filter Cake:
Hole Conditioned Prior to Test? : NO	
Mass Weight :	Main Hole Size: 216.00mm
Mass Type : WATER	
Viscosity :	Temperature @61.00m = 15.0C

TOOL SEQUENCE

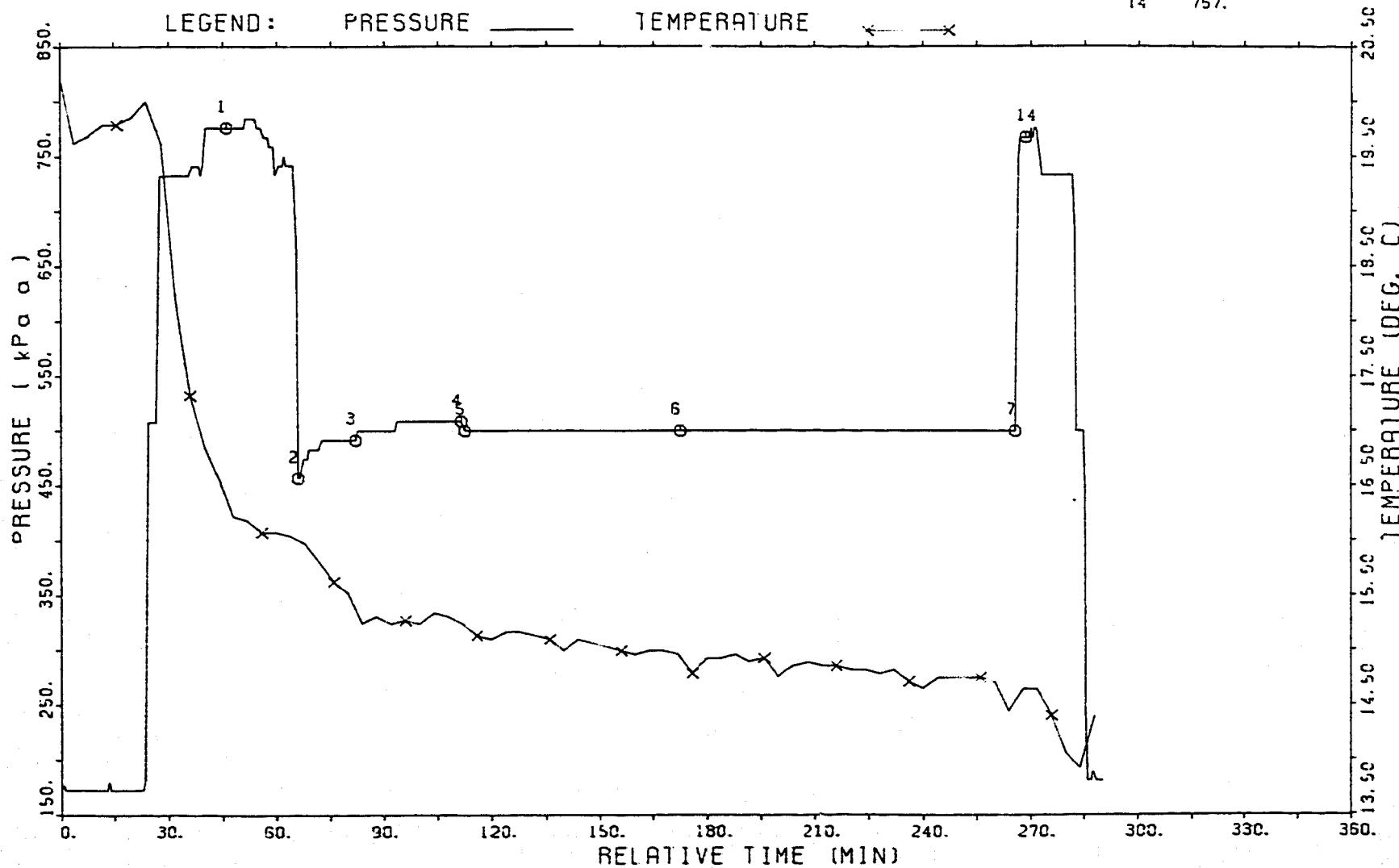
SUB	LENGTH (m)
CROSS OVER SUB	.30
HYDRAULIC TOOL	1.50
BTM HOLE SAMPLER	1.03
SPACING	.31
INSIDE RECORDER	1.38
INFLATE PUMP	2.28
SCREEN	1.16
TOP INFLATE PACKER	1.78
PACKER STICK DOWN	.82
PORTED COMB SUB	.30
OUTSIDE RECORDER	2.06
BLANK SPACING	.31
SPACING	2.37
CROSS OVER SUB	.30
DRILL PIPE	65.18
CROSS OVER SUB	.49
BIT SUB	.37
CROSS OVER SUB	.30
BELLY SPRING	2.00

RECORDER SUMMARY

1) NUMBER : 001767	ELECTRONIC GAUGE.
TYPE : DMRB	
LOCATION: OUTSIDE	
RANGE: 68900.00kPa(a)	
DEPTH : 61.00m	
2) NUMBER : 001785	ABOVE INTERVAL.
TYPE : DMRB	
LOCATION: INSIDE	
RANGE: 68900.00kPa(a)	
DEPTH : 52.00m	

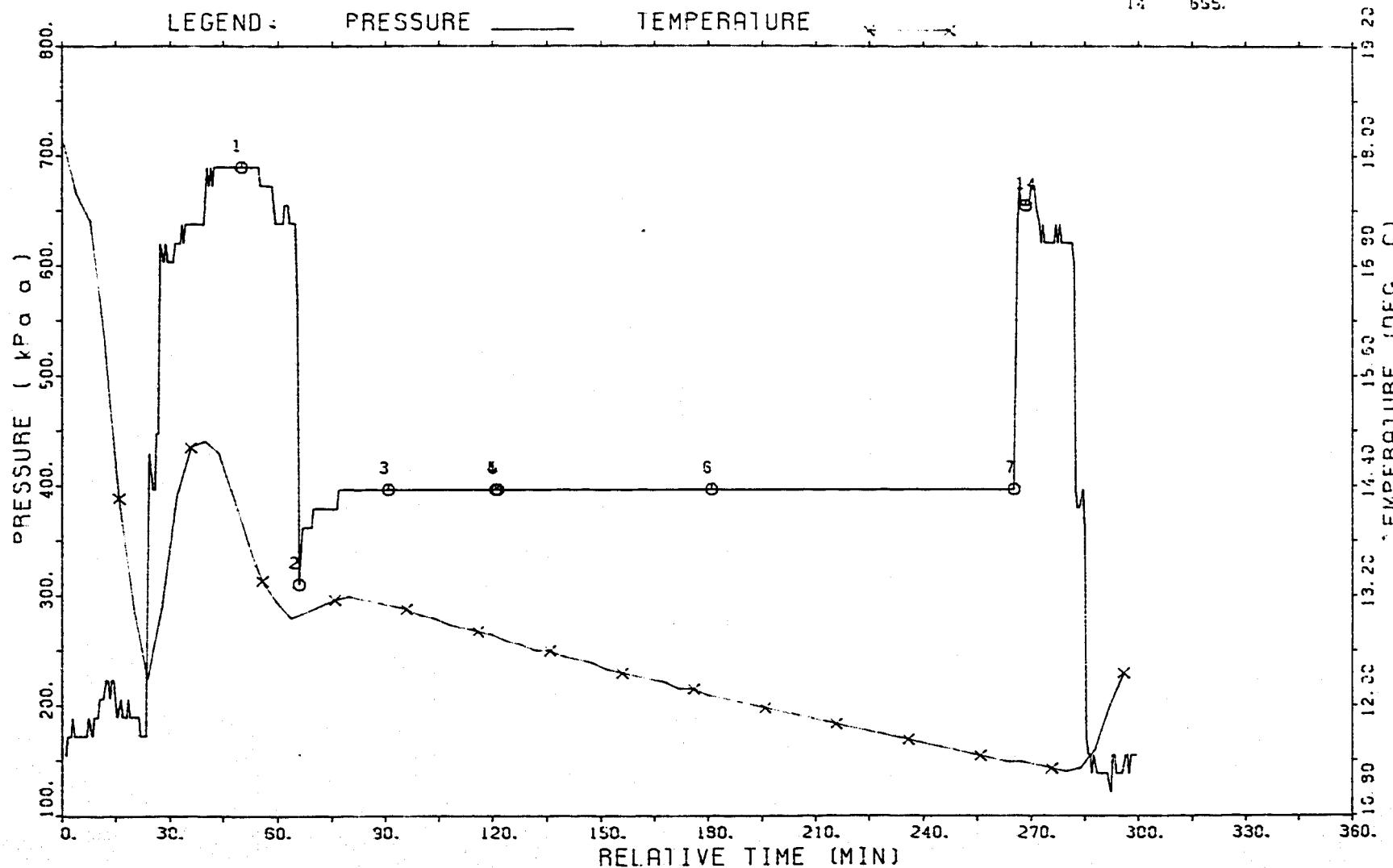
***** TOOL TOTAL 84.24
 DRILL COLLARS
 ID= 75.0mm: 45.72
 ID= :
 DRILL PIPE
 OD=114.3mm: 9.24
 OD= :

COLLAR-PIPE TOTAL 54.96


STICK UP ABOVE TABLE : 6.70
 TOOL ABOVE INTERVAL : 9.74
 TOTAL INTERVAL : 74.50
 BOTTOM CHOCK SIZE: 12.70 mm

MUD AND HOLE DATA

Caliper Hole Size @ Test Depth: 339.00mm	Water Loss :
Hole Condition at Test Time : EXCELLENT	Filter Cake:
Hole Conditioned Prior to Test? : NO	
Mr. Weight :	Main Hole Size: 216.00mm
Mr. Type : WATER	
Viscosity :	Temperature @61.00m = 15.0C


CHEVRON EAST HUME RIVER
65.594/129.172 DST #4
ELECTRONIC GAUGE #1767

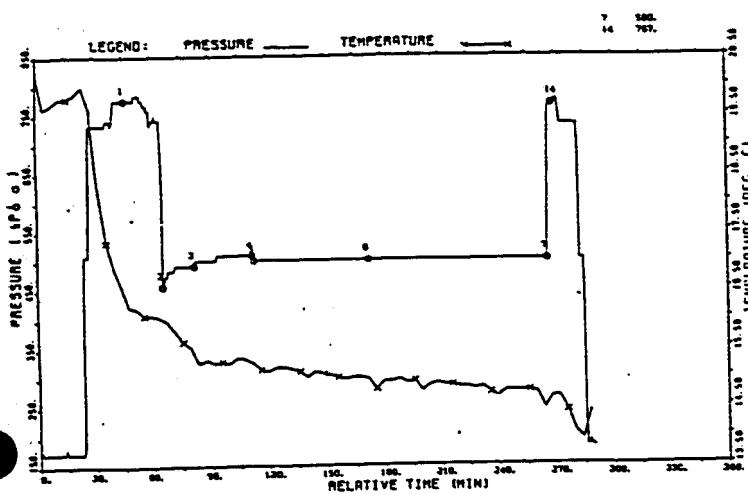
LEGEND: \circ = 775. Pulse
1 2 3 4 5 6 7 14
775. 457. 491. 503. 500. 500. 500. 757.

CHEVRON EAST HUME RIVER
65.594/129.172 DST #4
ELECTRONIC GAUGE #1785

LEGEND: 0 = 630. ~~Point~~
1 = 340.
2 = 327.
3 = 327.
4 = 327.
5 = 327.
6 = 327.
7 = 327.
14 = 655.

DST#04
 CHEVRON EAST HUME RIVER I-20
 58.00m to 132.50m

PRESSURE RECORDER NUMBER : 001767


DEPTH : 61.00m
 TYPE : DMRB

LOCATION : OUTSIDE
 CAPACITY : 68900.00kPa(a)

PRESSURE
 kPa(a)

***** TEMPERATURE AT RECORDER DEPTH = 15.0 C

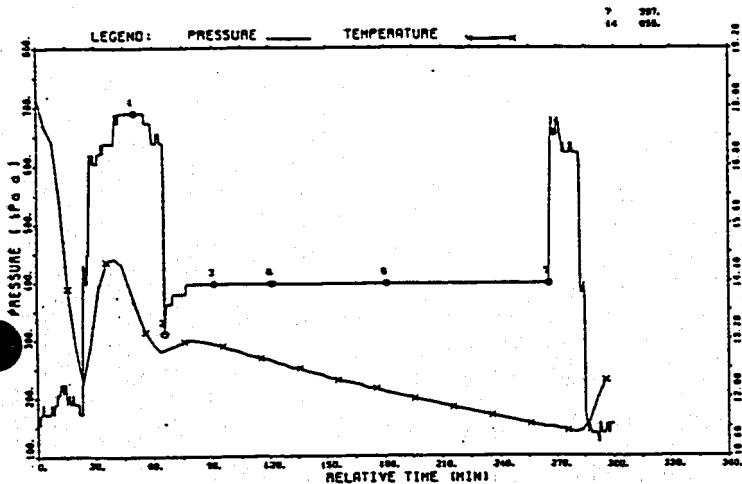
- 1)Initial Hydro : 776.
- 2)1st Flow Start: 457.
- 3)1st Flow End : 491.
- 4)END 1st Shutin: 509.
- 5)2nd Flow Start: 500.
- 6)2nd Flow End : 500.
- 7)END 2nd Shutin: 500.
- 14)Final Hydro. : 767.

ELECTRONIC GAUGE.

TEST TIMES (MIN)

1st FLOW :	16.0
SHUTIN:	29.5
2nd FLOW :	60.0
SHUTIN:	93.0

PRESSURE RECORDER NUMBER : 001785


DEPTH : 52.00m
 TYPE : DMRB

LOCATION : INSIDE
 CAPACITY : 68900.00kPa(a)

PRESSURE
 kPa(a)

***** TEMPERATURE AT RECORDER DEPTH = 12.7 C

- 1)Initial Hydro : 690.
- 2)1st Flow Start: 310.
- 3)1st Flow End : 397.
- 4)END 1st Shutin: 397.
- 5)2nd Flow Start: 397.
- 6)2nd Flow End : 397.
- 7)END 2nd Shutin: 397.
- 14)Final Hydro. : 655.

ABOVE INTERVAL.

APPENDIX 6

LOCALITY MAP

PL

**PROPOSE
CHE
IN U
GRID
NOR
CANAD**

LEGEND

UTM coordinates are computed
Bearings were derived (adjusted)
are referred to meridian 129°1'
Distances are expressed in m
Distances shown in traverse are
horizontal at general ground level
for the computation of coordinates
reduced to the UTM plane by
scale factor of 0.999575
Distances shown on grid area
Authorized control monuments
Monuments placed shown thus
Monuments found shown thus
Traverse lines shown thus
Wooden hub placed shown thus
Elevations were derived from
Survey was completed prior to
not necessarily agree with proposed

AFFIDAVIT

I, Akbar Karsan, of the City
make oath and say that I have
instructions of the Surveyor General
executed the survey shown by
field notes are correct and true
SO HELP ME GOD.

Sworn before me at the City
in the Province of Alberta this
of February, 1990.

4 Commissioner for Oaths in
the Province of Alberta.
Robert A. Gibennus
25/03/1991

CHEVRON CANAD

129°15'

129°15'

129°15'

129°15'

129°15'

129°15'

129°15'

129°15'

GRID AREA 66°00', 129°15'

SCALE = 1:100 000

90°20'33"

11347.52

129°15'

18577.513

66°00'

18013.41

129°30'

18577.502

129°15'

02723

129°15'

18013.438

129°15'

18577.524

129°15'

18013.438

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

129°15'

18013.41

129°15'

18577.513

GRID AREA

SCALE :

90° 2'

"34/

129° 30'.

66° 00'

80 70 60 50

49

48

47

46

45

44

43

42

71 61 51 41

65° 50'

1142/1

90° 20'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

18577602

0° 27' 23"

180° 15' 24"

464° 43' 38"

180° 15' 49"

45° 50'

129° 30'.

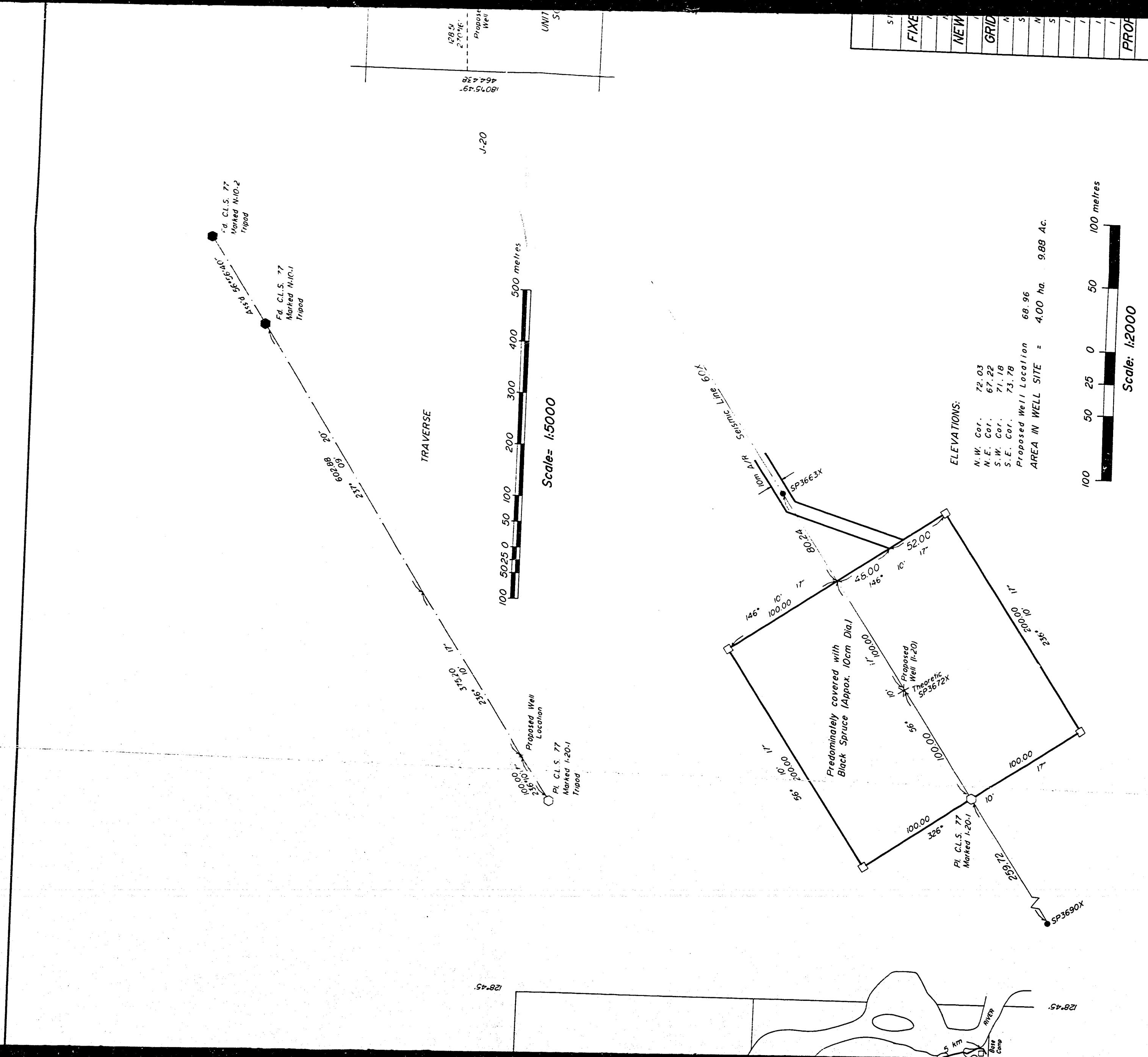
18577602

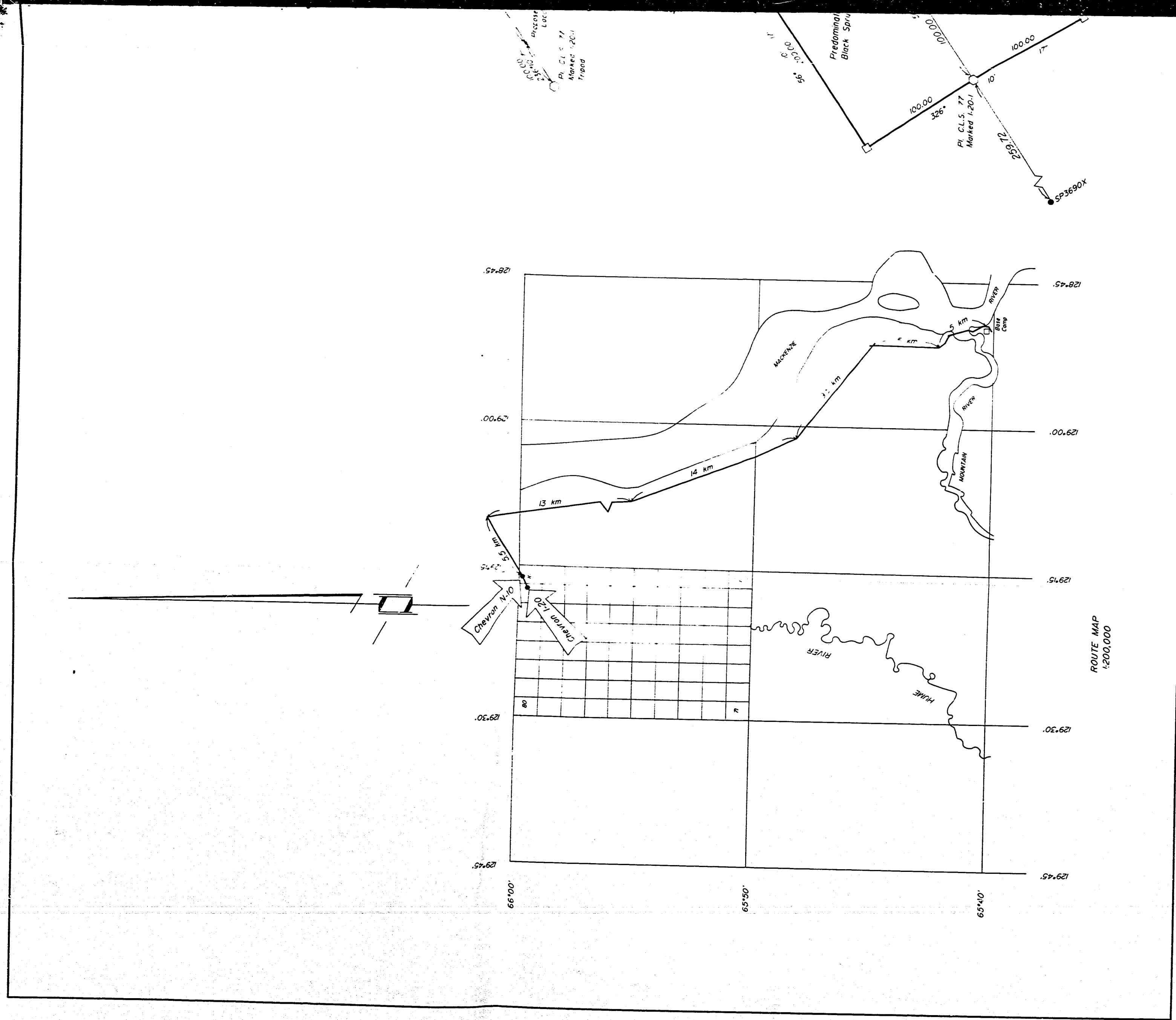
0° 27' 23"

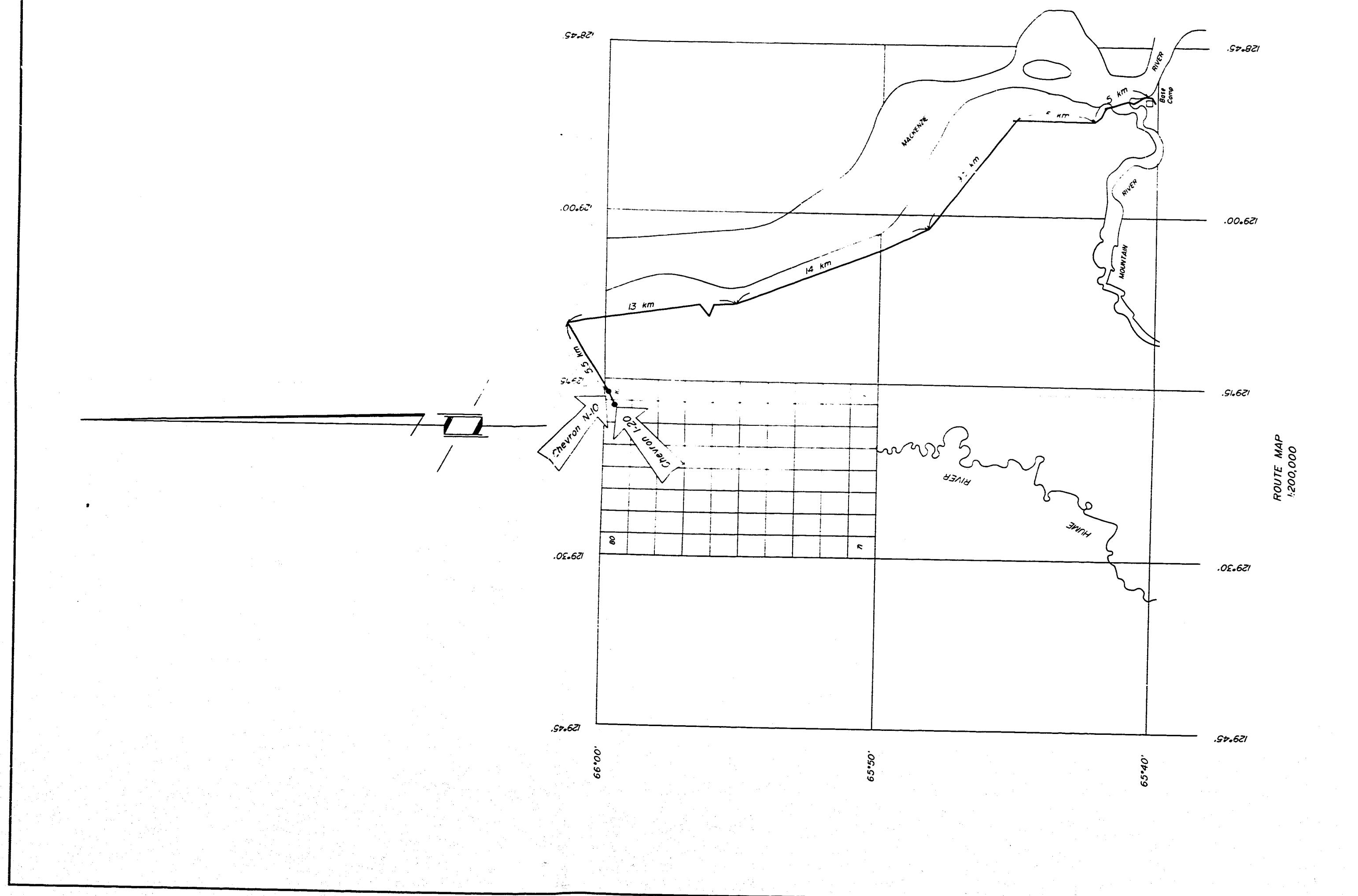
180° 15' 24"

464° 43' 38"

180° 15' 49"


45° 50'


129° 30'.


18577602

0° 27' 23"

180° 15' 24"

APPENDIX 7

DRILLING FLUID REPORT

Chevron East Hume River I-20
65 D 55' 33.91"N
129 D 41' 39.43"W
Well Recap

M-I Drilling Fluids Canada, Inc.

Chevron East Hume River I-20
65 D 55' 33.91"N
129 D 41' 39.43"W

Spud Date:	March 12, 1990
Rig Release Date:	March 21, 1990
Total Days:	10
Total Depth:	365 m

Sales Representative:	Mark Ralph
Field Representative:	Tim Aldridge

TABLE OF CONTENTS

1. Recap by Interval
2. Graphics Section
 - a. Days vs. Depth
 - b. Mud Costs - Weekly/Total
 - c. PV/YP vs. Depth
3. Summary of Daily Mud Checks

Chevron East Hume River
I-20

CONDUCTOR HOLE SECTION:

Interval: 0 - 44 m
Mud Type: Gel / Slurry
Hole Size: 660 mm
Casing Size: 508 mm
Total Days: 2

Comments: Lost circulation at 6, 9 and 17 metres. Spotted LCM and Sawdust pills over thief zone. Regained partial circulation then zero returns. Cemented off thief zone. Drilled out cement and dumped cement cut mud. Drilled to 44 metres and lost circulation. Mixed three LCM and Sawdust pills. Regained circulation. Ran and cemented conductor pipe.

Material Usage:

<u>Product</u>	<u>Units</u>
Caustic Soda	6
Bentonite (100 lb)	94
Bentonite (40 kg)	154
Natural Gel	36
Bicarb of Soda	8
Sawdust	2
Milfibre	70

Chevron East Hume River
I-20

SURFACE HOLE SECTION:

Interval: 44 - 233 m
Mud Type: Gel Kelzan
Hole Size: 445 mm
Casing Size: 339 mm
Total Days: 4

Comments: Loose sand plugged drill pipe. Rapid solids build up.

One shale shaker on rig worked very well but was limited in screen size by volume pumped and particle size. Blinded screens often.

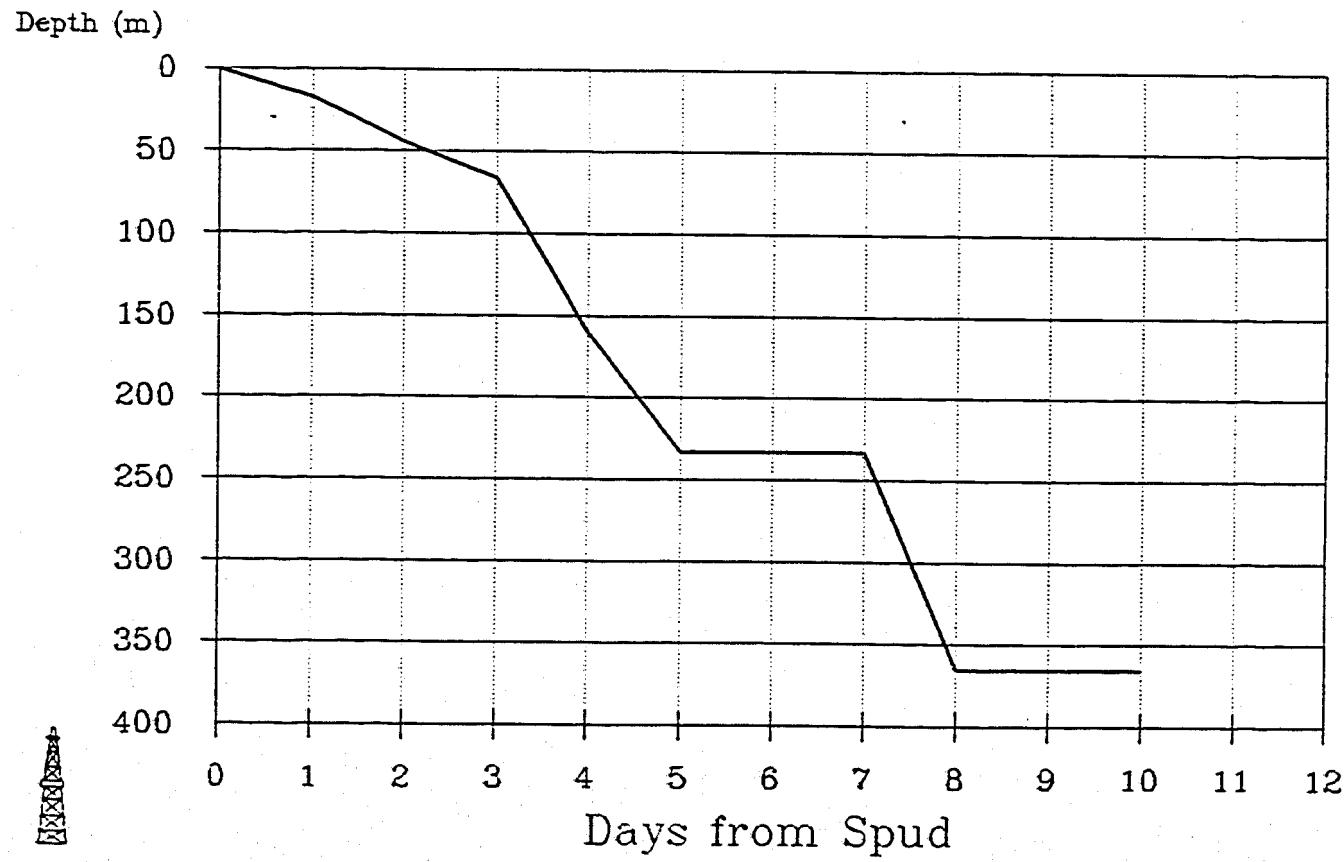
Material Usage:

<u>Product</u>	<u>Units</u>
Caustic Soda	7
Natural Gel	185
Kelzan XC	8
Peltex	5

Chevron East Hume River
I-20

MAIN HOLE SECTION:

Interval: 233 - 365 m
Mud Type: Gel Kelzan
Hole Size: 311 mm
Total Days: 4


Comments: Well kicked at 365 metres during a trip for multi shot survey.

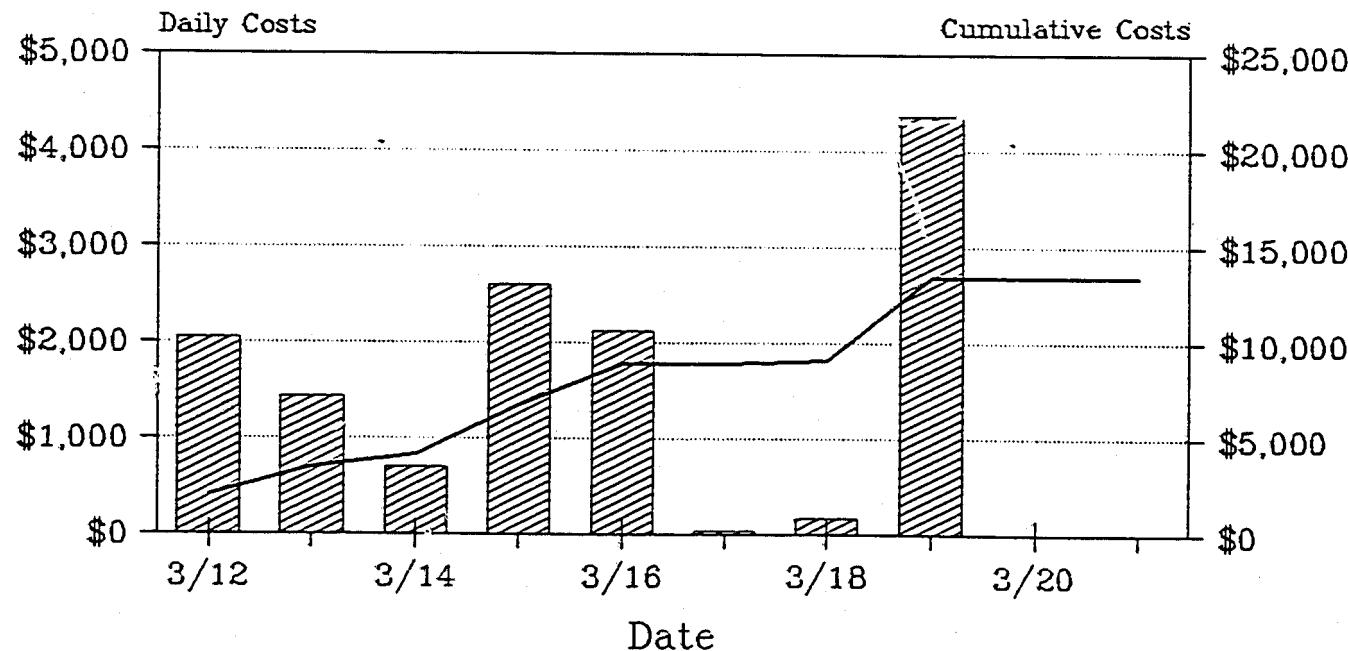
Increased density with Barite to 1250 kg/m³ and shut off solids equipment.

Material Usage:	<u>Product</u>	<u>Units</u>
	Caustic Soda	4
	Bentonite	45
	Natural Gel	57
	Bicarb	3
	Milfibre	25
	Kelzan XC	3
	Nitrate	2
	Peltex	6

Days vs. Depth

Chevron East Hume River I-20

M - I Drilling Fluids Canada, Inc.


X Data Days from Spud

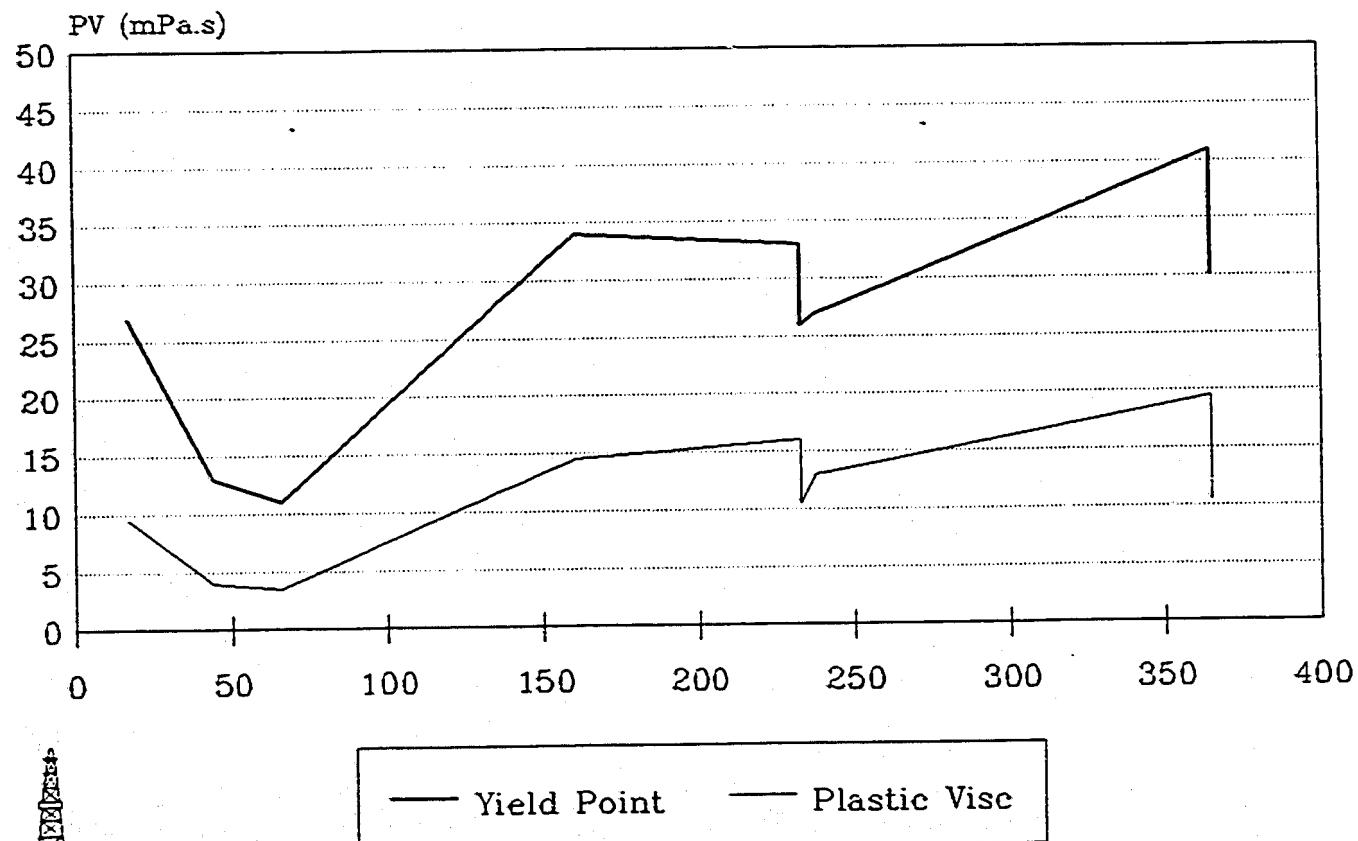
0	
17	1
44	2
66	3
160	4
233	5
233	6
233	7
365	8
365	9
365	10

Mud Costs - Daily/Total

Chevron East Hume River I-20

Mud Cost

Daily Cost


Cumulative Cost

M-I Drilling Fluids Canada, Inc.

X Data	Daily Cost	Cumulative Cos
3/12	2043	2043
3/13	1428	3471
3/14	694	4165
3/15	2607	6772
3/16	2124	8896
3/17	32	8928
3/18	164	9092
3/19	4364	13456
3/20	0	13456
3/21	0	13456

PV/YP vs. Depth

Chevron East Hume River I-20

M - I Drilling Fluids Canada, Inc.

X Data	Yield Point	Plastic Visc
	27	9.5
44	13	4
66	11	3.5
160	34	14.5
233	33	16
233	26	10.5
238	27	13
365	41	19.5
365	30	10.5
365	33	11

WEEKLY SUMMARY

WELL NAME CHEVRON EAST HOME RIVER
LEGAL I-20

~~MUD TYPE~~ GEI - KELZAN

MUD ENGINEER Tim Acoridge

CONTRACTOR SRI EHTAN IC PAGE 1 OF

CALGARY OFFICE

WOOD TYPE GEL - KELZAN

WEEKLY SUMMARY

A1

WELL NAME CHEVRON EAST HUMER RINGER
LEGAL J-20
CONTRACTOR SHENATAH IE PAGE 2 OF 1

CALGARY OFFICE

APPENDIX 8
DEVIATION SURVEYS

EASTMAN CHRISTENSEN

Canada District

WELL DEFLECTION SURVEY

for

CHEVRON CANADA RESOURCES LIMITED

FORT GOOD HOPE

Site : HUME RVR I-20

Well : HUMR RVR I-20

Survey Reference : S02694.0CH

CHEVRON CANADA RESOURCES LIMITED
FORT SEDDON SODE

Slot : HUME RVR I-20 Date Printed : 25-APR-90
Well : HUME RVR I-20 Our Ref : 502694.3CH
PRHL : 0.00

Page : 2

Measured Depth	Drift Angle	Drift Direction	Course Length	Vertical Depth	Vertical Section	R E C T A N G U L A R COORDINATES	Dogleg Severity	
0.00	0.00	0.00	0.00	0.00	0.00	0.00 N	0.00 E	0.00
53.00	0.50	45.00	51.00	51.00	0.16	0.16 N	0.16 E	0.29
102.00	0.75	201.00	51.00	102.00	0.00	0.00 N	0.20 E	0.72
153.00	0.35	160.00	51.00	152.99	-0.66	0.66 S	0.20 E	0.33
204.00	0.75	199.00	51.00	203.99	-1.34	1.34 S	0.23 E	0.32
253.00	1.75	194.00	87.00	290.57	-3.16	3.16 S	0.28 W	0.35
355.00	1.50	192.00	64.00	354.94	-4.93	4.93 S	0.69 W	0.12

CALCULATION METHOD : Minimum curvature

Report Units : Meters

SLOT COORDINATES : 0.00 N 0.00 E

Accepted by :

BOTTOM HOLE LOCATION : Referenced to SLOT

Checked by :

DISTANCE : 4.93

DIRECTION : 187.99

SURVEY FUN INFORMATION

=====

SURVEY FILE COMPLETE: 16-MAR-90

APPENDIX 9
WELLSITE ROCK LOG

APPENDIX 10
WELLSITE HYDROCARBON REPORT

DATALOG
TECHNOLOGY INC.

WELLSITE HYDROCARBON REPORT
FOR
CHEVRON CANADA RESOURCES
CHEVRON EAST HUME RIVER I-20
prepared by
SHELDON HARBINSON
and
BILL EDWARDS

ARCTIC RED

45 m to 294 m

Chevron East Hume River I-20 was spudded on March 12, 1990. The conductor barrel was set at 42.77 meters after which logging was commenced on March 14, 1990 at a depth of 45 meters. The entire hole was drilled with a gel-chem mud system.

Logging was started in the Arctic Red formation. The penetration rate was quite high and fairly consistent throughout this formation. The steady penetration rate resulted in a fairly consistent background gas level right through to surface casing point. Surface casing was set at 232.7 meters. The level of background gas was very low for the start of this formation as it remained around 0 to 1 unit until 74 meters. At this point the gas level increased somewhat to range from 10 to 30 units for most of this section while dropping to as low as 4 to 10 units when the formation became slightly more dense. After surface casing was set the gas varied somewhat for the remainder of this section as it ranged from about 3 units to 10 units and then surged to about 30 to 45 units at the base of the formation. The gas in this formation was composed of mostly C1 with only small amounts of C2 present. No shows were noted in this formation.

From about 65 meters to 100 meters the samples revealed abundant coarse grained quartz which was unconsolidated. This porous section did not result in any dramatic gas readings as can be seen on the log. The level of carbon dioxide in this formation was very consistent up to surface casing point as it ranged from about .045 % to .060 %. After casing was set the carbon dioxide level increased to between .100 % and .700 % for about 30 meters. The level decreased at the base of the formation ranging from .010 % to .045 %.

ARCTIC RED SANDSTONE

294 m to 302 m

The penetration rate slowed somewhat upon entering this sandstone section. The level of background gas was somewhat low as well ranging from about 15 units to 30 units. The gas was composed of mainly C1 but with small amounts of C2 through C4 as well. This resulted in a higher oil indicator ratio than the baseline ratio seen in the previous formation. The ratio ranged from .045 to .065 for part of this section. The corresponding samples reveal silty shale and some sandstone with poor intergranular porosity. No shows were seen in this formation. The high mud weight for this hole may somewhat mask the gas brought to the surface, especially the heavier components which are more difficult to liberate.

The carbon dioxide level remained around .060 % for this formation.

GILMORE LAKE SANDSTONE

302 m to 308 m

This sandstone formation drilled somewhat quicker than the previous formation but also resulted in a lower level of background gas which ranged from 10 to 15 units up to the base of the formation at which point the gas level increased. This increase is obvious as the start of the next formation. The gas in this zone was composed of C1 with only small amounts of C2 present. No shows were seen in this formation.

The level of carbon dioxide remained consistent at about .060 %.

GILMORE LAKE SHALE and COAL

308 m to 330 m

The penetration rate in this section was fairly erratic due to the presence of coal throughout the shale. The level of background gas increased somewhat upon penetration of this formation. The gas level ranged from about 20 units to 40 units. The gas was composed of mostly C1 with only trace to small levels of C2 present. Two shows were noted in

this formation and they are as follows:

		oil ind.
1.	310.8 m to 313.0 m 202 units over 14 units	.010
2.	316.8 m to 319.6 m 1112 units over 39 units	.010

The above shows can be considered as fair and good respectively. Both shows exhibit good sharp gas increases over background levels while one is somewhat higher and slightly thicker than the other show. Both shows are composed of almost entirely C1 with only trace to small levels of C2 present. These shows are probably the result of drilling through coal seams as seen in the corresponding samples and seen in the composition of the two shows.

The carbon dioxide level was still consistent as it ranged from about .060 % to .070 %.

IMPERIAL

330 m to 365 m (F.T.D.)

The penetration rate was quite consistent through this formation resulting in a somewhat lower but fairly consistent background gas level. The gas level ranged from 20 units to 40 units for the entire section. This gas was composed of mainly C1 with some C2 present. The last few meters that

were drilled revealed the presence of only trace levels of C3 and C4 resulting in a slightly higher oil indicator ratio. This ratio increased to about .038 from the baseline of .010. The entire formation was composed of fairly dense shale resulting in the somewhat decreased background gas levels as compared to the previous formation. No significant gas responses were noted in the Imperial formation.

The carbon dioxide level through this section remained very steady at about .060 %.

APPENDIX 11

WATER ANALYSIS

CHEVRON EAST HUMBLE RIVER

I-20

WATER ANALYSIS

Prepared For:

CHEVRON CANADA RESOURCES

File No: 90AS5398

Date: April 02, 1990

GEOTECHnical resources ltd.

4500 - 5th STREET N.E., CALGARY, ALBERTA T2E 7C3 (403) 230-4128
TELEX 03-821172 ENVOY 100: TELEX. GEO FAX: (403) 230-4370

GEOTECH

WATER ANALYSIS

Company Name: CHEVRON CANADA RESOURCES
Well Name: CHEVRON EAST HUME RIVER
LSD: I-20

DST: 3 KB: 75.12
Interval: 58-133 GRD: 68.96
Formation: Surface
Sample Location: Water prior to test

File No: 90AS5398 Report Date: March 31, 1990

Salinity = 1.74 ppm

WATER ANALYSIS

Company Name: CHEVRON CANADA RESOURCES
Well Name: CHEVRON EAST HUME RIVER
LSD: I-20

DST: 4 KB: 75.12
Interval: 58-133 GRD: 68.96
Formation: Surface
Sample Location: Water prior to test

File No: 90AS5398 Report Date: March 31, 1990

Salinity = 3.49 ppm

BOTTOM HOLE SAMPLER DEPLETION

FILE # 90AS5398

DATE: March 28, 1990

COMPANY: CHEVRON CANADA RESOURCES

WELL NAME: CHEVRON EAST HUME RIVER

LSD: I-20

TESTER: BAKER

DST: 4

FORMATION: Surface

INTERVALS: 58 - 133

OPENING PRESSURE: 0 kPa

FLUID BREAKDOWN: WATER:

MUD: 1000 mL

OIL:

TOTAL FLUID RECOVERED: 1000 mL mud.

COMMENTS:

DST: 4

FORMATION: Surface

INTERVALS: 58 - 133

OPENING PRESSURE: 0 kPa

FLUID BREAKDOWN: WATER:

MUD: 950 mL

OIL:

TOTAL FLUID RECOVERED: 950 mL mud.

COMMENTS: Dual samplers.

GEOTECHnical resources ltd.
4500 - 5th STREET N.E., CALGARY, ALBERTA T2E 7C3
(403) 230-4128

WATER ANALYSIS

FILE NUMBER	►	0425477
LABORATORY NUMBER	►	5477-4128

CONTAINER IDENTITY

5477F1

OPERATOR'S NAME

CHEVRON CANADA RESOURCES

SAMPLE LOCATION

WELL NAME

EAST BOW RIVER

ELEVATIONS

K8

GRD

FIELD OR AREA

POOL OR ZONE

I-20

NAME OF SAMPLER

COMPANY

TEST TYPE NO TEST RECOVERY

DST 1 SAMPLING POINT

TOOL

AMT. AND TYPE OF CUSHION

MUD RESISTIVITY Ω/m

MULTIPLE RECOVERY TEST INTERNAL
FROM

PUMPING

FLOWING

GAS LIFT

SWAB

TO

WATER

m^3/d

OIL

m^3/d

GAS

$10^3 m^3/d$

PERFORATIONS FROM

GAUGE PRESSURE kPa
TEMPERATURE $^{\circ}\text{C}$

SEPARATOR

TREATER

RESERVOIR

SAMPLED

RECEIVED

TO

DATE SAMPLED

Y M D

H:M

DATE RECEIVED

Y M D

24-APR-90

DATE ANALYZED

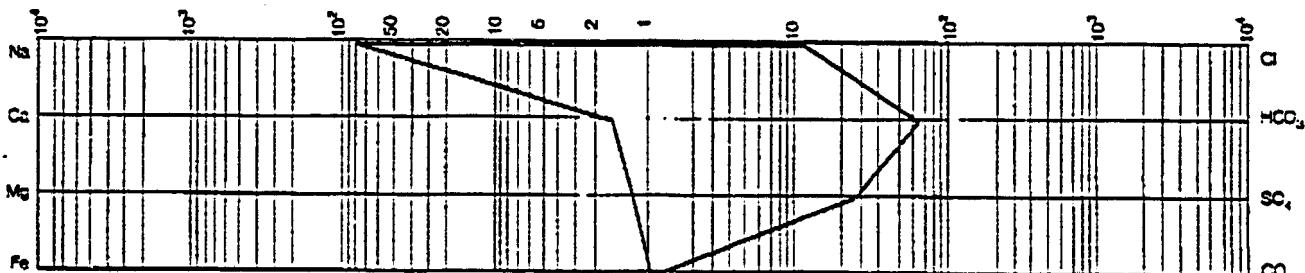
Y M D

01-MAY-90

ANALYST

GB

SUMMARY DATA


TOTAL HARDNESS AS CaCO_3	160	g/m^3
TOTAL ALKALINITY	2961	g/m^3
SALINITY AS NaCl	596	ppm
SATURATION INDEX	2.45	
STABILITY INDEX	3.9	
CORROSION TENDENCY	0.55	

CaCO_3 SCALING TENDENC

CaCO_3 SCALING TENDENC

Scaling calculations done at 30 C

LOGARITHMIC PATTERN MEQ PER LITRE

REMARKS

GEOTECHnical resources ltd.
4500 - 5th STREET N.E. CALGARY, ALBERTA T2E 7C3
(403) 230-4128

WATER ANALYSIS
DETAILED REPORT

OPERATOR'S NAME	CHEVRON CANADA RESOURCES	FILE NUMBER	90AS5477
WELL NAME	EAST HUME RIVER	LABORATORY NUMBER	5477-W1
LOCATION	I-20		
SAMPLING POINT	TOOL		

CATIONS				ANIONS				TOTAL SOLIDS (g/m³)	
ION	g/m³	MASS FRACTION	MEQ/L	ION	g/m³	MASS FRACTION	MEQ/L	EVAPORATED AT 110°C	EVAPORATED AT 180°C
Na	2030	0.28	88.3	Cl	362	0.05	10.2	AT IGNITION	CALCULATED
K	102	0.01	2.6	Br					7202
Ca	36.4	0.01	1.82	I				SPECIFIC GRAVITY at 18°C	REFRACTIVE INDEX (n) at 25°C
Mg	16.1	0.00	1.32	F					1.340
Ba	< 0.05			HCO₃	3580	0.5	58.7	OBSERVED pH at 25°C	RESISTIVITY (RW) Ω m at 25°C
Sr	0.836	0.00	0.019	CO₃	13.2	0.00	0.44		1.317
Fe	0.51	0.00	0.027	OH	0.00	0.00	0.00	REDOX POTENTIAL (Eh)	DISSOLVED O₂
Mn				SO₄	1060	0.15	22.1		
Al				H₂S					
Si				PC₄					
B	0.94								

TOTAL METALS	
METAL	g/m³
Fe	
Mn	

Cations/Anions: 1.03

DST 1

Interval: to

KB: GRD:

Perfs to

REMARKS

IODIDE NOT AVAILABLE - INSUFFICIENT SAMPLE

GEOTECHnical resources ltd.4500 - 5th STREET N.E., CALGARY, ALBERTA T2E 7C3
(403) 230-4128**WATER ANALYSIS**

CONTAINER IDENTITY

547772

OPERATOR'S NAME

CHEVRON CANADA RESOURCES

SAMPLE LOCATION

WELL NAME

EAST HUME RIVER

ELEVATIONS

KS

GRD

FIELD OR AREA

POOL OR ZONE

I-20

NAME OF SAMPLER

COMPANY

TEST TYPE NO TEST RECOVERY

DST 1

SAMPLING POINT

AMT. AND TYPE OF CUSHION

MUD RESISTIVITY Ω/m

MUD TANK

MULTIPLE RECOVERY TEST INTERNAL FROM

PUMPING

FLOWING

GAS LIFT

SWAB

TO WATER m^3/d OIL m^3/d GAS $10^3 m^3/d$

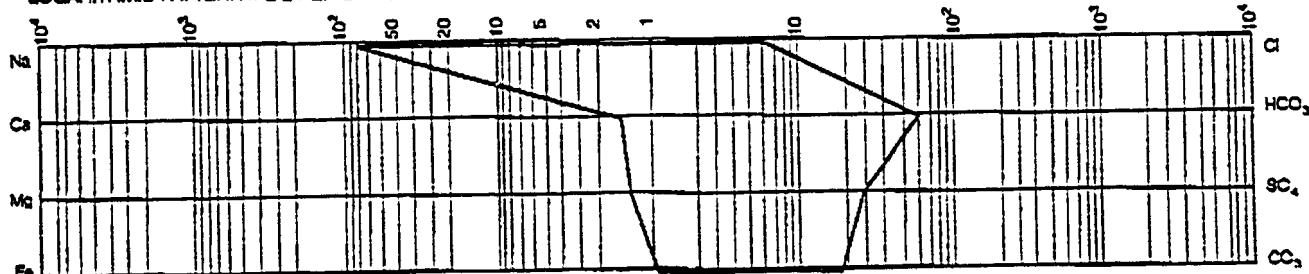
SEPARATOR

TREATER

RESERVOIR

SAMPLED

RECEIVED


PERFORATIONS FROM GAUGE PRESSURE kPa

TEMPERATURE (C):

TO DATE SAMPLED Y M D H:M DATE RECEIVED Y M D DATE ANALYZED Y M D ANALYST
N/A 24-APR-90 01-MAY-90 GB**SUMMARY DATA**

TOTAL HARDNESS AS CaCO_3	163	g/m^3
TOTAL ALKALINITY	3461	g/m^3
SALINITY AS NaCl	303	ppm
SATURATION INDEX	2.5	CaCO ₃ SCALING TENDENCY
STABILITY INDEX	3.81	CaCO ₃ SCALING TENDENCY
CORROSION TENDENCY	0.42	

Scaling calculations done at 30 C

LOGARITHMIC PATTERN MEQ PER LITRE

REMARKS

GEOTECHnical resources ltd.
4500 - 5th STREET N.E., CALGARY, ALBERTA T2E 7C3
(403) 230-4128

WATER ANALYSIS
DETAILED REPORT

OPERATOR'S NAME	CHEVRON CANADA RESOURCES	FILE NUMBER	90AS5477
WELL NAME	EAST HUME RIVER	LABORATORY NUMBER	5477-W2
LOCATION	I-20		
SAMPLING POINT	MUD TANK		

CATIONS				ANIONS				TOTAL SOLIDS (g/m³)	
ION	g/m³	MASS FRACTION	MEQ/L	ION	g/m³	MASS FRACTION	MEQ/L	EVAPORATED AT 11°C	EVAPORATED AT 18°C
Na	2060	0.29	89.6	Cl	124	0.03	5.2	AT IGNITION	CALCULATED
K	24.9	0.00	0.64	Br					7152
Ca	34	0.00	1.7	I				SPECIFIC GRAVITY at 15°C	REFRACTIVE INDEX (n) at 20°C
Mg	18.2	0.00	1.5	F					1.340
Ba	0.072	0.00	0.001	HCO ₃	3220	0.45	52.8	OBSERVED pH at 25°C	RESISTIVITY (RHW) Ω m at 25°C
Sr	0.832	0.00	0.019	CO ₃	490	0.07	16.3		
Fe	0.7	0.00	0.038	OH	0.00	0.00	0.00	REDOX POTENTIAL (EN)	DISSOLVED O ₂
Mn				SO ₄	1120	0.16	23.3		
Al				H ₂ S					
Si				PO ₄					
B	0.211								
U									
Th									

Cations/Anions: 0.96

DST 1

Interval: to

KB: GRD:

Perfs to

TOTAL METALS

METAL	g/m³
Fe	...
Mn	...
...	...
...	...

REMARKS

IODIDE NOT AVAILABLE - INSUFFICIENT SAMPLE

GEOTECHnical resources Ltd.
4500 - 5th STREET N.E. CALGARY, ALBERTA T2E 7C3
(403) 230-4128

WATER ANALYSIS

FILE NUMBER ► 90-5477

LABORATORY NUMBER ► 5477-M3

CONTAINER IDENTITY
547773

OPERATOR'S NAME
CHEVRON CANADA RESOURCES

SAMPLE LOCATION WELL NAME
EAST HUME RIVER
FIELD OR AREA POOL OR ZONE

ELEVATIONS
K8 GRO

I-20 NAME OF SAMPLER

COMPANY

TEST TYPE NO TEST RECOVERY

MULTIPLE RECOVERY TEST INTERVAL
FROM SAMPLING POINT AMT. AND TYPE OF CUSHION MUD RESISTIVITY Ωm

AFTER DST 1 - TOOL

TO PUMPING FLOWING GAS UFT SWAB

PERFORATIONS FROM GAUGE PRESSURE K/Pa 10 m^3/d

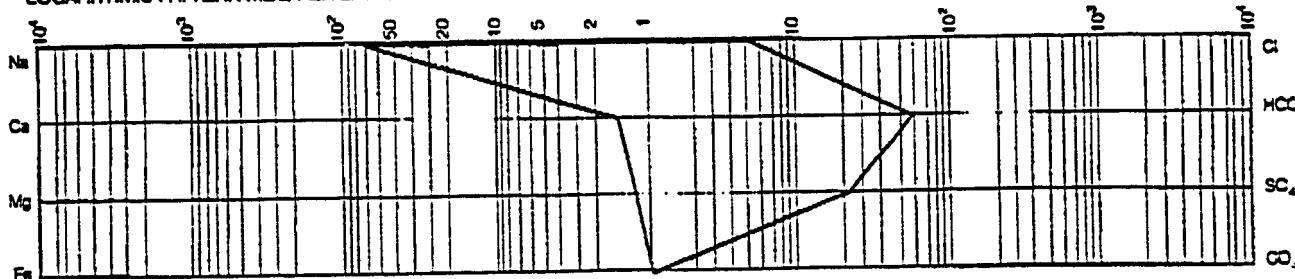
TEMPERATURE $^{\circ}\text{C}$

TO DATE SAMPLED DATE RECEIVED DATE ANALYZED ANALYST

Y M D H:M

Y M D

Y M D


GB

SUMMARY DATA

TOTAL HARDNESS AS CaCO_3	149	g/m^3
TOTAL ALKALINITY	2685	g/m^3
SALINITY AS NaCl	263	ppm
SATURATION INDEX	1.99	CaCO_3 SCALING TENDENC
STABILITY INDEX	4.44	CaCO_3 SCALING TENDENC
CORROSION TENDENCY	0.46	

Scaling calculations done at 30 $^{\circ}\text{C}$

LOGARITHMIC PATTERN MEQ PER LITRE

REMARKS

GEOTECHnical resources Ltd.

4500 - 5th STREET N.E., CALGARY, ALBERTA T2E 7C3
(403) 230-4128WATER ANALYSIS
DETAILED REPORT

OPERATOR'S NAME	CHEVRON CANADA RESOURCES	FILE NUMBER	90AS5477
WELL NAME	EAST HUME RIVER	LABORATORY NUMBER	5477-W3
LOCATION	I-20		
SAMPLING POINT	AFTER DST 1 - TOOL		

CATIONS				ANIONS				TOTAL SOLIDS (g/m³)	
ION	g/m³	MASS FRACTION	MEQ/L	ION	g/m³	MASS FRACTION	MEQ/L	EVAPORATED AT 11°C	EVAPORATED AT 12°C
Na	1740	0.28	75.7	Cl	160	0.03	4.5	AT IGNITION	CALCULATED
K	20.7	0.00	0.53	Br					6201
Ca	32.9	0.01	1.64	I					
Mg	15.5	0.00	1.27	F				SPECIFIC GRAVITY at 18°C	REFRACTIVE INDEX (R) at 22°C
Ba	0.075	0.00	0.001	HCO ₃	3270	0.53	53.6	OBSERVED pH at 25°C	RESISTIVITY (R ₁₀₀) Ω at 25°C
Sr	0.848	0.00	0.019	CO ₃	0.00	0.00	0.00	8.44	1.668
Fe	0.6	0.00	0.032	CH	0.00	0.00	0.00	REDOX POTENTIAL (E _H)	DISSOLVED O ₂
Mn				SO ₄	960	0.15	20		
Al				H ₂ S					
Si				PO ₄					
B	0.623								
U									
Th									

TOTAL METALS	
METAL	g/m³
Fe	1.01
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	
Fe	
Mn	
Al	
Si	
Ca	
Na	
K	
Ba	
Sr	

GEOTECHnical resources ltd.4500 - 5th STREET N.E. CALGARY, ALBERTA T2E 7C3
(403) 230-4128**WATER ANALYSIS**

FILE NUMBER	►	90AS5398
LABORATORY NUMBER	►	5398-W3

CONTAINER IDENTITY
5398F6

OPERATOR'S NAME

CHEVRON CANADA RESOURCES

SAMPLE LOCATION

WELL NAME

CHEVRON EAST HUME RIVER

I-20

ELEVATIONS
KB

GRD

75.12 68.96

FIELD OR AREA

POOL OR ZONE

SURFACE

NAME OF SAMPLER

COMPANY

BAKER

TEST TYPE NO TEST RECOVERY

DST 4

SAMPLING POINT

AMT. AND TYPE OF CUSHION

MUD RESISTIVITY Ω/m MULTIPLE RECOVERY TEST INTERVAL
FROM**TOP OF RECOVERY**

TO 58

PUMPING

FLOWING

GAS LIFT

SWAB

TO 133
PERFORATIONS
FROM

WATER

 m^3/d

OIL

 m^3/d

GAS

 $10^3 m^3/d$

GAUGE PRESSURE K/Pa

SEPARATOR

TREATER

RESERVOIR

SAMPLED

RECEIVED

TEMPERATURE (°C)

TO

DATE SAMPLED

Y M D

H M

DATE RECEIVED

Y M D

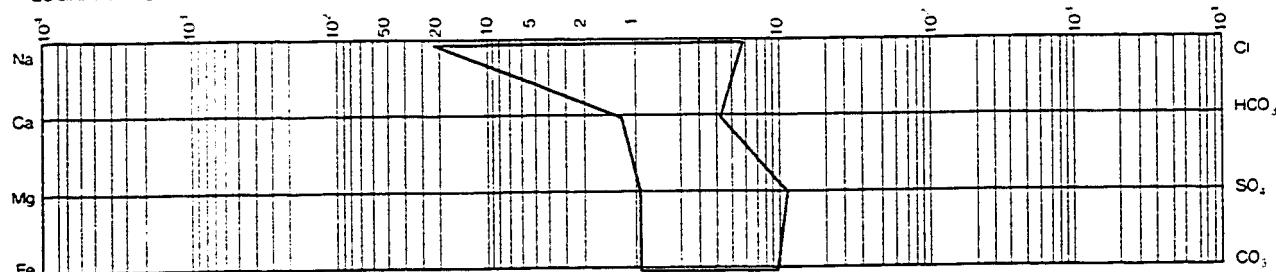
29-MAR-90

DATE ANALYZED

Y M D

30-MAR-90

ANALYST


GB

SUMMARY DATA

TOTAL HARDNESS AS CaCO_3	77	g/m^3
TOTAL ALKALINITY	592	g/m^3
SALINITY AS NaCl	290	ppm
SATURATION INDEX	2.17	CaCO_3 SCALING TENDENCY
STABILITY INDEX	5.01	CaCO_3 SCALING TENDENCY
CORROSION TENDENCY	1.25	

Scaling calculations done at 30 C

LOGARITHMIC PATTERN MEO PER LITRE

REMARKS

GEOTECHnical resources ltd.
4500 - 5th STREET N.E., CALGARY, ALBERTA T2E 7C3
(403) 230-4128

WATER ANALYSIS
DETAILED REPORT

OPERATOR'S NAME	CHEVRON CANADA RESOURCES	FILE NUMBER	90AS5398
WELL NAME	CHEVRON EAST HUME RIVER	LABORATORY NUMBER	5398-W3
LOCATION	I-20		
SAMPLING POINT	TOP OF RECOVERY		

CATIONS				ANIONS				TOTAL SOLIDS (g/m ³)	
ION	g/m ³	MASS FRACTION	MEQ/L	ION	g/m ³	MASS FRACTION	MEQ/L	EVAPORATED AT 110°C	EVAPORATED AT 180°C
Na	560	0.33	24.4	Cl	176	0.1	4.9	AT IGNITION	CALCULATED
K	16.2	0.01	0.41	Br					1715
Ca	26.7	0.02	1.33	I	< 1.0			SPECIFIC GRAVITY	REFRACTIVE INDEX (R)
Mg	1.83	0.00	0.15	F				at 15°C	at 25°C
Ba	0.105	0.00	0.002	HCO ₃	213	0.12	3.5	OBSERVED pH	RESISTIVITY (RW) Ω m
Sr	0.258	0.00	0.006	CO ₃	251	0.15	8.3	9.37	at 25°C
Fe	0.62	0.00	0.033	OH	0.00	0.00	0.00	REDOX POTENTIAL (E _h)	DISSOLVED O ₂
Mn				SO ₄	470	0.27	9.8		g/m ³
Al				H:S					
Si				PO ₄					
B	0.642								

TOTAL METALS	
METAL	g/m ³
Cations/Anions:	0.99
DST	4
Interval:	58 to 133
KB:	75.12
GRD:	68.96
Perfs	to

REMARKS

GEOTECHnical resources ltd.4500 - 5th STREET N.E. CALGARY, ALBERTA T2E 7C3
(403) 230-4128**WATER ANALYSIS**

FILE NUMBER	►	90AS5398
LABORATORY NUMBER	►	5398-W4

CONTAINER IDENTITY

5398F7

OPERATOR'S NAME

CHEVRON CANADA RESOURCES

SAMPLE LOCATION

WELL NAME

CHEVRON EAST HUME RIVER

I-20

ELEVATIONS
KBGRD
68.96

FIELD OR AREA

POOL OR ZONE

NAME OF SAMPLER

COMPANY

BAKER

TEST TYPE

NO

TEST RECOVERY

MULTIPLE RECOVERY
TEST INTERVAL
FROM

SAMPLING POINT

AMT. AND TYPE OF CUSHION

MUD RESISTIVITY Ω/m

BOTTOM HOLE SAMPLER

TO

PUMPING

FLOWING

GAS LIFT

SWAB

58

WATER

m³/d

OIL

m³/d

GAS

10³m³/d133
PERFORATIONS
FROMGAUGE PRESSURE K.Pa
TEMPERATURE °C.

SEPARATOR

TREATER

RESERVOIR

SAMPLED

RECEIVED

TO

DATE SAMPLED

Y M D

H M

DATE RECEIVED

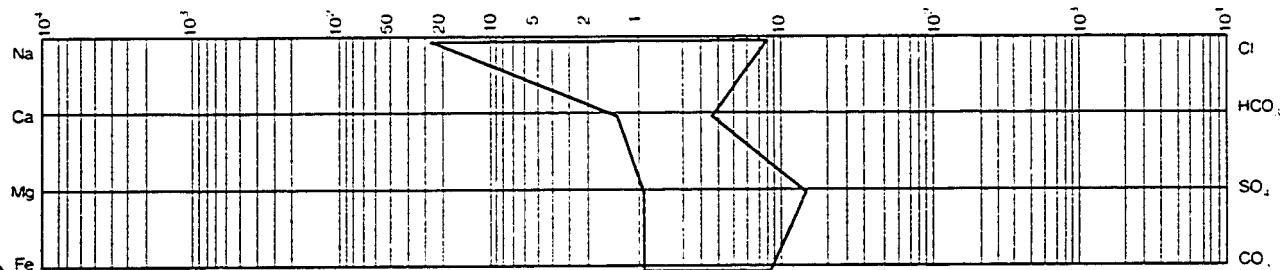
Y M D

DATE ANALYZED

Y M D

23-MAR-90

29-MAR-90


30-MAR-90

GB

SUMMARY DATA

TOTAL HARDNESS AS CaCO ₃	85	g/m ³
TOTAL ALKALINITY	515	g/m ³
SALINITY AS NaCl	409	ppm
SATURATION INDEX	2.16	CaCO ₃ SCALING TENDENCY
STABILITY INDEX	5.03	CaCO ₃ SCALING TENDENCY
CORROSION TENDENCY	1.93	

Scaling calculations done at 30 C

LOGARITHMIC PATTERN MEQ PER LITRE

REMARKS

GEOTECHnical resources ltd.

4500 - 5th STREET N.E. CALGARY, ALBERTA T2E 7C3
(403) 230-4128

WATER ANALYSIS

DETAILED REPORT

OPERATOR'S NAME	CHEVRON CANADA RESOURCES	FILE NUMBER	90AS5398
WELL NAME	CHEVRON EAST HUME RIVER	LABORATORY NUMBER	5398-W4
LOCATION	I-20		
SAMPLING POINT	BOTTOM HOLE SAMPLER		

CATIONS				ANIONS				TOTAL SOLIDS (g/m ³)	
ION	g/m ³	MASS FRACTION	MEQ/L	ION	g/m ³	MASS FRACTION	MEQ/L	EVAPORATED AT 110°C	EVAPORATED AT 180°C
Na	620	0.32	27	Cl	249	0.13	7	AT IGNITION	CALCULATED
K	26.3	0.01	0.67	Br					1941
Ca	30	0.02	1.5	I				SPECIFIC GRAVITY at 15°C	REFRACTIVE INDEX (R) at 25°C
Mg	1.94	0.00	0.16	F				1.340	at 25°C
Ba	0.14	0.00	0.002	HCO ₃	182	0.09	3	OBSERVED pH 9.37	RESISTIVITY (RW) Ω m at 25°C 3.847
Sr	0.276	0.00	0.006	CO ₃	220	0.11	7.3	REDOX POTENTIAL (E ^h)	DISSOLVED O ₂
Fe	0.47	0.00	0.025	OH	0.00	0.00	0.00		g/m ³
Mn				SO ₄	612	0.32	12.7		
Al				H ₂ S					
Si				PO ₄					
B	0.541								
U								TOTAL METALS	
Th								METAL	g/m ³
								Fe	
								Mn	

Cations/Anions: 0.98

DST 4

Interval: 58 to 133

KB: 75.12 GRD: 68.96

Perfs to

REMARKS

IODIDE NOT AVAILABLE - INSUFFICIENT SAMPLE

GEOTECHnical resources ltd.4500 - 5th STREET N.E. CALGARY, ALBERTA T2E 7C3
(403) 230-4128**WATER ANALYSIS**

CONTAINER IDENTITY

5398F8

OPERATOR'S NAME

CHEVRON CANADA RESOURCES

SAMPLE LOCATION

WELL NAME

CHEVRON EAST HUME RIVER

FILE NUMBER	▶	90AS5398
LABORATORY NUMBER	▶	5398-W5

FIELD OR AREA

POOL OR ZONE
SURFACEELEVATIONS
KB 75.12 GRD 68.96

NAME OF SAMPLER

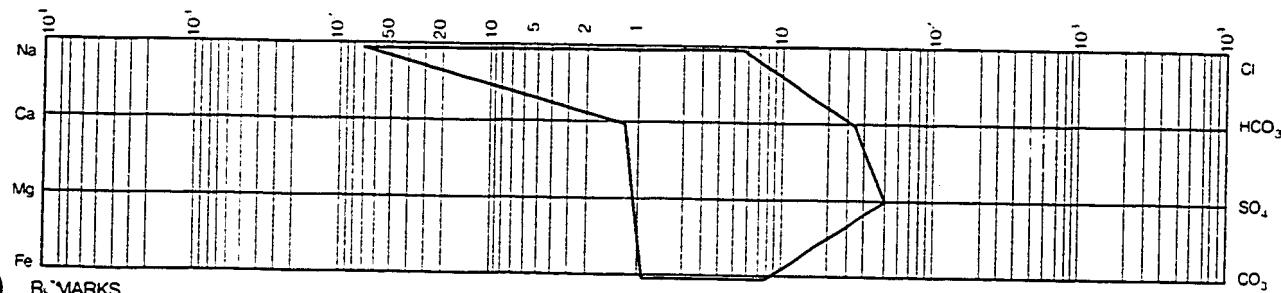
COMPANY

BAKER

TEST TYPE NO TEST RECOVERY

DST	4	SAMPLING POINT	AMT. AND TYPE OF CUSHION			MUD RESISTIVITY Ω/m		
MULTIPLE RECOVERY TEST INTERVAL		BOTTOM HOLE SAMPLER 186						
FROM	TO	PUMPING	FLOWING	GAS LIFT	SWAB			
58	133	WATER	m ³ /d	OIL	m ³ /d	GAS	10 ³ m ³ /d	
PERFORATIONS FROM		GAUGE PRESSURE K. Pa		SEPARATOR	TREATER	RESERVOIR	SAMPLED	RECEIVED
		TEMPERATURE °C						

TO


DATE SAMPLED	Y M D	H M	DATE RECEIVED	Y M D	DATE ANALYZED	Y M D	ANALYST
	28-MAR-90			29-MAR-90		30-MAR-90	GB

SUMMARY DATA

TOTAL HARDNESS AS CaCO ₃	127	g/m ³
TOTAL ALKALINITY	1692	g/m ³
SALINITY AS NaCl	281	ppm
SATURATION INDEX	2.07	CaCO ₃ SCALING TENDENCY
STABILITY INDEX	4.66	CaCO ₃ SCALING TENDENCY
CORROSION TENDENCY	1.4	

Scaling calculations done at 30 C

LOGARITHMIC PATTERN MEQ PER LITRE

REMARKS

GEOTECHnical resources Ltd.

4500 - 5th STREET N.E., CALGARY, ALBERTA T2E 7C3
(403) 230-4128WATER ANALYSIS
DETAILED REPORT

OPERATOR'S NAME	CHEVRON CANADA RESOURCES	FILE NUMBER	► 90AS5398
WELL NAME	CHEVRON EAST HUME RIVER	LABORATORY NUMBER	► 5398-W5
LOCATION	I-20		
SAMPLING POINT	BOTTOM HOLE SAMPLER 186		

CATIONS				ANIONS				TOTAL SOLIDS (g/m ³)	
ION	g/m ³	MASS FRACTION	MEQ/L	ION	g/m ³	MASS FRACTION	MEQ/L	EVAPORATED AT 11°C	EVAPORATED AT 18°C
Na	1750	0.3	76.1	Cl	171	0.03	4.8	AT IGNITION	CALCULATED
K	22.8	0.00	0.58	Br					5873
Ca	26.1	0.00	1.3	I				SPECIFIC GRAVITY at 15°C	REFRACTIVE INDEX (RI) at 25°C
Mg	14	0.00	1.15	F					1.341
Ba	0.466	0.00	0.007	HCO ₃	1640	0.28	27	OBSERVED pH 8.82	RESISTIVITY (RW) Ω m at 25°C 1.668
Sr	0.694	0.00	0.016	CO ₃	205	0.03	6.8	REDOX POTENTIAL (E _h)	DISSOLVED O ₂ g/m ³
	1.28	0.00	0.07	OH	0.00	0.00	0.00		
Mn				SO ₄	2040	0.36	42.5		
Al				H ₂ S					
Si				PO ₄					
B	2.58								
U									
Th									

TOTAL METALS	
METAL	g/m ³
Fe	
Mn	

Cations/Anions: 0.98

DST 4

Interval: 58 to 133

KB: 75.12 GRD: 68.96

Perfs to

REMARKS

IODIDE NOT AVAILABLE - INSUFFICIENT SAMPLE

GEOTECHnical resources Ltd.
4500 - 5th STREET N.E., CALGARY, ALBERTA T2E 7C3
(403) 230-4128

**WATER ANALYSIS
DETAILED REPORT**

OPERATOR'S NAME	CHEVRON CANADA RESOURCES	FILE NUMBER	► 90AS5398
WELL NAME	CHEVRON EAST HUME RIVER	LABORATORY NUMBER	► 5398-W5
LOCATION	I-20		
SAMPLING POINT	BOTTOM HOLE SAMPLER 186		

CATIONS				ANIONS				TOTAL SOLIDS (g/m ³)	
ION	g/m ³	MASS FRACTION	MEQ/L	ION	g/m ³	MASS FRACTION	MEQ/L	EVAPORATED AT 110°C	EVAPORATED AT 180°C
Na	1750	0.3	76.1	Cl	171	0.03	4.8	AT IGNITION	CALCULATED
K	22.8	0.00	0.58	Br					5873
Ca	26.1	0.00	1.3	I				SPECIFIC GRAVITY	REFRACTIVE INDEX (RI)
Mg	14	0.00	1.15	F				at 15°C	at 25°C
Ba	0.466	0.00	0.007	HCO ₃	1640	0.28	27	OBSERVED pH	RESISTIVITY (RW) Ω m
Sr	0.694	0.00	0.016	CO ₃	205	0.03	6.8	8.82	at 25°C
Se	1.28	0.00	0.07	OH	0.00	0.00	0.00	REDOX POTENTIAL (E _n)	DISSOLVED O ₂
Mn				SO ₄	2040	0.36	42.5		g/m ³
Al				H ₂ S					
Si				PO ₄					
B	2.58								
U									
Th									

TOTAL METALS	
METAL	g/m ³
Fe	
Mn	

Cations/Anions: 0.98

DST 4

Interval: 58 to 133

KB: 75.12 GRD: 68.96

Perfs to

REMARKS

IODIDE NOT AVAILABLE - INSUFFICIENT SAMPLE

APPENDIX 12

LOGS

Canada Oil and Gas Administration du pétrole
Lands Administration et du gaz des terres du Canada

Nova Scotia Newfoundland Gulf of St. Lawrence	<input type="checkbox"/> West Coast <input type="checkbox"/> Northern <input type="checkbox"/> Hudson Bay	Well Status Suspended Completed <input type="checkbox"/> Abandoned
---	---	---

WELL TERMINATION RECORD

This record is submitted in triplicate in compliance with Section 184 of the Canada Oil and Gas Drilling Regulations.

WELL DATA

Well Name: ... CHEVRON EAST HUME RIVER I-20 Area: Northwest Territories
 Grid Area: ... 66-50 - 129-15 Field/Pool: Exploratory/Wildcat
 Permit or Lease No.: ... N. 89 A 263 Final Coordinates: Lat: 65° 59' 38.15" N. Long: 129° 17' 16.62" W
 Drilling Unit: ... Shahtah 1E Elevations-RT/KB: ... 75.1 SFTGL: ... 69.6
 Spud Date: ... 1990-03-12 Rig Released: ... 1990-03-24 Total Depth: ... 365m

CASING AND CEMENTING

O.D.:	Weight:	Grade:	Depth Set:	Cement and Additives:
508.0mm	139.9 kg/m	X-56	43	17.3 tonnes Alaskan Class "G" Permafrost + 6% Glycolite + 15% Permafrost Retarder
339.7mm	101.2 kg/m	K-55	233	44.9 tonnes Alaskan Class "G" Permafrost + 6% Glycolite + 15% Permafrost Retarder

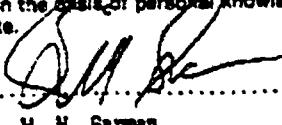
PLUGGING PROGRAM

Approval of the following program was obtained by (person) ... Bill Meyer from
 (person) ... Dave Scratch of the Canada Oil and Gas Lands Administration by means of
 Telephone on ... March 22 1990.

Type of Plug:	Interval:	Feel:	Cement and Additives:
Abandonment #1	365m - 200m	No Feel	12t Class "G" Neat + .25% CFR-3
Halliburton	133m	133
Abandonment #2	133m - 103m	No Feel	3.2t Class "G" Neat + .25% CFR-3
Abandonment #3	48m - 18m	No Feel	3.2t Class "G" Neat + .25% CFR-3
Abandonment #4	10m-surface	Visual

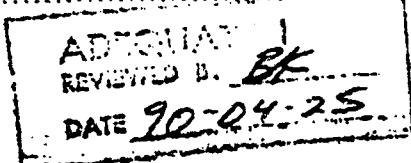
Lost Circulation/Overpressure Zones: ... Lost circulation while drilling conductor at 6, 9, 17 and 44m.

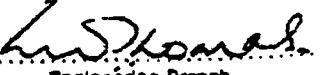
Equipment left on Seafloor (Describe): ... N/A


Provision for Re-entry (Describe and attach sketch): ... See Attached Sketch.

Cores: Type: Intervals: ... See Attached

Other Downhole Completion/Suspension Equipment:


CERTIFICATION


I certify on the basis of personal knowledge of operations undertaken at the above named well that the above information is accurate.

Signed: P. Eng.

Title: ... Drilling Manager
 Date: ... 1990-04-10

Name: ... W. H. Garman

Acknowledged by: ...
Engineering Branch

Date: ... 90-04-26

File: ... 9211-C4-1-4

Department of Energy,
Mines and Resources

Ministère de l'Énergie,
des Mines et des Ressources

Department of Indian Affairs
and Northern Development

Ministère des Affaires Indiennes
et du Nord canadien

Canada

copied to C. Reg,
DR

M/E