

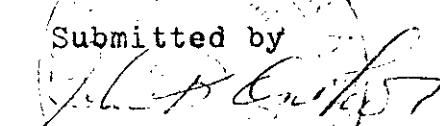
WELL HISTORY REPORT

on

UNION et al MOBIL COLVILLE D-45

NORTHWEST TERRITORIES

CANADA


Submitted by

John K. Ontko
Professional Geologist

TABLE OF CONTENTS

SUMMARY OF PERTINENT WELL DATA

SUMMARY OF SUB-SURFACE DATA

CORE DESCRIPTIONS

SAMPLE DESCRIPTIONS

ENGINEERING SUMMARY

- (a) BIT RECORD
- (b) MUD RECORD
- (c) DAILY PROGRESS REPORT
- (d) DEVIATION RECORD
- (e) DRILL STEM RESULTS
- (f) ABANDONMENT PLUGS

LITHOLOGIC LOG

SUMMARY OF PERTINENT WELL DATA

NAME OF WELL: Union et al Mobil Colville D-45
UNIQUE WELL IDENTIFIER: 300D456720125000
LOCATION: Unit D, Section 45, Grid 67 deg.20'.
125deg.00'.
Latitude 67 deg. 14' 08.57"N
Longitude 125 deg. 09' 20.87"W
UNIVERSAL WELL LOC. REF: 67.23571 deg.N 125.15539 deg.W
PERMITTEE: Mobil Oil Canada Ltd., Permit #5499
EXPLORATORY LICENSE NO.: 1471
OPERATOR: Union Oil Company of Canada,
335 - 8th Avenue S.W.,
Calgary, Alberta.
DRILLING CONTRACTOR: Nabors Drilling Ltd. Rig #8
DRILLING AUTHORITY: Issued Feb. 28th, 1973. No. b85.
CLASSIFICATION: New Field Wildcat
ELEVATION: 2080' Ground K.B. 2099'
SPUDDED: 12:00 Noon, March 2nd, 1973
DRILLING COMPLETED: 4:20 PM, May 29th, 1973
TOTAL DEPTH: 3850'
WELL STATUS: D & A
RIG RELEASED: 8:00 AM, May 7th, 1973
HOLE SIZES: 0 - 60' 17 $\frac{1}{2}$ "
60 - 600' 12 $\frac{1}{4}$ "
600 - 2704 3-3/4"
2704 - TD 6-1/8"
CASING: 15 jts. 9-5/8", 36#, K-55, 8 rd. -
611.97' + Howco shoe, float collar
and D.V. tool (4.60'). Cemented
with 180 sax + 1% CaCl₂. Plug
down 3:30 PM, April 5th. Displaced
with water. Circulated D.V. tool.
Cemented 2nd stage with 125 sax
oilwell cement + 1% CaCl₂. Plug
down @ 4:30 PM, April 5th. Cement
returns visable. D.V. tool @ 160'.
NO. OF DST's: 5
NO. OF CORES: 8
LOGS: Dresser Atlas - DIL, BHCSG, G-N & Dipmeter
TOOLPUSHERS: Al Thoma, Jack Smale

SUMMARY OF PERTINENT WELL DATA CONT'D.

WELLSITE SUPERVISORS: Engineers - Tom Ramsay, Carl Jasinski
Geologist - John Ontko

HEADQUARTER SUPERVISION: Engineer - J. Sullivan
- Geology - D. Connolly

HELICOPTER SUPPORT: Trans North Turbo Air
Pilots - B. Robertson, D. Plaster,
G. Stringer & G. Howell

FIXED WING SUPPORT: Nabor's Navajo & T.N.T.A. Twin Otter

DISTRIBUTION OF DATA: 1 set bags - G.S.C.
1 set can 2790 - TD - G.S.C.
1 set lined bags - Mobil
1 set vials - Mobil
1 set vials - Union
1 set envelopes - Union
All logs - original & prints - Union

SUMMARY OF SUB-SURFACE DATA

KB 2099

<u>FORMATION</u>		<u>E-Log DEPTH</u>	<u>ELEVATION</u>
<u>Lower Ordovician</u>	surface		+ 2099
<u>Cambrian</u>			
Saline River		1863	+ 236
Saline River Salt (equiv.)		2206	- 107
Mount Cap		2680	- 581
Mount Clark			
Old Fort Sand Mbr.		3160	- 1061
<u>Proterozoic</u>		3275	- 1176
T.D.		3850	- 1751

CORE DESCRIPTIONS

Core #1 3018 - 32'. Recovered 12'9".

Times 35, 34, 23, 32, -26, 27, 23, 30, 25, -25, 28, 33, 33, 38.

Core badly shattered in part. Jammed on connection.

7'3" Shale - dark grey, with slight greenish tinge. Massive, slightly silty in part with two thin ($\frac{1}{4}$ " to $\frac{1}{2}$ ") irregular siltstone beds with near flat bedding planes.

6" Shale - as above with thin siltstone interbeds indicating 45 degree bedding dip.
Basal 1" dark green with an irregular abrupt contact with the underlying section.

5'3" Shale - greenish dark grey with numerous thin beds of light grey, silty shale.
Bedding is horizontal.

Core #2 3032 - 62'. Recovered 30'.

Times 5, 10, 5, 7, 8, -8, 8, 10, 10, 10, -10, 10, 10, 10, 12, 12, -10, 10, 10, 10, 13, 13, 14, 13, 15, 14, 15, -17, 16, 10, 10, 15.

7'3" Sandstone - light grey, silt size to fine grained, angular, predominantly well packed with minor black green and green glauconite grains. Sand grains are easily dislodged by scratching with blade. Thin clear, flakes (medium size) are common and dispersed throughout section (a secondary silica, not mica.) Porosity not apparent. Core bleeds light brown oil and has gassy odor. Under fluoroscope appears patchy in small to large blebs as well as linear along micro fractures. The latter are not noticeable to the eye or under the microscope.
The sandstone is much like the lower Cardium of the Pembina Field.

CORE DESCRIPTIONS

Core #2 Cont'd.

12'4" Shale - dark grey, sandy to silty with the coarse clusters expressed as very small blebs and occasional thin beds up to $1\frac{1}{2}$ " thick. The sand & siltstone content decrease gradually towards base of section. Shale to sand ratio approx. 60 - 40. No bleeding oil, stain, minor weak patchy fluorescence.

10'9" Shale - dark grey, massive with noticeable thin interbeds and blebs of light grey, siltstone, decreasing towards base. Siltstone less than 10% of section. No stain or oil bleeding.

Core #3 3062 - 92'. Recovered 30'.

Times 22,22,26,26,27,-23,26,21,22,18,-17,24,36,21,23,-28,29,31,26,9,-7,8,10,8,8,-6,6,7,6,7.

19' Shale - dark grey, massive, hard, featureless.

6'8" Sandstone - grey, argillaceous, very fine grained, angular, slightly salt and peppered, hard, dense. Has blebbed appearance, $\frac{1}{4}$ " max. size, caused by cleaner sand. These blebs have medium fluorescence (faint white color.) No stain, faint gas odor on breaking.

Tight. Both contacts transitional.

0'4" Sandstone - light grey, dolomitic, silt to very fine grained size, hard. Basal contact abrupt and irregular with underlying dolomite.

4'0" Dolomite - brown, fine crystalline, hard, dense, with numerous thin irregular dark shale laminal, giving section a fragmental appearance.

CORE DESCRIPTIONS

Core #4 3092 - 3122'. Recovered 30'.

Times 6,6,8,5,5,-6,10,9,10,20,-25,26,24,12,15,-10,15,28,30,
30,-28,22,15,15,16,-9,5,7,6,7.

3'0" Shale - dark grey, massive, with light grey siltstone patches. Slightly dolomitic.

4'10" Sandstone - light brown, dolomitic, very fine grained, tightly packed, angular, clear quartz, with few dark grey shale interbeds (up to 2" thick) and numerous thin shale partings. Trace pyrite. Oil bleeding. Porosity poor, not obvious.

1'0" Shale & Siltstone - 50 - 50. Shale dark grey, interspersed with blebs and interbeds of light grey, dolomitic siltstone. Tight. No oil bleeding.

1'1" Sandstone & Shale - 70 - 30. Sandstone is light brown, very fine grained as above in bands up to 3" (oil bleeding) interbedded with thin beds of dark grey shale.

4'9" Shale - dark grey, massive.

2'9" Shale - dark grey with minor blebs and patches of dark brown, fine to medium crystalline, tight dolomite.

2'1" Shale - dark grey with numerous blebs and patches of tightly packed fine to medium crystalline dolomite. Tight.

5'0" Shale - greenish grey, massive.

4'5" Sandstone - dark grey green, salt and peppered, consisting of 50 - 50 coarse sub-rounded grains of dark green shale (glauconite?) interspersed with finer textured, angular, poorly sorted, tightly packed clear quartz. (grain size from very fine to coarse, but predominantly less than medium.) Section tight.

CORE DESCRIPTIONS

Core #4 Cont'd.

2'1" Sandstone - light brown, very fine grained, tightly packed, quartzose, with green shale parting and grains, slightly dolomitic. Oil stained with bleeding light brown oil. Basal 1'3" is saturated. Porosity not apparent under microscope.

Core #5 3122 - 52'. Recovered 30'.

Times 4,4,6,5,5,-14,21,22,22,27,-23,24,26,11,12,-12,17,20, 18,19,-11,12,10,13,11,-16,13,12,15,16.

6'2" Sandstone - light brown, very fine grained. tightly packed, oil saturated. Bleeds oil. No obvious porosity.

8'6" Shale - dark grey, massive, slightly sandy toward base.

2'6" Shale - dark grey, silty with numerous small silty blebs.

2'6" Shale - dark grey, clean.

1'4" Siltstone - light grey grading to very fine grained sandstone, shaly with shale intermixed as thin interbeds (partings) and as host rock toward base.

9'0" Shale - dark grey with varying minor amount of light grey siltstone (very fine grained sandstone) interspersed throughout as blebs and irregular thin interbeds.

CORE DESCRIPTIONS

Core #6 3152 - 73'. Recovered 21'.

Times 18,10,7,11,20,-20,15,7,8,17,-9,7,8,17,11,-
10,7,8,9,8,-11 .core barrel jammed.

2'0" Shale - dark grey green, with upper 8"
slightly blebbled with light grey siltstone.

2'0" Sandstone - light grey, very fine to occasional
coarse grained, rounded clear quartz grains
in a argillaceous matrix. Framework 80%.
Tight. No oil stain, or fluorescence. The
unit has occasional dark grey, argillaceous
beds cutting across core without any parallel
pattern.

3'6" Shale - dark grey, massive. Basal 6" contains
rounded vugs ($\frac{1}{2}$ " diameter) infilled with dark
brown crystalline dolomite, (as well as few
paper-thin, light grey, interbeds of dolomite.)

13'6" Dolomite - light grey to brownish grey, very
fine to finely crystalline, in part sandy,
hard, tight. The zone has numerous thin
irregular shale partings giving the zone a
fragmental appearance. Not a rubble zone,
as fragments have not been transported.
No movement.

Core #7 3173 - 3203' Recovered 30'.

Times 13,9,7,5,4,-6,3,3,4,7,-8,4,4,4,4,
6,4,3,3,10,-5,3,3,3,5,-5,6,8,2,2.

0'6" Sandstone - light grey, fine to medium grained,
sub-rounded, poorly sorted, well packed,
dolomitic. Tight. No stain.

0'3" Shale - dark grey, massive.

1'0" Sandstone - light brown, fine to medium
grained, sub-rounded to rounded, with occas-
ional coarse grain size fragment of green shale.
Few thin interbeds of dark grey, and sandy green

CORE DESCRIPTIONS

Core #7 Cont'd.

shale blebs are present. Zone appears depositionally fragmented. Oil stain. No visual porosity.

1'0" Shale - green, sandy in part.

1'3" Sandstone - as above, light grey, fine to medium grained with few thin green shale interbeds at base. No stain. Tight.

2'3" Sandstone - as above, in part light brown stain, grading to very fine to fine grained, sub-angular, quartzose. Hard. Occasional thin shale interbed. Two vugs $\frac{1}{4}$ " in size present 1' below top. Tight visually.

1'10" Sandstone - as above with thin green and dark grey shale interbeds more common, giving section a fragmental (depositional) appearance in part.

3'9" Sandstone - very fine grained, quartzose, massive, with green shale interbeds more common. Hard. Well packed appears tight. Stained.

6'0" Sandstone - as above, in part heavily stained (approx. 1' located $1\frac{1}{2}$ ' from top of unit.) Remainder light brown stained.

1'2" Sandstone - as above interbedded with thin dark grey shale. Stained.

3'7" Shale - green to pale green becoming sandy in basal 6".

1'6" Sandstone - very fine grained as above with green shale matrix in part. Stained.

3'0" Shale & Sandstone - shale is green with abundant light grey sandstone blebs. No stain.

0'4" Shale - dark grey green.

1'6" Sandstone - light grey, very fine grained, quartzose, sub-angular with minor amount of green shale intermixed.

CORE DESCRIPTIONS

Core #7 Cont'd.

1'0" Sandstone - very fine grained, sub-angular intermixed with medium sized sub-rounded grains, poorly sorted, slightly friable. Oil stained.

Core #3 3203 - 33'. Recovered 29'.

Times 2,2,2,2,2,-3,2,2,2,2,-2,2,2,2,2,-
2,2,2,3,3,-2,2,2,2,11,-8,4,1,1,1,-

5'6" Sandstone - brown stained, gassy odor, fine grained, sub-angular, quartzose. good sorting, well packed, friable. Oil stained.

0'3" Shale - pale green, soft.

13'0" Sandstone - as above. Oil stained.

1'3" Sandstone - black, fine to medium, sub-rounded, quartzose grains, friable. Bitumen infill interstitial spaces. No physical barrier at contacts responsible for difference in stain.

5'0" Sandstone- light brown stained as before, predominantly fine grained, sub-rounded, with occasional coarse rounded to sub-rounded clear quartz grains. Well packed. Friable.

1'0" Sandstone - black, fine grained, bituminous as before with no noticeable rock change at contacts.

0'6" Shale - green, soft.

1'0" Sandstone & Shale - broken core, shale is pale green, soft, sandstone is as above, oil stained.

SAMPLE DESCRIPTIONS

Sample interval 30'.

30 Chert - light grey, massive.

60 Chert - light grey to white, massive to micro-crystalline, in part tripolitic. Occasional chip has honeycomb structure.

90 Chert - as above with minor clear angular coarse quartz grains (5%).

120 Chert - as above with trace of quartz.

150 as above, with porous honeycomb, (porous) structured chert common (20%).

180 Chert - light grey brown and white, massive, trace of tripolite. Occasional quartz grain. No porous chert.

210 predominantly light grey and white as above with minor tripolitic and porous chert. Iron stain obvious.

240 Dolomite - light brown to light grey, micro and finely granular (the fine grained has white matrix.) Light grey chert common. Occasional light greenish yellow chert present. Trace of clear quartz. (Sample quality poor, only coarse chips.)

270 as above, without the granular white matrixed dolomite and the pale greenish yellow chert. (Poor sample.)

300 as above with chert occasionally vuggy. (poor sample)

330 as above, without vuggy type chert. (Very poor sample.)

360 Dolomite - light brown, crypto to micro-crystalline with minor chert (one piece has pesolitic structure.) Iron stain spotty.

390 as above, grading to finely crystalline in part, occasionally light grey in color. Light grey, massive chert common to abundant. (30%)

420 Dolomite - as above with abundant light grey, massive, crypto to micro-crystalline dolomite. Decrease in chert to trace.

450 as above, chert approx. 10%.

480 Dolomite - with occasional chip of pale green and green shale.

510 Dolomite - light brown, hard, dense, micro-crystalline (60%), light grey, chalky textured, limy dolomite abundant (40%).
Trace chert.

540 predominantly light brown micro-crystalline dolomite - 70% - with light grey, micro-crystalline dolomite common (20%). Chalky textured dolomite minor (less than 10%).
Trace of chert.

570 as above. Slightly more chert - 5%.
Occasional greenish dolomite chip.

600 as above, with minor amount of chalky textured dolomite (20%).

630 Dolomite - light brown, micro to very finely crystalline with trace (less than 5%) white and light grey chert.

660 - 90 in part - 10% - light grey, very fine to finely crystalline, poorly sorted, tight dolomite. Occasional pale green shale chip.

720 Dolomite - predominantly light brown, micro to very finely crystalline dolomite.

750 with occasional white, soft, chalky textured dolomite chip. Few white chert, and clear quartz chips also present.

780 with ferruginous stain and rust. No primary porosity. Iron indicates fracture, some water in hole at 759 - went to mist.

810 with abundant fine to medium crystalline dolomite. Occasional trace of solution vugs. Much of the cuttings are reddish due to iron stain.

840 Dolomite - the prevalent light brown, micro to very finely crystalline dolomite has occasional solitary vug. The light grey, micro to finely crystalline dolomite is approx. 15%. The light grey sucrosic, very finely crystalline, silty dolomite is approx. 5%. White chert and white chalky texture makes up approx. 5%. No iron stain present.

870 as above - the light brown dolomite is becoming abundantly very fine crystalline (sucrosic.) Occasional small chip of green sandstone. Few yellowish green, cryptocrystalline dolomite chips.

900 as above with minor amount of sandy dolomite, occasional coarse, clear quartz grain.

930 as above with only occasional white chert chip, no coarse quartz observed. Sample is predominantly light brown, micro to very finely crystalline dolomite (70%), light brown to light grey, sucrosic, very finely crystalline dolomite 20%, and very minor amount of light grey, very fine to fine crystalline, poorly sorted dolomite. Occasional chip has yellowish green tint.

990 same lithology as above, but becoming increasingly more light grey in color.

1020 - 50 Dolomite - lighter brown than above, consistently micro-crystalline, with minor light brown to light grey to white, chalky appearing dolomite 20%. Trace white chert.

1080 as above with occasional rust parting.

1140 as above. Occasional reddish speckled and light pinkish colored chip.

1170 as above, increase in amount of the light grey to white (chalky textured) sucrosic dolomite to approx. 50%.

1200 decrease in sucrosic to minor - less than 20%.

1230 with abundant light to medium to dark grey crypto to micro-crystalline dolomite (30%). The dark grey is micro-crystalline. Trace of light grey shale.

1260 Dolomite - as above, predominantly light brown (50%) and light grey (40%) hard, dense, crypto to micro-crystalline. Occasional pale greenish yellow dolomite chip. Minor green, blocky, slightly dolomitic shale (10%).

1290 Dolomite - predominantly light brown in part light grey, crypto to micro-crystalline, hard, dense. Occasional green shale chip.

1320 as above with occasional coarse crystalline calcite lump and odd medium grey, micro-crystalline dolomite chip.

1350 as above with minor light grey, chalky dolomite (10%).

1380 the above chalky (in part sucrosic) dolomite becoming predominant (60%). Light grey and light brown, micro-crystalline, dense dolomite of the above is abundant (40%).

1410 Limestone - light grey to medium grey, micro- to finely crystalline, slightly silty and argillaceous.

1440 Dolomite - light grey to medium grey, micro-crystalline, hard, dense - 70% with light brown, crypto to micro-crystalline, dense dolomite common.

1470 as above with trace of green shale.

1500 Dolomite - as above, light brown 70% and light to medium grey 30%.

1530 Dolomite - predominantly light to medium grey, argillaceous, crypto to micro-crystalline, dense (70%) with light to medium brown, dense, crypto to micro-crystalline dolomite common 25%. Trace of medium grey, blocky, dolic shale.

1560 as above with minor 10% light grey and light brown, soft, chalky textured dolomite.

1590 as above with minor dark grey, blocky dolomitic shale.

1620 increase in shale amount (approx. 20%) with greenish grey, slightly fissile shale obvious. The light brown, chalky dolomite approx. 20%. The light to medium grey and light brown dolomite of above is predominant (60%).

1650 as above with green, blocky shale common (15%). Trace of disseminated pyrite.

1680 as above, becoming predominantly the light grey, dense, hard, micro-crystalline type (50%), the light brown to greyish brown type is approx. 30%. The grey shale and green shale comprises approx. 20%. Trace of pin point solitary vugs in both dolomite color types.

1710 Dolomite - brown, hard, dense, crypto-crystalline in part appear greyish brown (30%) with green, blocky to slightly fissile shale (with occasional disseminated pyrite) 20%.

1740 as above with the dolomite occasionally earthy (softer) appearing. Increase in green shale to approx. 30%.

1770 as above with minor amount of light grey, slightly argillaceous, massive dolomite with occasional trace of fossil detrital. Decrease in amount of green shale (10%).

1800 as above. Dolomite 70% - increase in green fissile to slightly waxy in part shale.

1830 as above. Dolomite remains light grey and light brown, massive, crypto to micro-crystalline. Trace of brown, micro-crystalline dolomite. Green, fissile to blocky shale approx. 20%.

1860 as above, decrease in shale to trace - less than 5%.

Saline River 1870

1890 Shale (50%) rusty to dark brown in part interbedded with light grey, light brown, and pinkish crypto to micro-crystalline dolomite with spotty good vuggy porosity (no stain.) Green waxy to dull shale present as a trace.

1920 Shale - as above reddish to brown, light green to dark green in part waxy (60%), with abundant pinkish, reddish, yellowish, grey, dolomitic siltstone (20%), minor pink and white anhydrite (10%), and light grey to light brown, dense, crypto-crystalline dolomite. (Variegated.)

1950 - 1990 as above with anhydrite only a trace (less than 5%).

Start 10' interval samples at 2000'.

2000 Shale - variegated as above with siltstone and anhydrite and dolomite as above with green shale predominant (approx. 40%).

2010 - 60 as above with trace of white mineral with columnar habit (gypsum?). Occasional clear, needle-shaped, gypsum crystal present.

2070 - 90 as above, yellowish and light grey shale more obvious than above. Dolomite present as trace. Very minor anhydrite and siltstone.

2100 - 2110 variegated section as above with green shale very predominant. Trace dolomite, anhydrite and siltstone.

2120 - 60 as above, with anhydrite obvious.

2170 trace vuggy porous dolomite.

2180 as above with further increase in anhydrite approx. 10%.

2190 as above with increase to obvious in pale yellowish shale.

2200 as above, green, reddish and light grey shale (order of predominance) with trace of yellow shale. Anhydrite common.

2210 as above with considerable light brown, massive, crypto-crystalline dolomite 30%, slightly silty in part; pink anhydrite (sylvite) minor 10%. Trace light grey, dolomitic, fine grained sandstone.

2220 no dolomite. Sample predominantly red shale with abundant green, in part light green, waxy shale. Minor amount of brown, yellowish brown and grey shale. Anhydrite - white and pink (sylvite) present in minor amount approx. 5%. ↑

Pipe Correction -32'.

2230 Salt? at 2223 - 37 with shale as above. Trace light brown dolomite. Anhydrite minor.

2250 Shale as above with trace of white chert, also light grey, fine grained sandstone with medium to coarse quartz crystal inclusions.

2260 - 90 as above with minor amount of pink anhydrite (sylvite) 10%. Trace of pyrite in a dark background, pale green, lithographic shale with conchoidal fracture, occasional chip of light grey, fine to medium grained, angular, poorly sorted.

2300 as above. Variegated shale and minor anhydrite. Occasional chip of light grey, poorly sorted, angular, very fine to medium grained sandstone. Pyrite "dark" as before.

2310 - 20 as above, with odd white chert and white lithographic mineral (appears like chalk.)

2330 - 40 as above with white, soft, chalky textured, limy shale common (10%). Light grey shale obvious, contains sandstone grain interbeds. predominantly green and red shale of above.

2350 as above, decrease in anhydrite to trace.

2360 as above, predominantly green shale.

2370 as above. Minor to trace of anhydrite (Pink) occasional chip of white chert and siltstone.

2380 - 2400 as above with increase in reddish colored shale to approx. 2/3 of the green. Yellowish brown and brown shale obvious. Occasional shale chip is pitted suggesting salt inclusions.

2410 Shale - predominantly green and reddish with minor grey; trace amount of anhydrite.

2420 Decrease in amount of rusty shale with light grey, soft, slightly dolomitic shale obvious. Trace of light brown, crypto-crystalline dolomite.

2440 as above with light brown, soft, chalky appearing, slightly limy dolomite common 10%.

2450 variegated shales as above, abundant green, rust (red) and light grey common, with trace of pink and white anhydrite and light brown, crypto-crystalline dolomite (containing disseminated pyrite in part.) Difficult to dry clean sample because of grey dust.

2460 Decrease in rusty shale with minor light brown dolomite with excellent honeycomb porosity (tight fragments have pelletoidal - granular - texture.)

2470 Dolomite - light brown, earthy, tight (50%) with abundant green shale. No rusty shale. Trace of anhydrite. One coarse mica flake. Few black shale fragments. Difficult to dry sample clean, as it becomes dusty and covers colored cuttings.

2480 Shale - pale green (45%) with abundant very dolomitic light grey shale (shaly dolomite) 45%. Minor to trace of pink and white anhydrite, as well as trace of dolomite. When dried covers colored chips with grey dust. Sticks to pan.

2490 Shale - as above, green to light greenish grey to grey dolomitic (80%) with minor light brown dolomite (10%) and white and orange (pink) anhydrite 10%.

2500 Dolomite - grey to slightly brownish grey, in part light grey, dense, silty, tight (60%) with abundant (30%) above grey, grey green and green shale with minor light grey shale. Occasional anhydrite as well as the odd porous grain cluster. Red (rusty) shale appears as trace, but considered caving. Mud has been in poor condition for last 100' because of salt contamination. Sample dries without grey dusty coating of above samples.

2510 Shale - green and grey, dolomitic in part, as above with minor light brown, dolomite and trace of anhydrite.

2520 as above. Trace of pale yellow green and bright green shale. Occasional chip of anhydrite.

2530 - 60 Shale - as above, green and grey green, dolomitic with abundant grey shale. Minor to trace of light brown, earthy dolomite. Occasional piece of anhydrite. Red (rusty) shale is obvious. Bedding obvious with samples often having micro-flakestone appearance.

2570 - 80 as above with trace dark grey shale, slight increase in dolomite (10%). No anhydrite.

2590 Shale - as above with slightly increased light brown, slightly silty dolomite approx. 15% - light grey, finely crystalline dolomite present as trace amount of less than 5%.

2600 as above. No grey, micro-crystalline dolomite. Increase in light brown dolomite to approx. 25%.

2610 - 30 as above. Light brown to light grey to medium brown, in part crypto-crystalline, argillaceous dolomite approx. 20%.

2640 - 50 becoming predominantly shale. Dolomite approx. 15% with medium brown dolomite as trace.

2660 Shale - as above approx. 40% with abundant dolomite, light brown, earthy to very finely crystalline (granular) 30%, with minor amount of good pin point vug fluorescence with light grey to light brownish grey, argillaceous dolomite 20%. Minor brown chert speckled (inclusions) in part 5%. Trace of dark grey shale, occasional pink (orange) anhydrite chip. Fluorescence less than 5% of sample in brown, very finely crystalline dolomite with occasional pin point vug.

2670 Shale - 60% predominantly bright green, blocky with light green and grey green in minor amount. Dolomite 40% - light brown to medium brown, (fluorescence with occasional pin point vug) to grey brown, crypto-crystalline, in part finely crystalline, granular, silty. Fluorescence less than 5%.

2680 as above - the green shale looks dark greenish grey when dry. Dolomite remains approx. 40% and is similar to above silty, crypto to fine grained, light grey brown to occasionally medium brown in part. Odd chip fluoresces.

2690 Dolomite - 50% as above with occasional brown (oil stained fragment less than 10% of dolomite portion) with occasional pin point vug. Shale 50% - predominantly bright green, slightly fissile and in part pale green, blocky.

2700 Shale - as above 60% with dolomite 40% light grey to light brown, crypto to micro-crystalline with occasional brown, very finely granular, crystalline (oil stain - white - fluorescence.) Less than 1%. Occasional brown chert chip.

2704 circulated Shale 80% Dolomite 20%. Occasional (less than 1% of dolomite portion) oil stained (white fluorescence), finely granular dolomite.

2710 Shale - dark greenish grey to dark grey, blocky to platy to fissile. Trace of reddish, and pale green shale. Occasional chip of light grey, crypto-crystalline dolomite, light grey dolomitic siltstone and fine grained, slightly porous, spotty rust stained sandstone (probably the trace and occasional chips are cuttings from the mud tanks that are circulated through the mud system.)

2715 as above with minor amount 5% of grey, slightly dolomitic, salt and peppered, angular, very fine to fine grained sandstone. The black grains are shale fragments (similar to shale being drilled), and are larger than the quartz grain complementary component. Tight. Trace of light brown to brown crypto-crystalline dolomite 1%. Occasional chip of reddish shale and light grey, fine grained dolomitic sandstone (contaminants?)

2720 Shale as above. Occasional chip of above salt and peppered sandstone, reddish, and pale green shale.

2730 Shale as above - dark greenish grey to dark grey - blocky, platy to fissile.

2740 as above with occasional chip of light brown, crypto to finely crystalline dolomite and white chert, and white tripolite with quartz grain inclusions.

2750 Shale - as above, however, not greenish as before. Habit same. Color dark grey.

2760 as above with minor (less than 5%) light grey, dolomitic, very silty to very fine grained, predominantly quartz with occasional very fine grained shale grains, sandstone (siltstone.) Tight.

2770 Shale & Limestone - Shale 50% - dark grey to black and dark green, blocky to fissile to finely bedded as above with Limestone 50% - light grey to light brown to brown, crypto to micro-crystalline, slightly silty, dense with trace of light grey, soft, chalky limestone. Occasional chip grades to fine granular with odd fragment containing coarse grained inclusions (fossil fragments?)

2780 as above with decrease in above limestone to approx. 30%. Occasional chip of vuggy dolomite with slight cut. Less than 1%. Shale remains grey green in part.

2790 increase in limestone to approx. 80%, and becoming brown, micro to very finely crystalline with occasional chip containing fair inter-crystalline porosity with fluorescence (at most 10% of limestone portion), limestone is also slightly dolomitic. Shale 20%, predominantly green, platy to blocky as above. Evidence of occasional micro fractures infilled with calcite.

2800 Shale - dark grey, blocky, limy, very silty 90% with minor light grey, limy, very argillaceous siltstone 10%. Trace of limestone as above.

2810 as above, grading more to the grey, slightly dolomitic very argillaceous siltstone (silty shale.)

2820 Limestone (80%) brown to buff in part, crypto-crystalline, dense, in part buff, soft, chalky textured limestone. Shale 20% - greenish grey as above. Calcite present in trace amount as fracture infill.

2830 Shale - dark grey, blocky, slightly limy with 10% limestone as above.

2840 Limestone - 80% medium brown, crypto to micro-crystalline in part grading to buff, soft, chalky textured limestone. Occasional fracture infilled with calcite. Shale 20% - green grey, blocky.

2850 Shale - dark grey, fissile to blocky with minor 20% limestone of above.

2860 as above, shale shows platy texture, some minor slickensiding, occasional fossil mold (Trilobite parts.)

2870 Limestone 60% - light to medium brown, slightly dolomitic, crypto-crystalline grading to very finely granular in part, buff colored, softer limestone is common. Shale 40% - predominantly green and dark grey in color, blocky with trace amount of dark brown, fissile shale, and dark brown silty shale.

2880 Siltstone 50% - light grey, very dolomitic in part medium grey, argillaceous, as well as greyish brown. Shale 45% - predominantly dark grey and green with minor black and dark brown. Dolomite 5% - as above, light brown to buff.

2890 Dolomite 90% - light to medium brown, micro to finely crystalline, dense with occasional white calcite chip (fracture infill.) Shale 10% - green, dark grey and brown as above.

2900 Dolomite 60% - becoming light brown to light grey, to medium grey, predominantly crypto-crystalline, slightly silty with Shale 40% - dark grey, in part brown and trace of black fissile, bituminous.

2910 Dolomite - predominantly medium brown, micro-crystalline to tightly packed, finely granular in texture, slightly limy, occasional chip with inter-crystalline porosity; with hard, blocky, dolomitic pale green, silty shale. Trace of green shale.

2920 Dolomite 90% - light grey, silty, very fine granular, massive, dense with rounded glauconite inclusions abundant in numerous chips. Shale 10% - dark grey present in minor amounts.

2930 Dolomite - brown, finely crystalline, slightly silty, tight. Trace of green shale and light grey, very finely crystalline, glauconitic dolomite.

2940 Siltstone - light grey, slightly dolomitic. Trace of green shale.

2950 as above in part brownish in color, with considerable sericite(?) flakes. Thin shale partings also present. Minor black shale present in part sericitic.

2960 Shale 60% - green, blocky, in part platy, with siltstone 40% light brown to light grey in part. Occasional chip fluoresces, no cut.

2970 as above with trace of brown shale. Decrease in siltstone to approx. 10%.

2980 Shale - green and brown shale, blocky to fissile. Approx. 40 - 60 green to brown shale.

2990 Shale - becoming predominantly brownish grey, with abundant green fissile. Minor amount (5%) of light grey chert. Very odd (occasional) angular, fine to coarse, clear quartz grain and clusters. Trace of light brown to reddish, very finely to finely crystalline dolomite.

2995 Shale - green, blocky to fissile.

3000 Shale 90% - predominantly green with brown common and minor amount of grey. Trace of white to light grey chert, light brown dolomite and occasional angular, coarse, clear quartz grain.

3010 Shale - green as above with trace of brown.

3015 Sandstone - light brown, fine grained, angular, quartzose sand. Tightly packed, trace of inter-granular, poor porosity with good oil stain and cut. Not dolomitic, has minor silica cement. Mostly framework, porosity may be good but not noticeable under microscope.

Cored 3018 - 3233 - 8 cores 95% recovery.

3240 Shale - green, fissile to blocky with abundant light grey, very fine grained, quartzose sandstone, in part grading to medium sized, sub-angular to sub-rounded. Porous. Partly stained with faint fluorescence.

3250 Sandstone - light grey to light brown, stained fine to medium, sub-angular to sub-rounded, clear, quartz grains. Good porosity.

3260 - 70 Sandstone - light brown, stained, very fine grained as above with abundant loose coarse, angular to sub-rounded, predominantly translucent quartz with trace of clear, and yellowish quartz. Minor amount 15% of green fissile to blocky shale.

3280 - 90 Shale - green, fissile and blocky with abundant maroon, rusty, and brown colored shale.

3300 Shale - as above with much fine grained, porous sandstone and loose, coarse, rounded sand grains - cavings. (Shale continues very reddish and soft - much is washed out when cleaning.)

3320 Shale - reddish, dark green, trace of pale green, grey and dark grey common. In part silty and sandy grading to siltstone and dolomite, occasional slightly glauconitic sandstone. Numerous lighter shales and siltstone are micaceous (sericite.)

3330 Sandstone - light grey, very argillaceous, with occasional pale green speck inclusions, reddish stained with shales of above common, the brownish grey color being the most prevalent. Mica (sericite) flakes abundant and present in brownish and green shales as well as the sandstone.

3340 - 50 Shale - decrease in sandstone to approx. 20%, predominantly variegated shales as above.

3360 Shale - green to grey green, 30% with grey shale 20% common. Habits are blocky to fissile in part.

3370 Shale - as above with increase in grey type to approx. 40%.

3380 as above with grey shale predominant.

3390 Shale - as above 60% green 40% grey.

3400 as above 50 - 50 with trace light brown, micro-crystalline dolomite, few chips of white bentonite.

3410 Siltstone - light grey to greenish grey, argillaceous, slightly glauconitic grading to very fine grained sandstone with green and grey shale common 30%.

3420 Sandstone - as above decrease in shale to less than 20%.

3430 - 70 Shale - green and grey, fissile, micro-micaceous in part, with minor grey, argillaceous, very fine grained sandstone 10%.

3480 as above, increase in light greenish grey sandstone to approx. 20%.

3490 Sandstone & Shale - 60 - 40 - as above with the glauconitic portion becoming more obvious.

3500 Sandstone - as above with decrease in shale to less than 10%.

3510 as above, shale approx. 25%.

3520 as above, shale 40%.

3530 decrease in shale to 20%. Few dark grey to black to brown chips of shale. Trace of bituminous sandstone.

3540 Sandstone - light grey, silt to fine grained, angular, clear quartz, fair sorting, slightly micaceous, silica cement. Occasional glauconite grain, and green shale grain. Trace of inter-granular porosity.

3550 as above with a few coarse, angular, clear quartz chips occasionally encrusted with quartz crystals suggesting fractures. Occasional rust staining.

3560 Shale 90% - grey green, blocky to fissile with minor amount of above sandstone.

3570 Shale - green 40%, grey 20%, maroon 10%, and sandstone light grey, quartzitic as above 30%.

3580 Shale - green, fissile to blocky with minor amount of dark grey shale. Trace of maroon and pale green shale. Sandstone of above minor in amount.

3590 Shale -- green and dark grey as above with minor sandstone 15%.

3600 - 10 as above with dark grey shale abundant. Brown shale common. Sandstone argillaceous to quartzitic approx. 20%.

3630 Sandstone - light grey, very fine grained, quartzitic, slightly glauconitic, tight. Minor dark grey and brown shale 10%.

3640 Sandstone is very argillaceous in part, increase in above shale to approx. 50%. * Sample is brown due to being burned when drying.

3650 - 90 as above. Dark grey shale approx. 10%.

3700 - 10 as above with texture grading down to silt size. Noticeably quartzitic. Slight increase in shale varying from 10 - 25%.

3720 - 30 as above, becoming more noticeably micaceous; both sandstone and shale.

3740 Shale 60% - grey to dark grey, fissile to blocky, slightly micaceous in part. Minor brown shale. Sandstone 40% - grey and brown, grading to siltstone, quartzitic, argillaceous, slightly micaceous in part.

3750 Shale - dark grey, blocky to fissile with minor amount of green and brown shale. Sandstone - light grey and brown, silty, quartzitic present as trace.

3760 - 70 Shale - as above with brown shale and siltstone and silty shale becoming obvious.

3780 Shale - dark grey with minor green grey, and green, fissile to blocky. Minor light grey, slightly glauconitic, very fine grained quartzitic sandstone - less than 10%.

3790 - 3800 as above, increase in sandstone to approx. 30%.

3810 - 30 Sandstone 60% - as above in part grey, very quartzitic with shale 40%.

3840 decrease in sandstone to less than 40%.

3850 Shale - grey, green with trace of brown, fissile to blocky. Occasional pyrite crystal cluster. Few sandstone grains of above.

TD 3850

May 2nd, 4:20 PM, 1973.

E N G I N E E R I N G

BIT RECORD					
BIT NO.	SIZE	MAKE & KIND	SERIAL	DEPTH	TOTAL FEET
					TOTAL HOURS
1A	17 1/2	H7J	394440	30	30
2A	12 1/4	M4NGJ	913351	32	2
3A	12 1/4	H7UJ			
4A	12 1/4	H7UJ			
3A RR	12 1/4	H7UJ			
5A	12 1/4	H10J			
6A	12 1/4	H77U			
7A	12 1/4	M4NG			
8A	12 1/4	3JS			
1	8-3/4	WDR-RR	28639	615	5
2	8-3/4	SS8	M4779	1900	1285
3	8-3/4	TC8 RR	FS005R	2242	342
4	8-3/4	4JS	MS282		
5 RR	8-3/4	WDR	28639	2326	34
6 RR	3-3/4	4JS	MS282	2513	187
7	8-3/4	H77	369204	2704	191
8	6-1/8	S88	435437	2930	226
9	6-1/8	M88	913695	3018	88
1D	6-3/32	diamond	EC127112	3032	14
2D	6-3/32	diamond	EC117235	3233	201
10 RR	6-1/8	S88	435437	3315	82
11	6-1/8	S88	435555	3850	535
Drill 21' rat hole.					
5-3-1 stiff foam					
8-4-1 stiff foam					
2-7-1 stiff foam					
2-1-1 stiff foam					
3-3-1 mud.					
2-2-1					
Drill out - air					
8-8-1 foam					
5-7-1					
Clean out to bottom					
5-2-1 mud					
1-1-1					
3-2-1					
1-2-1					
1-1-1					
7-3/4 New					
Good					
1-5-1					
1-3-1					
Total 457-3/4 hours					

DAILY MUD RECORD (PROPERTIES & ADDITIVES)

<u>DATE</u>	<u>DEPTH</u>	<u>WT. GAL.</u>	<u>VIS. SECS.</u>	<u>W.L.</u>	<u>PH</u>	<u>KELZON GEL</u>	<u>SAW DUST</u>	<u>CAUSTIC BENEX</u>	<u>SPER SENE</u>	<u>SALT GEL</u>	<u>SALT</u>	<u>CMC</u>	<u>BI- CARB</u>		
Drilling with air															
Apr. 3	267	3.4	110			4	50	100							
4	410	3.5	200				70		4		20				
5	607	9.0	185			4	17			2					
				Drill with air											
15	2242	8.5	200+				6	80	100						
16	2326	8.5	150	11.2			8	70							
17	2434	9.0	90	15.2				15		3					
18	2513	9.5	65	11.8				1							
19	2634	10.0	80	14.0				1							
20	2704	10.0	88	15.2											
				End of Salt Mud System											
21	2704			W.O.C.											
22	2745	8.4	38						1						
23	2876	8.8	47							4					
24	2941	8.8	53							3	19				
25	3020	8.8	52							2	15				
26	3062	8.8	52							12					
27	3105	8.9	50												
28	3169	8.9	60												
29	3233	9.0	58												
30	3279	9.0	62												
May 1	3415	8.8	57												
2	3726	8.8	55												
3	3850	8.8	58												
4	3850	8.8	48												

DAILY PROGRESS REPORT

<u>DATE</u>	<u>DEPTH</u>	<u>FOOTAGE</u>	<u>HRS.ON BOTTOM</u>	<u>BIT NO.</u>	<u>WEATHER</u>	<u>REMARKS</u>
Mar. 25/73	15	15	4	1A	8:00AM +10	Drill with air - rat hole
27	15	ream	10	1A&2A		Ream to 17 $\frac{1}{2}$ "
28	34	19	10	2A&3A	+8	Ran & cemented conductor. W.O.C.
29	34				+12	W.O.C. Headed up air drill equipment.
30	123	89	13 $\frac{1}{2}$	3A&4A	+10 wdy.	Spudded noon March 29.
31	177	47	12	3A&5A	+15	Drill
Apr. 1	210	33	5 $\frac{1}{4}$	5A&6A	+5	Drill. Hole sloughing badly.
2	210			7A	+10	Change to mud. Losing circulation.
3	267	57	8	7A&8A	-5	Drill. No mud loss.
4	410	136	17 $\frac{1}{2}$	8A	-10	Drill.
5	607	197	19 $\frac{1}{2}$	8A	+5	Drill.
6	610	3	$\frac{1}{2}$	8A	+6	Ran 9-5/8" surface casing.
7	610				+5	Nippling up.
8	615	5	3/4	1	+12	Pressured up OK. Drill out.
9	794	179	17 $\frac{1}{4}$	2	+25	Drill with air.
10	1120	326	23 $\frac{1}{4}$	2	+26	Drill.
11	1471	351	23 $\frac{1}{4}$	2	+15 snow	Drill.
12	1876	405	23	2	+10 clr.	Drill.
13	2208	332	18 $\frac{1}{2}$	2&3	+15 clr.	Drill.
14	2242	34	12 $\frac{1}{2}$	3&4	-10 clr.	Hole slough, water in hole. Reaming.
15	2242	0	0	RR5	-10 clr.	Unable to fill hole w/water, mixed mud w/lost circulation material, got returns.

Pipe Correction -32".

DAILY PROGRESS REPORT Cont'd.

DATE	DEPTH	FOOTAGE	HRS. ON BOTTOM	BIT NO.	WEATHER	REMARKS
Apr. 16/73	2326	84	11 1/2	RR5	0 clr.	Clean out 8 hrs. - drill with mud.
17	2434	108	12-3/4	RR6	-5 clr.	Laid down air rotary bed.
18	2513	79	21 1/4	RR6	0 clr.	Change to salt mud.
19	2634	121	22 1/2	7	+5 wdy.	Drill.
20	2704	70	20	7	+18 wdy.	Drill - prepare to run casing.
21	2704				+10 cldy.	Ran 7" casing. <u>W.O.C.</u>
22	2745	41	4	8	+20 wdy.	Test B.O.P.'s, drill.
23	2876	131	21-3/4	8	+10 cldy.	Drill.
24	2941	65	18-3/4	8&9	+5	Drill. Pipe correction 7".
25	3020	79	15	9&D1	-2 clr.	Drill and core.
26	3062	42	11-3/4	D2	+4 wdy.	Core, DST #1.
27	3105	43	12 1/2	D2	+12 wdy.	Core.
28	3169	64	15 1/2	D2	+28 fgy.	Core.
29	3233	64	5-3/4	D2	+18	Core, DST #2 = missrun.
30	3279	46	3-3/4	10RR	+30 clr.	Drill.
May 1	3415	136	21 1/2	10RR	+32 clr.	Drill.
2	3726	311	23 1/4	11	+25 clr.	Drill.
3	3850	124	8	11	+30	Waiting on parts for logger.
4	3850					Logging.
5	3850					Ran DST #4.
6	3850					Ran DST #4 and #5.
7						Ran abandonment plugs.
						Rig released 8:00 AM, May 7th, 1973.

DEVIATION RECORD

<u>DEPTH</u>	<u>DEVIATION (DEGREES)</u>
80	$\frac{1}{4}$
146	0
224	1-3/4
295	2
390	2
490	2
605	2 $\frac{1}{4}$
695	2
910	1-3/4
1200	1
1500	3/4
1798	$\frac{1}{4}$
2110	$\frac{1}{4}$
2320	2
2350	1-3/4
2420	2 $\frac{1}{4}$
2643	1 $\frac{1}{2}$
2700	1-7/8
2815	2
2930	2
3018	1
3850	6-7/8

DRILL STEM TESTS

TEST #1

Date	April 26th, 1973	
Operator	C. Martineau - B.J. Services	
Formation	Old Fort Sand	
Interval	3002 - 62	
Flow Periods	Preflow	15 mins.
	Initial Shut-In	60 mins.
	Flow	90 mins.
	Final Shut-In	90 mins.
Pressures	IHP	1550
	FHP	1370
	Preflow	
	IFP	50
	FFP	50
	ISIP	240
	FSIP	60
Recovery	40' drilling mud, slightly oil flecked & gas cut. Tool open - Fair air blow to faint in 3 minutes.	

TEST #2

Date	April 29th, 1973	
Operator	C. Martineau - B.J. Services	
Formation	Old Fort Sand	
Interval	3186 - 3233	
Misrun	Spline in Shut-In tool damaged	

DRILL STEM TESTS Cont'd.

TEST #3

Date	April 29th, 1973
Operator	C. Martineau - B.J. Services
Formation	Old Fort Sand
Interval	3186 - 3233
Flow Periods	Preflow 5 mins. Initial Shut-In 60 mins. Flow 140 mins. Final Shut-In 120 mins.
Pressures	IHP 1500 FHP 1440 Preflow IFP 310 FFP 990 ISIP 1040 FSIP 1040
Recovery	2300' of water 40,000 ppm. NaCl. Temp. cool - est. 50 deg. F - no therm.

TEST #4

Date	May 5th, 1973
Operator	C. Martineau - B.J. Services
Formation	Old Fort Sand
Interval	3207 - 3224
Flow Periods	Preflow 5 mins. Initial Shut-In 120 mins. Flow 120 mins. Final Shut-In 140 mins.
Pressures	IHP 1550 FHP 1400 IFP 240 FFP 900 ISIP 1050 FSIP 1030
B.H.T.	95 degrees F
Recovery	2200' slightly gassy, salt water (45,000 ppm. NaCl) Upper 500' slightly oil flecked

DRILL STEM TESTS Cont'd.

TEST #5

Date	May 6th, 1973	
Operator	C. Martineau - B.J. Services	
Formation	Old Fort Sand	
Interval	3253 - 78	
Flow Periods	Preflow	10 mins.
	Initial Shut-In	60 mins
	Flow	120 mins.
	Final Shut-In	120 mins.
Pressures	IHP	1590
	FHP	1450
	IFP	380
	FFP	1030
	ISIP	1110
	FSIP	1110
B.H.T.	95 degrees F	
Recovery	2200' salt water (45,000 ppm. NaCl.)	

ABANDONMENT PLUGS

PLUG #1

1st Stage - 3850 - 3250

Ran 150 sax oilwell cement. Displaced with
24 barrels drilling mud.

2nd Stage - 3250 - 2650

Ran 150 sax oilwell cement. Displaced with
18 barrels drilling mud.

Felt Plug at 11:00 PM, May 6th. Top at 2590.

Cut off casing. Placed 5 sax cement at top.
Welded on plate and installed well sign.

Rig released 8:00 AM, May 7th, 1973.

Handwritten
23/6/97 ays
11/12/90

SHELL CANADA RESOURCES
 CONTROLLED PYROLYSIS ANALYSES

WELL NAME AND LOCATION	DEPTH THK (FEET)	PYROLYSIS TEMP (C)	HYDROCARBON WT. PERCENT	DEPTH THK (METRES)
UNION ET AL MOBIL COLVILLE D-45 300/D45 67-20 125-00/ 0	3098.0 0	0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400 400-450 450-500 500-550 550-600 600-650 650-700 700-750	0.000 0.000 0.033 0.109 0.117 0.097 0.072 0.087 0.097 0.034 0.006 0.004 0.003 0.002 0.002	944.27 0.0
		TOTAL YIELD	0.672	TOC (wt %) - 0.63

WELL NAME AND LOCATION	DEPTH THK (FEET)	PYROLYSIS TEMP (C)	HYDROCARBON WT. PERCENT	DEPTH THK (METRES)
UNION ET AL MOBIL COLVILLE D-45 300/D45 67-20 125-00/ 0	3101.0 0	0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400 400-450 450-500 500-550 550-600 600-650 650-700 700-750	0.000 0.000 0.000 0.007 0.023 0.020 0.007 0.007 0.013 0.002 0.001 0.001 0.001 0.002	945.18 0.0
		TOTAL YIELD	0.103	TOC (wt %) - 0.36

SHELL CANADA RESOURCES
CONTROLLED PYROLYSIS ANALYSES

WELL NAME AND LOCATION	DEPTH (FEET)	THK (FEET)	PYROLYSIS TEMP (C)	HYDROCARBON YIELD WT. PERCENT	DEPTH THK (METRES)
UNION ET AL MOBIL COLVILLE D-45 300/D45 67-20 125-00/ 0	3104.0	0	0-50	0.000	946.10 0.0
			50-100	0.000	
			100-150	0.000	
			150-200	0.000	
			200-250	0.000	
			250-300	0.000	
			300-350	0.000	
			350-400	0.000	
			400-450	0.001	
			450-500	0.001	
			500-550	0.001	
			550-600	0.001	
			600-650	0.001	
			650-700	0.001	
			700-750	0.001	
			TOTAL YIELD	0.007	TOC (wt %) - 0.10
UNION ET AL MOBIL COLVILLE D-45 300/D45 67-20 125-00/ 0	3112.0	0	0-50	0.000	948.54 0.0
			50-100	0.000	
			100-150	0.000	
			150-200	0.000	
			200-250	0.000	
			250-300	0.000	
			300-350	0.000	
			350-400	0.000	
			400-450	0.001	
			450-500	0.002	
			500-550	0.001	
			550-600	0.001	
			600-650	0.001	
			650-700	0.001	
			700-750	0.001	
			TOTAL YIELD	0.008	TOC (wt %) - 0.13

Indian and
Northern Affairs

Affaires indiennes
et du Nord

250-4-11

Box 2020
Inuvik, N. W. T.
XOE 0TO

June 1, 1973

Dr. H. J. Berry
Chief Petroleum Engineer
Ottawa, Ontario

Your file Votre référence

Our file Notre référence

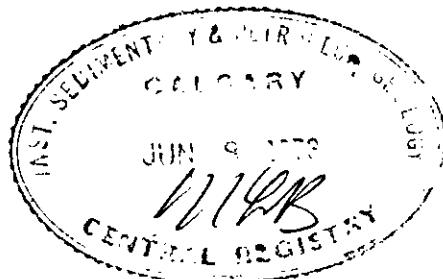
→ Dr. D. H. McLaren, Director
Institute of Sedimentary &
Petroleum Geology
Calgary, Alberta

Gentlemen:

RE: Union Mobil Colville D-45
D. A. 685 - 67-20-125-00

Enclosed is one copy each of DST #1, #3, #4 & #5.

Please sign the attached sheet acknowledging
receipt.


Yours truly,

John J. Kirk
Conservation Engineer

A. F. Halcrow
District Conservation Engineer
District 3

JJK/jt
Enclosure

cc: Mr. M. D. Thomas
Regional Conservation Engineer

1 copy to Giese

Indian and
Northern Affairs

Affaires indiennes
et du Nord

150-4-11

Box 2020
Inuvik, N. W. T.
XOE OTO

June 1, 1973

Dr. H. J. Berry
Chief Petroleum Engineer
Ottawa, Ontario

Your file Votre référence

Our file Notre référence

→ Dr. D. H. McLaren, Director
Institute of Sedimentary &
Petroleum Geology
Calgary, Alberta

Gentlemen:

RE: Union Mobil Colville D-45
Union Aklavik F-38

Enclosed is one copy of DST #2 for Union Mobil
Colville D-45 and one copy of DST #1 for Union Aklavik F-38.

Please sign the attached sheet acknowledging receipt.

Yours very truly,

John J. Kirk
Conservation Engineer

(for) A. F. Halcrow
District Conservation Engineer
District 3

JJK/jt
Enclosure

cc: Mr. M. D. Thomas
Regional Conservation Engineer

1 Copy to Gosa

1979-10-29

Dr. D. Stott,
Institute of Sedimentary and Petroleum Geology,
3303 - 33 Street N.W.,
CALGARY, Alberta
T2L 2A7

Dear Don:

Please find enclosed 22 samples which were analyzed for geochemical information. Twelve samples were examined in detail and therefore pulverized rock, paraffin-naphthene extract, aromatic extract, asphaltene extract and N.S.O. extract are included for these samples. Only five of the extraction thimbles were returned to Petro-Canada from the analytical laboratory and they are included.

The wells examined and sampled intervals are as follows:

Tedji K-24	3760-3850 3860-3980
Colville E-15	5018-5200 5200-5400 5400-5600 5600-5700 5700-5850 5850-5996
Belot Hills M-63	3480-3700 3710-3850 3860-4050 4060-4400
Colville Lake D-45	3270-3430 3440-3620 3630-3850
Maunoir M-48	1660-2830
Iroquois D-40	7710-7850 7860-7990 8000-8100 8100-8300 8310-8500

... ?

Dr. D. Stott,
Page 2,
1979-10-29

Whitefish H-34

5411-5428

Also, enclosed are the technical memoranda on the proterozoic samples and a copy of the presentation on the "Cambrian Hydrocarbon Potential of the Northern Interior Plains".

Yours truly,

D.G. Wilson

D. G. Wilson,
Regional Geologist,
Frontier Division.

DGW:bw

Encls.

CC:

SUBJECT: GEOCHEMISTRY OF PRECAMBRIAN SAMPLES FROM SELECTED NORTHWEST TERRITORIES WELLS

Twenty-two Precambrian samples from seven Northwest Territories wells will and have been subjected to various geochemical analyses. The wells in question are: Tedji K-24, Colville E-15, Belot Hills M-63, Colville D-45, Maunoir M-48, Iroquois D-40 and Whitefish H-34. To date, total organic carbon (T.O.C.) data and dispersed organic material (D.O.M.) data are available. The former data is from Geochem Laboratories (Canada) Ltd. and the latter is from our own laboratory. The attached chart summarizes the data, but it should be noted that the samples are of Precambrian age. At that time in the geologic past, land plants had not evolved and therefore the commonly used D.O.M. terminology is inappropriate. Abbreviations found in the chart are as follows: V = very, Lt = light, Dk = dark, yel = yellow, brn = brown, blk = black, Am = amorphous, str = structured, mem = membranous, f = fine, med = medium and crs = coarse.

To interpret the data, certain criteria can be followed. T.O.C. values greater than 0.5 are normally considered necessary in order to predict liquid hydrocarbon occurrences but in this situation values between 0.1 and 0.5 are probably compatible with gas occurrences if maturation is approaching the optimum. D.O.M. data provides us with maturation and richness indicators. Yellow colors and light browns are compatible with liquid hydrocarbons while browns and blacks are found in the mature gas zones. Amorphous material is oil prone to the greatest degree while membranous and structured materials to lesser degrees, all dependant on maturation. All will produce gas.

WELL & DEPTH (feet)	T.O.C. (%)	D.O.M. ANALYSES				Size	Preservation	Comments
		Amount	Color	Types				
K-24, 3760	0.42	Thin	Lt.yel-brn	40% v. fine Am; 60% Str	f-med	poor-fair		
3860	0.37	Normal	Lt.brn-brn	80% Am; 20% Str	med-f	fair	lumpy Am	
E-15, 5018	0.13	Abundant	Brn-dk.brn	10% Am; 90% Str&Mem	med-crs	poor	consistent color	
5200	0.01	Abundant	Brn-dk.brn	50% Am; 50% Str&Mem	med-crs	poor	dull hues	
5400	0.01	Abundant	Brn-dk.brn	10% Am; 90% Str&Mem	med-crs	fair	consistent color	
5600	0.01	Abundant	Brn-dk.brn	50% Am; 50% Str&Mem	f-med	fair-poor	rare spores?	
5700	0.00	V. Thin	Dk.brn-blk	100% Str	f	poor		
5850	0.01	Thin	Dk.brn-blk	80% Am; 20% Str	med	poor	Am is fine	
M-63, 3480	0.01	Thin	Yel-Lt.brn	50% Am; 50% Str	f-med	..	rare spores?	
3710	0.00	V. Thin	Yel-Lt.brn	50% Am; 50% Str	f-med	..	fair	
3860	0.53	Normal	Brn	30% Am; 70% Str	fine	poor	bright colors	
4060	1.10	Abundant	Brn-dk.brn	30% Am; 70% Str	f-crs	poor	degraded O.M.	
D-45, 3270	0.25	Thin	Lt.yel-brn	40% Am; 60% Str	med-f	poor	spores	
3440	0.16	Abundant	Yel-brn	20% Am; 80% Str&Mem	med-crs	poor	spores	
3630	0.13	Abundant	Yel-Lt.brn	60% Am; 40% Mem&Str	f-med	fair	spores	
M-48, 2660	0.11	Thin	Dk.yel-brn	50% Am; 50% Mem	f	poor	lumpy Am	
D-40, 7710	0.12	Normal	Lt. brn	20% Am; 80% Str&Mem	med-crs	poor	rare spores	
7860	0.13	Thin	Dk.brn-blk	20% Am; 80% Mem	f-med	poor	dull hues	
8000	0.00	V. Thin	Dk.brn	5% Am; 95% Mem	med-f	poor	fungal, dull	
8100	0.12	Thin	Brn-dk.brn	20% Am; 80% Mem&Str	f	poor		
8310	0.13	Thin	Dk.brn	50% Mem; 50% Str	f-med	poor		
H-34, 5411	0.17	Abundant	Lt.yel-blk	60% Str&Mem, 40% Str	f-crs	good	contamination	

The individual wells are interpreted as follows:

Tedji K-24: low T.O.C. values, mature colors, reasonable Am material. Therefore, gas prone, with minor potential for oil because of maturation state and favourable D.O.M.

Colville E-15: very low T.O.C. values, over mature colors, mediocre D.O.M. Therefore, gas in minor quantities if at all.

Belot Hills M-63: good T.O.C. in deeper part of well, mature colors, fair D.O.M. Therefore, oil potential around 3900' and good gas potential.

Colville D-45: low T.O.C. values, mature colors, fair to good D.O.M. Therefore, gas prone, with minor oil potential because of maturation and favourable D.O.M.

Maunoir M-48: low T.O.C., mature, reasonable D.O.M. type. Therefore, gas, minor oil potential.

Iroquois D-40: low T.O.C., over mature, poorer D.O.M. type. Therefore, gas in minor quantities if at all.

Whitefish H-34: low T.O.C., but sample appears strongly contaminated. Therefore, no comment.

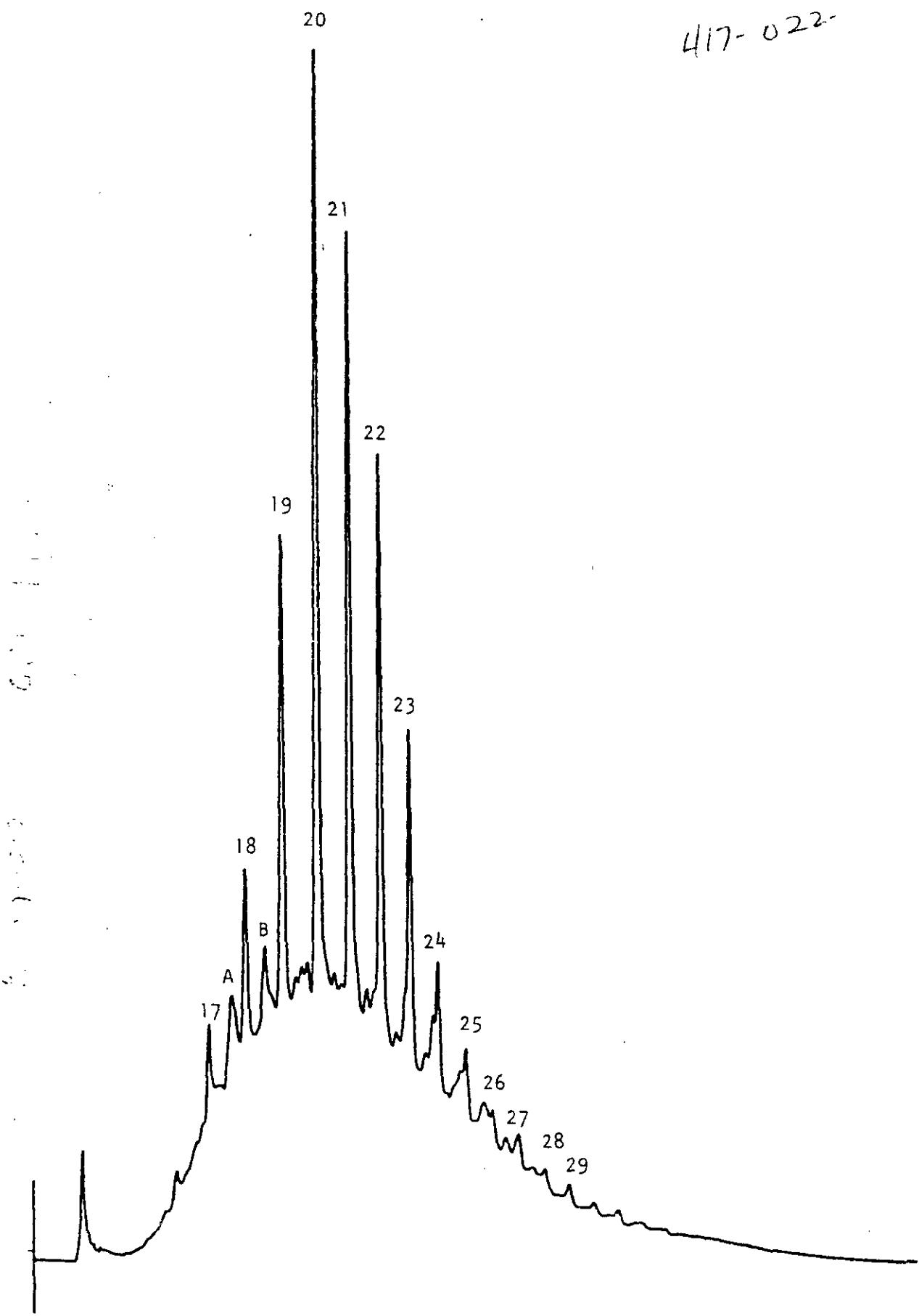
To summarize, T.O.C. values are generally low and this is often confirmed by the D.O.M. analyses. For this reason it becomes difficult to envision large liquid hydrocarbon deposits. Gas occurrences have more potential because of ease of migration from much larger volumes. Maturation in all wells is not excessive for gas occurrences. D.O.M. type tends to be rather favourable because at that age only primitive algae plants had evolved.

CC:

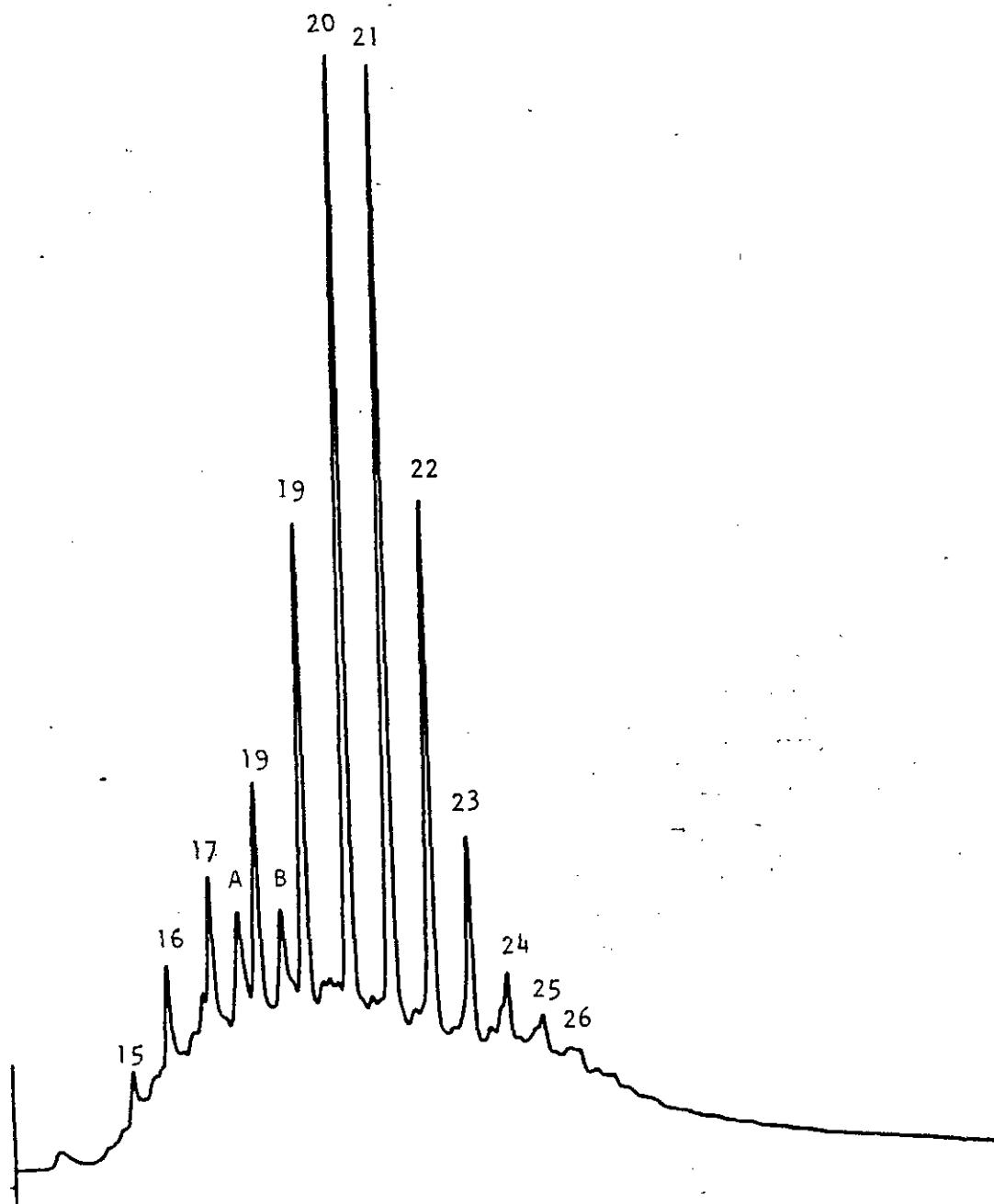
SUBJECT: Additional Geochemistry for Selected Precambrian Samples from Various Northwest Territories Wells

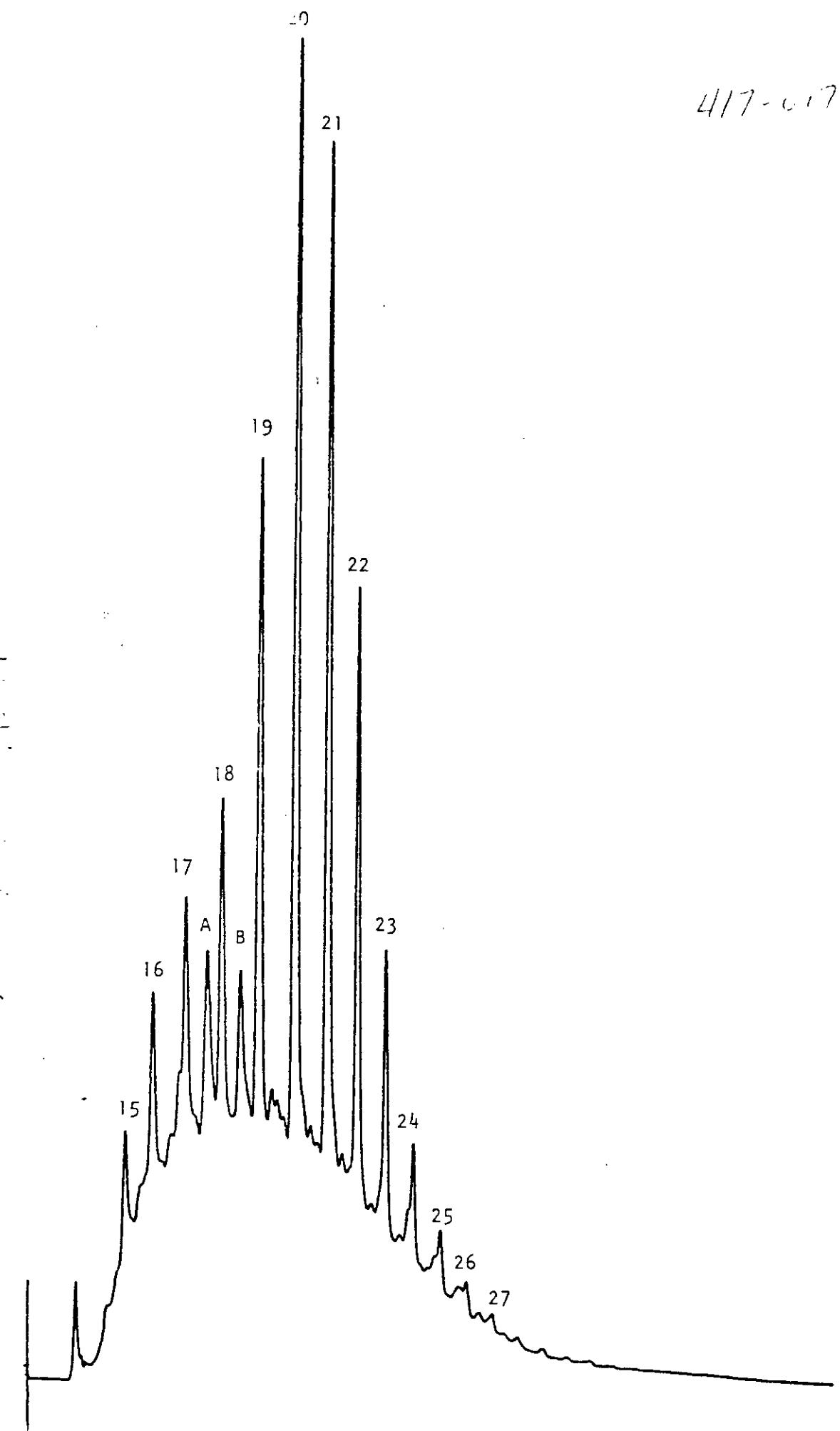
A preliminary memorandum dated May 4, 1979, discussed total organic carbon and dispersed organic material analyses. This report will discuss extraction, composition of the extract, C_{15+} paraffin distribution and the C_{15+} chromatograms for 12 of the original 22 samples examined. With the new information the specific sample interpretations can be re-evaluated and therefore revised well interpretations can be provided. Tables I and II contain the raw data upon which the more comprehensive interpretations can be made. The Appendix contains the 12 chromatograms and the organic carbon-dispersed organic material analyses from the preliminary report.

Total extracts range from fair to very good, total hydrocarbons range from fair to excellent. Percent hydrocarbon and HC/Non-HC ratios indicate marginally mature, mature and stained (containing excessive HC's) samples. The hydrocarbon to total organic carbon percent and percent relative "lights" (using $\Sigma \leq C_{24}$ /total paraffins $\times 100\%$) are as follows:

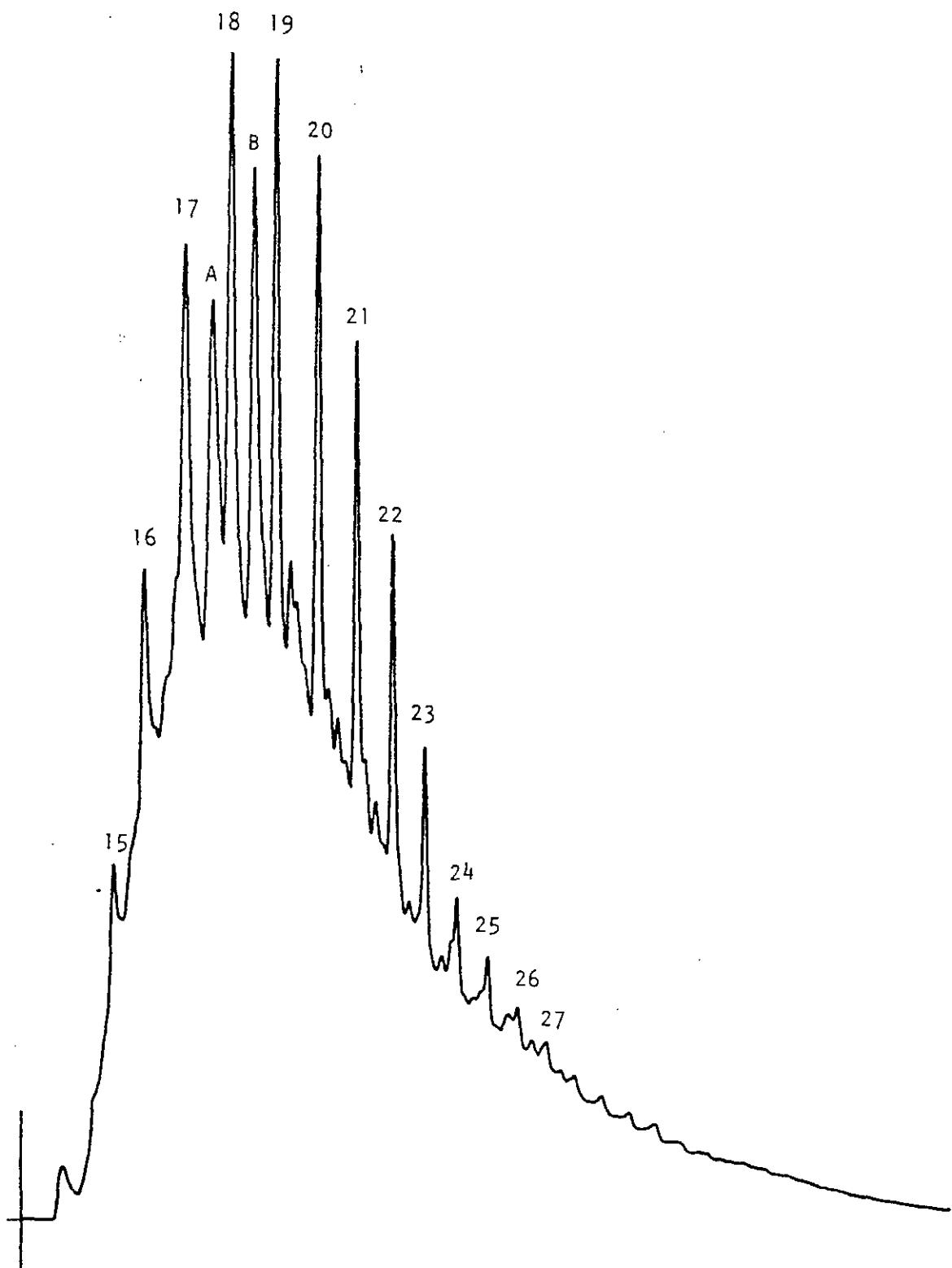

Well and Depth	GeoC. #	HC/T.O.C.% (ppm/(%x100))	Relative "lights" ($\Sigma \leq C_{24}$ /Total)
K-24, 3760	1	424/100/.42 = 10.0%, excellent	86%
3860	2	356/100/.37 = 9.6%, excellent	92%
E-15, 5018	3	661/100/.13 = 50.8%, stain	84%
5850	8	158/100/.01 = 158.0%, stain	87%
M-63, 3860	11	641/100/.53 = 12.1%, excellent	93%
4060	12	728/100/1.1 = 6.6%, excellent	95%
D-45, 3270	13	805/100/.25 = 32.2%, stain	95%
3630	15	478/100/.13 = 36.8%, stain	98%
M-48, 2260	16	346/100/.11 = 31.5%, stain	98%
D-40, 7710	17	287/100/.12 = 23.9%, stain-excellent	99%
8310	21	444/100/.13 = 34.2%, stain	99%
H-34, 5411	22	116/100/.17 = 6.8%, excellent	98%

WELL & DEPTH (feet)	T.O.C. (%)	D.O.M. ANALYSES			Size	Preservation	Comments
		Amount	Color	Types			
K-24, 3760	0.42	Thin	Lt.yel-brn	40% v. fine Am; 60% Str	f-med	poor-fair	
3860	0.37	Normal	Lt.brn-brn	80% Am; 20% Str	med-f	fair	lumpy Am
E-15, 5018	0.13	Abundant	Brn-dk.brn	10% Am; 90% Str&Mem	med-crs	poor	consistent color
5200	0.01	Abundant	Brn-dk.brn	50% Am; 50% Str&Mem	med-crs	poor	dull hues
5400	0.01	Abundant	Brn-dk.brn	10% Am; 90% Str&Mem	med-crs	fair	consistent color
5600	0.01	Abundant	Brn-dk.brn	50% Am; 50% Str&Mem	f-med	fair-poor	rare spores?
5700	0.00	V. Thin	Dk.brn-blk	100% Str	f	poor	
5850	0.01	Thin	Dk.brn-blk	80% Am; 20% Str	med	poor	Am is fine
N-63, 3480	0.01	Thin	Yel-Lt.brn	50% Am; 50% Str	f-med	fair	rare spores?
3710	0.00	V. Thin	Yel-Lt.brn	50% Am; 50% Str	f-med	fair	bright colors
3860	0.53	Normal	Brn	30% Am; 70% Str	fine	poor	
4060	1.10	Abundant	Brn-dk.brn	30% Am; 70% Str	f-crs	poor	degraded O.M.
D-45, 3270	0.25	Thin	Lt.yel-brn	40% Am; 60% Str	med-f	poor	spores
3440	0.16	Abundant	Yel-brn	20% Am; 80% Str&Mem	med-crs	poor	spores
3630	0.13	Abundant	Yel-Lt.brn	60% Am; 40% Mem&Str	f-med	fair	spores
N-48, 2660	0.11	Thin	Dk.yel-brn	50% Am; 50% Mem	f	poor	lumpy Am
D-40, 7710	0.12	Normal	Lt. brn	20% Am; 80% Str&Mem	med-crs	poor	rare spores
7860	0.13	Thin	Dk.brn-blk	20% Am; 80% Mem	f-med	poor	dull hues
8000	0.00	V. Thin	Dk.brn	5% Am; 95% Mem	med-f	poor	
8100	0.12	Thin	Brn-dk.brn	20% Am; 80% Mem&Str	f	poor	fungal, dull
8310	0.13	Thin	Dk.brn	50% Mem; 50% Str	f-med	poor	
H-34, 5411	0.17	Abundant	Lt.yel-blk	60% Str&Mem, 40% Str	f-crs	good	contamination

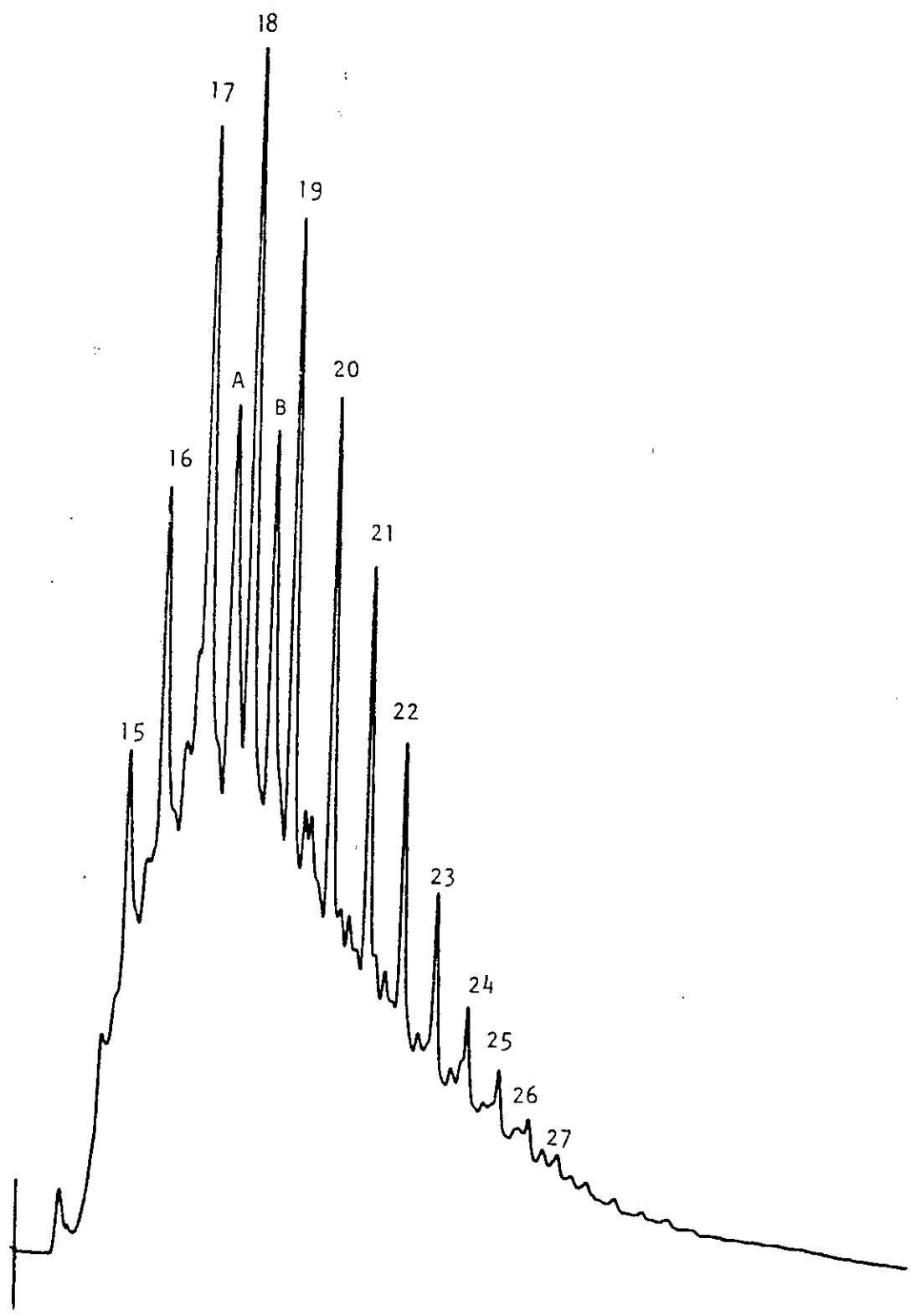

TOTAL ORGANIC CARBON ANALYSES

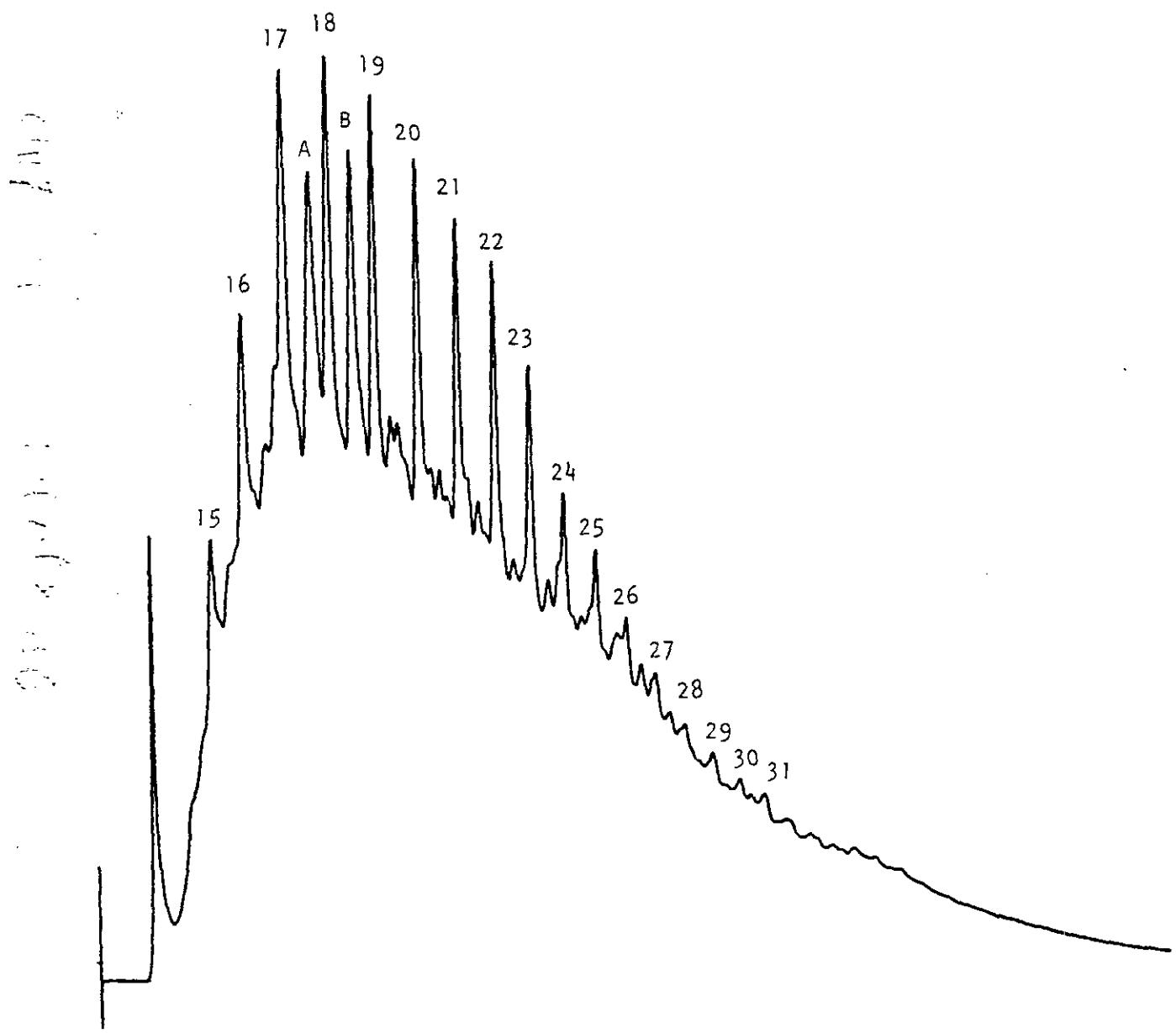

GeoChem Sample Number	Interval	Total Organic Carbon (% of Rock)	
C417-001	3760-3850	0.42	*
C417-002	3860-3980	0.37	*
C417-003	5018-5200	0.13	*
C417-004	5200-5400	0.01	
C417-005	5400-5600	0.01	
C417-006	5600-5700	0.01	
C417-007	5700-5850	0.00	
C417-008	5850-5996	0.01	*
C417-009	3480-3700	0.01	
C417-010	3710-3850	0.00, 0.00 R	
C417-011	3860-4050	0.53	*
C417-012	4060-4400	1.10	*
C417-013	3270-3430	0.25	*
C417-014	3440-3620	0.16	
C417-015	3630-3850	0.13	*
C417-016	2660-2830	0.11	*
C417-017	7710-7850	0.12	*
C417-018	7860-7990	0.13	
C417-019	8000-8700	0.00	
C417-020	8100-8300	0.11, 0.13 R	
C417-021	8310-8500	0.13	*
C417-022	5411-5428	0.17	*

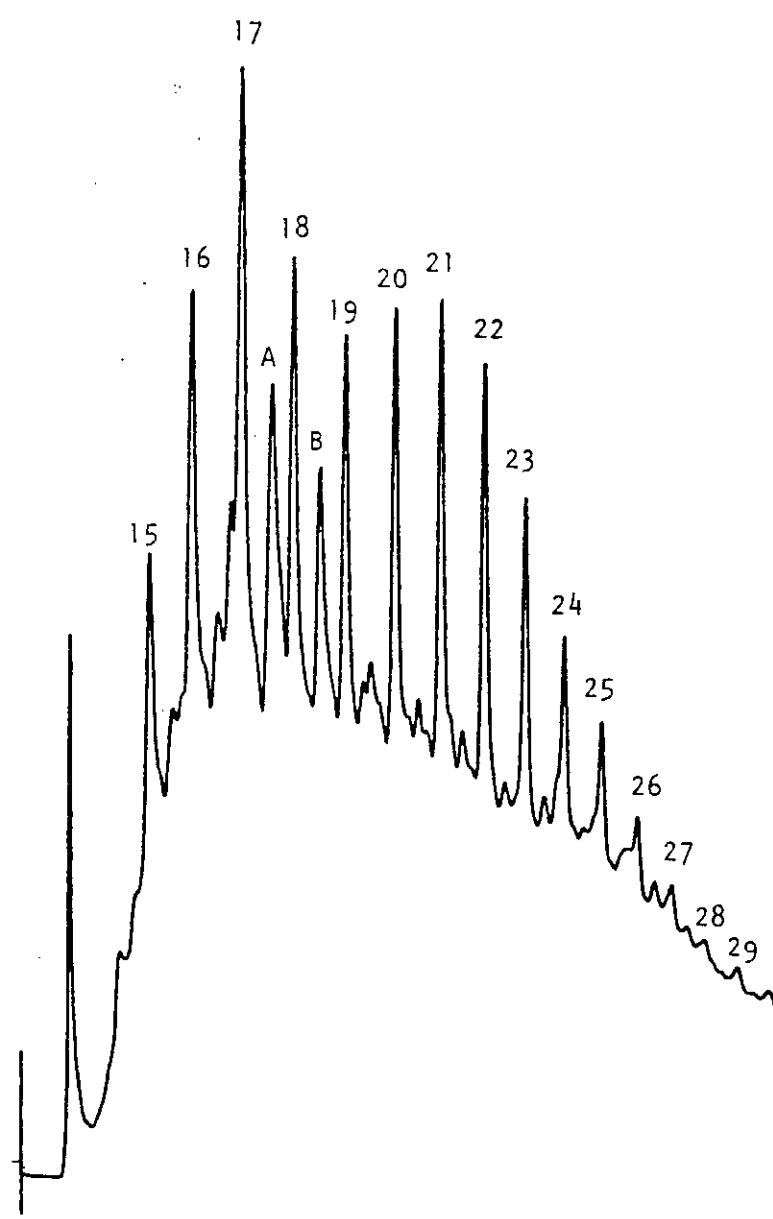
Note: * = samples to continue with

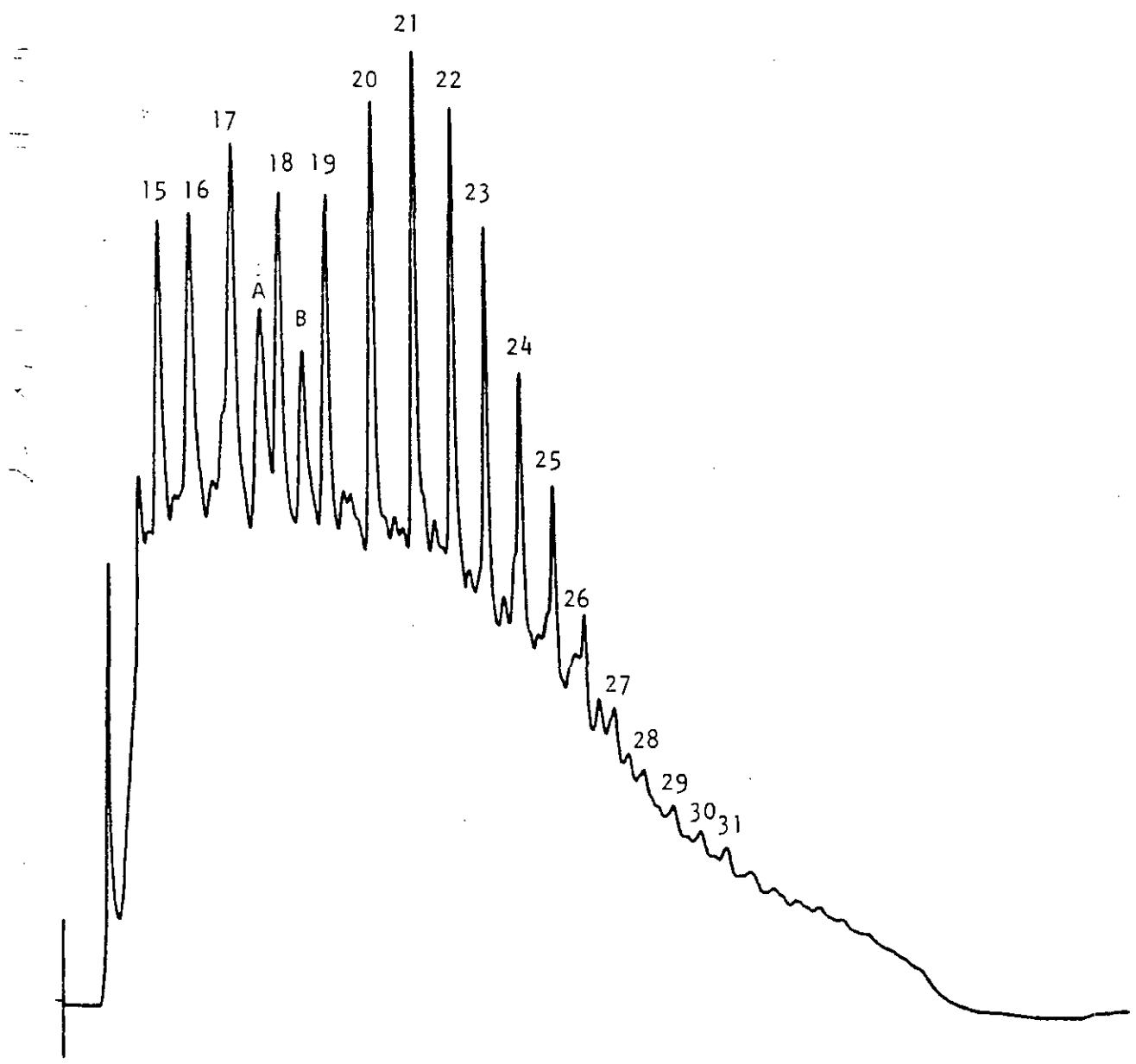


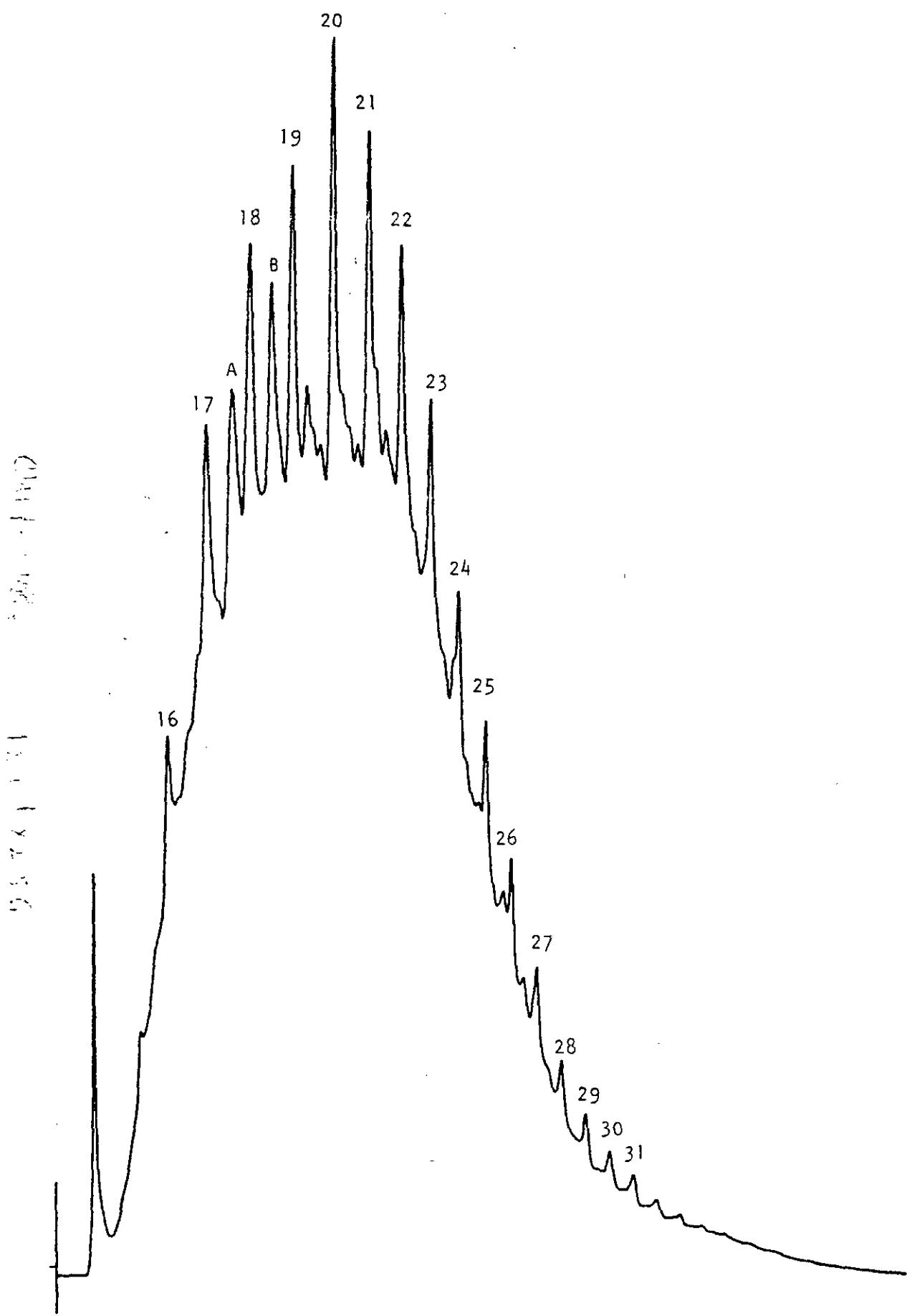
Chromatogram 0.5 ml x 2.5 ml

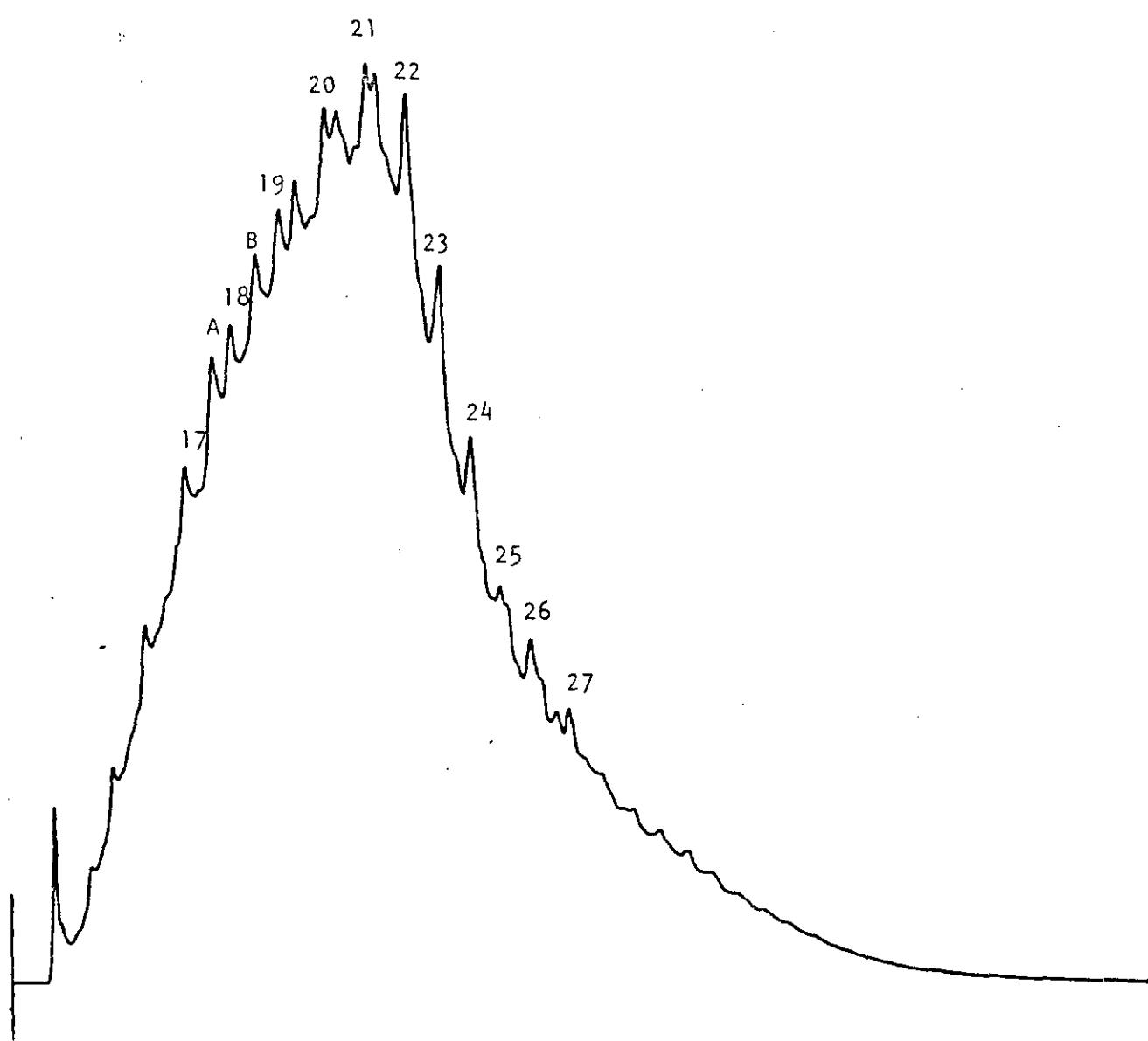


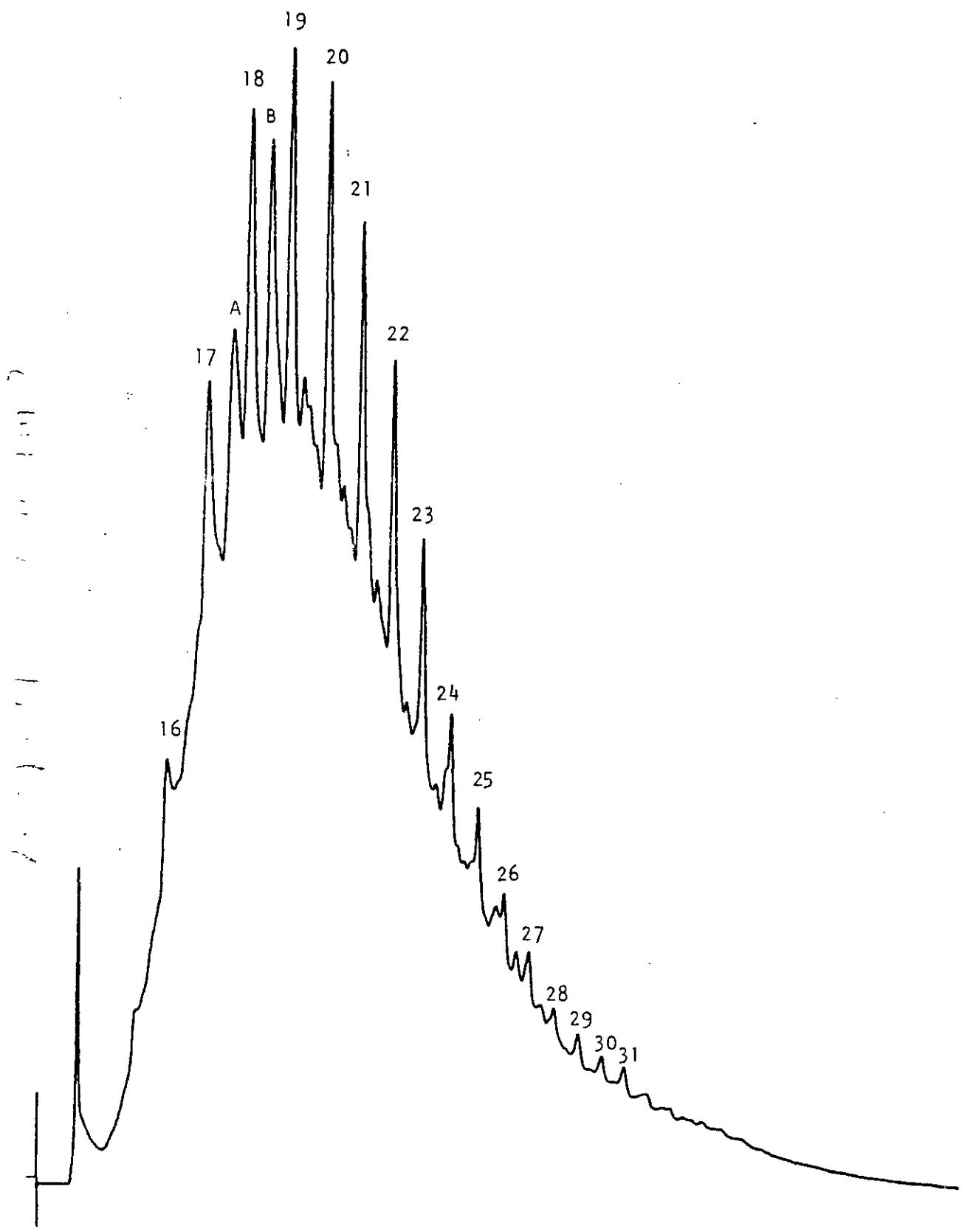

417-016

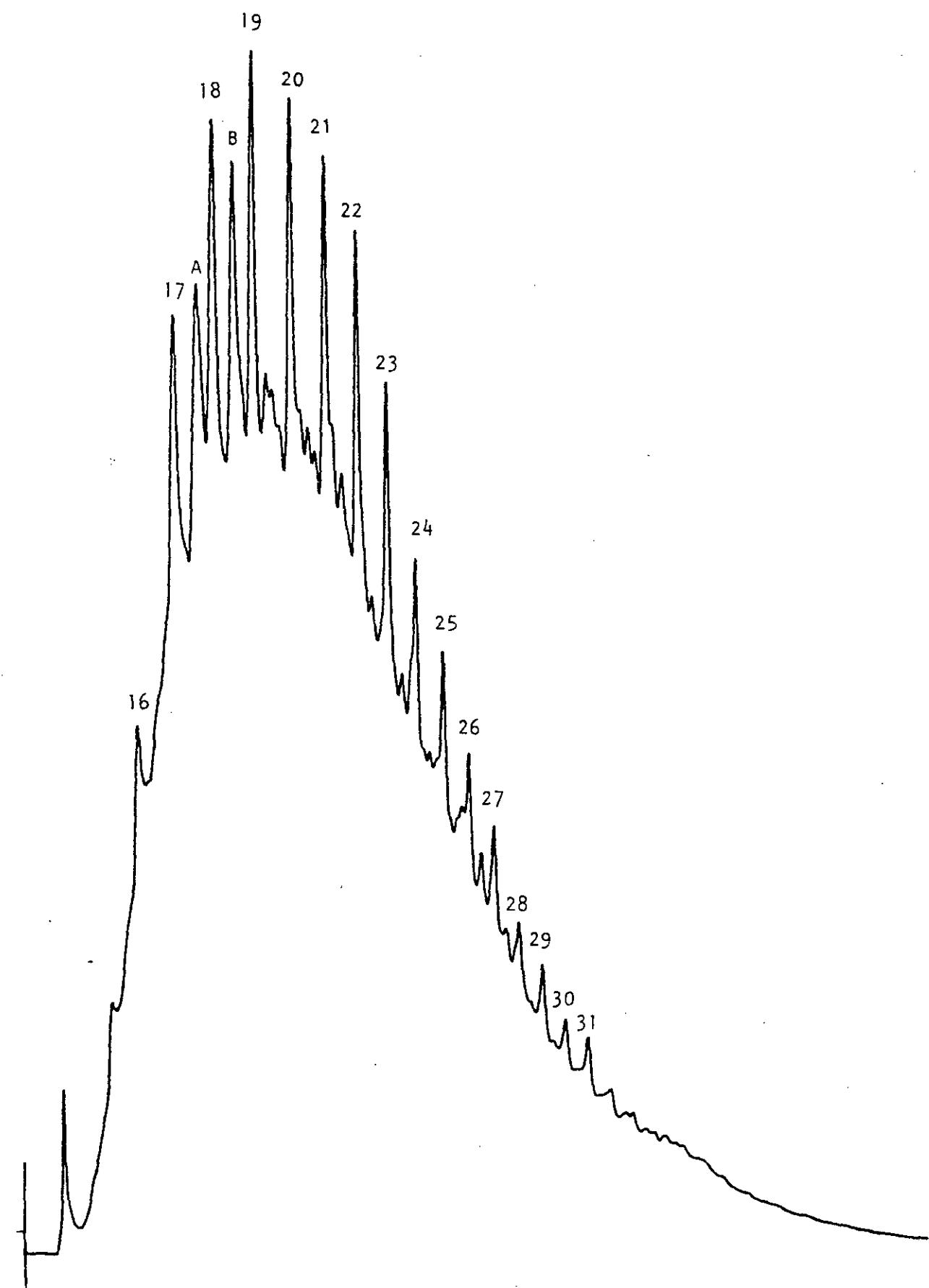

2/17-015


4/17-013


417-012


4/17/011


417-203


4117-CC³

417-002

417-001

APPENDIX

The hydrocarbon to total organic carbon suggests excellent generation and stain, indicating very good source and migrated hydrocarbons. The paraffin distribution shows a distinctive enrichment in light C₁₅₊ components indicating mature samples and/or algal marine source material. The C.P. index confirms the maturation level and high naphthene contents also agree with the algal marine source, as suggested.

The revised well interpretations are based on all of the available data to date. Some changes from the original report will be noted.

Tedji, K24: Mature to slightly over-mature, excellent generation from in situ organic source material, low T.O.C. Therefore, if we have a large volume of source rock, liquid hydrocarbon should accumulate. Significant gas could accompany.

Colville, E-15; Over-mature, stain, very low T.O.C., therefore the liquids have probably migrated into the samples examined. There is some indication of associated evaporites. The samples would be considered very poor source rocks, slightly more marine.

Belot Hills, M-63: Mature to slightly over-mature, excellent generation from in situ organic source material, and there is good T.O.C. which appears mainly marine. The source rocks have good oil generating potential and would be expected to have excellent gas association.

Colville, D-45: Mature (immature?), stain, low T.O.C., therefore it appears a mature oil has migrated into slightly immature rocks. There is some non-marine influence in the lower sample. Some gas potential is present.

Maunoir, M-48: Mature to slightly over-mature, possible staining, low T.O.C., therefore if we have a large volume of source rock, liquid hydrocarbons could accumulate. Could have significant gas.

Iroquois, D-40: Over-mature, lower hydrocarbon content, very low T.O.C., some possibility of staining in lower sample, therefore there is some gas potential from non-marine-like source material.

Whitefish, H-34: Suggested contamination, but possibly mature, only fair generation and low T.O.C., therefore some gas potential is present.

In conclusion, Belot Hills area appears the most promising while Tedji is not far behind. Iroquois suggests the most non-marine example. Oil accumulations are possible because of the very favourable D.O.M. types in the first two mentioned wells. Gas accumulations are more likely because of the generally low total organic carbon values and mature to over-mature regimes in the general area.

Paul R. Gunther
P. Gunther

SATURATE HYDROCARBON ANALYSES
NORMALIZED PARAFFIN DISTRIBUTION

Sample Interval	C417-001 3760-3850	C417-002 3860-3980	C417-003 5018-5200	C417-008 5850-5996	C417-011 3960-4050	C417-012 4060-4400	C417-013 3270-3430	C417-015 3630-3850	C417-016 2660-2830	C417-017 7-10-7850	C417-021 8310-8500	C417-022 5411-5428
nC15	0.0	0.0	0.0	0.0	7.7	5.2	2.8	4.0	1.5	1.9	0.9	0.0
nC16	1.8	1.2	0.0	2.8	7.2	9.0	5.8	7.4	4.2	3.6	2.5	0.0
nC17	7.2	6.2	5.0	7.2	7.0	11.0	9.7	9.6	9.5	3.7	3.5	1.9
ip-C19	4.9	4.1	7.9	5.2	4.1	6.5	7.4	7.8	6.4	3.2	2.4	1.3
nC18	9.9	12.2	6.9	10.3	7.2	9.4	11.1	15.9	12.7	6.3	5.8	4.8
ip-C20	14.1	10.8	6.9	8.3	4.3	5.6	9.7	8.4	11.6	3.1	1.9	1.3
nC19	11.7	14.0	6.9	11.8	8.4	9.0	11.8	14.1	13.8	12.6	13.4	13.4
nC20	9.6	13.7	5.9	14.4	10.7	9.7	10.2	11.7	14.1	23.0	25.0	26.7
nC21	8.3	11.0	5.0	19.6	11.6	10.2	8.5	8.9	11.0	21.3	25.0	21.8
nC22	9.9	10.6	17.8	9.4	11.4	9.7	9.2	6.0	8.3	12.2	13.8	15.4
nC23	7.3	7.3	13.9	6.8	9.2	7.0	6.7	3.4	4.3	5.6	5.2	5.0
nL	3.1	2.1	9.9	2.8	4.7	3.7	2.3	1.3	1.3	0.9	1.7	0.7
)	3.2	2.0	3.0	3.5	3.3	2.3	1.9	0.7	0.6	0.5	0.5	0.7
nC25	1.8	0.9	6.9	2.0	1.1	0.8	0.7	0.4	0.4	0.2	0.2	0.3
nC27	2.4	1.1	4.0	2.0	0.7	0.5	0.7	0.2	0.4	0.2	0.0	0.7
nC28	1.1	0.5	0.0	1.3	0.3	0.2	0.4	0.0	0.0	0.0	0.0	0.3
nC29	1.4	0.9	0.0	1.1	0.3	0.3	0.4	0.0	0.0	0.0	0.0	0.4
nC30	0.8	0.7	0.0	0.7	0.3	0.0	0.4	0.0	0.0	0.0	0.0	0.0
nC31	1.0	0.7	0.0	0.7	0.4	0.0	0.4	0.0	0.0	0.0	0.0	0.0
nC32	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
nC33	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
nC34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
nC35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% Paraffin	6.64	7.35	1.02	5.76	10.74	12.87	9.10	18.23	11.62	3.97	35.40	24.68
% Isoprenoid	1.56	1.25	0.18	0.90	0.99	1.78	1.88	3.52	2.55	2.26	1.57	0.68
% Naphthalene	91.80	91.36	98.80	93.34	88.27	85.35	89.02	78.25	85.83	13.77	63.03	74.64
CFI Index: A	1.13 *	1.14 *	0.69 *	1.07 *	1.14 *	1.11 *	1.11 *	1.22 *	1.19 *	1.38 *	1.41 *	1.27 *
CFI Index: B	1.64	1.63 *	0.71 *	1.45	1.74 *	2.00 *	1.64	1.82	1.91 *	2.25 *	1.72 *	2.01 *
ip-C19/ip-C20	0.35	0.36	1.14	0.62	0.97	1.16	0.76	0.93	0.55	1.03	1.25	1.00

TABLE II

Summary of C15t Soxhlet Extractions, Desphaltening
and Liquid Chromatography

Well name: N.W.T.

A. Weights of Extracts and Chromatographic Fractions

GeoChem Sample Number	Interval	Rock (grams)	Total Extract (grams)	Precip. Asphn (grams)	nCS Soluble (grams)	Paraffin Naph (grams)	Eluted NSO's (grams)	Non-Elut NSO's (grams)
C417-001	3760-3850	33.94	0.0651	0.0431	0.0220	0.0087	0.0057	0.0038
C417-002	3860-3980	41.84	0.0653	0.0415	0.0238	0.0091	0.0058	0.0042
C417-003	5018-5200	50.33	0.0619	0.0240	0.0379	0.0272	0.0061	0.0025
C417-008	5850-5996	68.28	0.0397	0.0233	0.0164	0.0056	0.0052	0.0021
C417-011	3860-4050	50.43	0.1261	0.0584	0.0677	0.0198	0.0125	0.0122
C417-012	4060-4400	51.79	0.0732	0.0240	0.0492	0.0285	0.0092	0.0075
C417-013	3270-3430	55.52	0.1116	0.0508	0.0608	0.0280	0.0167	0.0134
C417-015	3630-3850	52.87	0.0495	0.0124	0.0371	0.0164	0.0089	0.0082
C417-016	2660-2830	58.79	0.0661	0.0375	0.0284	0.0121	0.0083	0.0058
C417-017	7710-7850	59.26	0.0642	0.0198	0.0444	0.0110	0.0060	0.0117
C417-021	8310-8500	51.79	0.0514	0.0199	0.0315	0.0170	0.0060	0.0056
C417-022	5411-5428	51.57	0.0581	0.0497	0.0084	0.0035	0.0025	0.0016

B. Concentration of Extracted Materials in Rock

GeoChem Sample Number	Interval	Hydrocarbons				Non-Hydrocarbons			
		Total Extract (ppm)	Paraff. (ppm)	Naphth. (ppm)	Aromatic (ppm)	Total (ppm)	Precip. Asphn. (ppm)	Eluted NSO's (ppm)	Non-Elut NSO's (ppm)
C417-001	3760-3850	1918	256	168	424	1270	112	112	1494
C417-002	3860-3980	1560	217	139	356	992	100	112	1204
C417-003	5018-5200	1230	540	121	661	477	50	42	569
C417-008	5850-5996	581	82	76	158	341	31	51	423
C417-011	3860-4050	2501	393	248	641	1158	242	460	1860
C417-012	4060-4400	1413	550	178	728	463	145	77	685
C417-013	3270-3430	2010	504	301	805	915	241	49	1205
C417-015	3630-3850	736	310	168	478	235	155	68	458
C417-016	2660-2830	1121	205	141	346	636	98	41	775
C417-017	7710-7850	1083	186	101	287	334	197	265	796
C417-021	8310-8500	992	328	116	444	384	108	56	548
C417-022	5411-5428	1127	68	48	116	964	31	16	1011

C. Composition of Extracts

GeoChem Sample Number	Interval	Hydrocarbons				Non-Hydrocarbons				HC's %	HC/Non-HC %
		Paraffin %	Naphth. %	Arom. %	PN/Arom	Eluted NSO's %	Non-Elut NSO's %	Precip. Asphn. %	Asphn/NSO %		
C417-001	3760-3850	13.4	8.8	1.52	5.8	5.8	66.2	5.71	23.2	0.29	
C417-002	3860-3980	13.9	8.9	1.56	6.4	7.2	63.6	4.68	22.8	0.30	
C417-003	5018-5200	43.9	9.9	4.43	4.0	3.4	38.8	5.24	53.8	1.16	
C417-008	5850-5996	14.1	13.1	1.08	5.3	8.8	50.7	4.16	37.2	0.37	
C417-011	3860-4050	15.7	7.9	1.59	9.7	18.4	46.3	1.65	25.6	0.34	
C417-012	4060-4400	38.9	12.6	3.09	10.2	5.5	32.8	2.09	51.5	1.06	
C417-013	3270-3430	25.1	15.0	1.67	12.0	2.4	45.5	3.16	40.1	0.67	
C417-015	3630-3850	33.1	18.0	1.84	14.6	7.3	25.0	1.05	51.1	1.04	
C417-016	2660-2830	18.3	12.6	1.45	8.8	3.6	56.7	4.57	30.9	0.45	
C417-017	7710-7850	17.1	9.3	1.84	18.2	24.5	30.9	0.72	26.4	0.36	
C417-021	8310-8500	33.1	11.7	2.83	10.9	5.6	38.7	2.35	44.8	0.81	
C417-022	5411-5428	6.0	4.3	1.40	2.8	1.4	85.5	20.36	10.3	0.11	

TABLE I

BJ SERVICE DIVISION
BORG-WARNER (CANADA) LIMITED

UNION MOBIL COVILLE LAKE

D-45

TEST NO. 1

DRILL-STEM TEST DATA

Well Name	UNION MOBIL COVILLE LAKE	Test No.	1
Well Number	D-45	Zone Tested	CAMBRIAN
Company	UNION OIL COMPANY OF CANADA LTD.	Interval	3002 - 3062
Comp. Rep.	K. JASINSKI	Tester	C. MARTINEAU
		Date	APRIL 26, 1973

Type of Test DUAL BOTTOM HOLE RFS Tool No.

Preflow 15 mins. ISI 63 mins. Flow 92 mins. FSI 88 mins.

DEPTH	IN REC No. 2015 5750 RANGE 12	OUT REC. No. 3852 5800 RANGE 12	REC. No. HR. CLOCK
Initial Hydro Mud Press	2985	3004	
Initial Shut-In Press	1335	1352	
Initial Flow Press	213	222	
Final Flow Press	28	42	
Final Shut-In Press	32	48	
Final Hydro Mud Press	232	245	
	1334	1343	

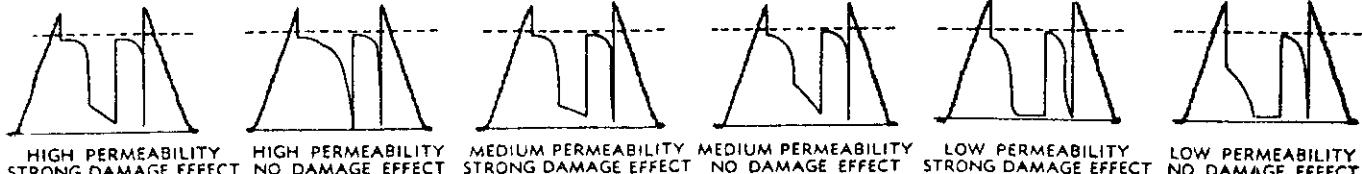
Mud Drop 6 FEET Fluid Loss 8.9
Viscosity 52 Temperature °F 95 Mud Weight 8.9
Top Packer Depth 2996 Bottom Packer Depth 3002 Net Pay Tested 60.0
Drill Pipe Size 3.50 Wt. 13.3 Drill Collar I.D. Total Depth 3062
Surface Choke Size 0.75 Bottom Choke Size 0.50 Main Hole Size 6.125
Anchor Size 4.75 Rat Hole Size 6 3/32 Feet of Rat Hole 45
Cushion Amount Type Rubber Size

Fluid Recovery Total Feet 40 OIL AND GAS CUT DRILLING MUD
Recovered 40 Feet of
Recovered Feet of
Recovered Feet of
Recovered Feet of
Recovered Feet of

Gas Recovery	How Measured	Riser size:				
mins.	Temp. °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day

Bleed Off Time for Drill Pipe

REMARKS: FAIR AIR BLOW, DEAD IN 20 MINUTES.



TESTING REPORT

WEIGHT INDICATOR READING
PRIOR TO SETTING PACKERS
AFTER PULL PACKERS LOOSE

		ID	OD	LENGTH
	4S LANDING SUB			
	4S CHAMBER			
	4S TOOL OR P.O. SUB			1.00
	CO SUB			
	SHUT IN TOOL		4 3/4	5.20
	R.F.S. No.	2 1/4	4 3/4	
	R.F.S. No.	2 1/4	4 3/4	
	HYDRAULIC TOOL		4 3/4	7.20
	JARS	1	4 3/4	
	RECORDER No. 2015	2 1/4	4 3/4	5.00 DEPTH 2985
	RECORDER No.	2 1/4	4 3/4	DEPTH
	SAFETY JOINT	2 11/16	4 3/4	2.00
	BY PASS SUB	1 5/32	4 3/4	
1. PACKER DEPTH	2996			
	PACKER	1 OR 7/8	5 1/4	6.00
2. PACKER DEPTH	3002			
	PACKER	1 or 7/8	5 1/2	TOOL ABOVE INTERVAL 31.40
	ANCHOR—SPECIFY S.D.	2 1/2		1.00
	BLANK OFF OR BY PASS SUB	1 5/32	4 3/4	
	RECORDER No. 3852	2 1/4	4 3/4	5.00 DEPTH 3004
3. PACKER DEPTH				
	PACKER	1 OR 7/8		TOTAL INTERVAL 60
4. PACKER DEPTH				
	PACKER	1 OR 7/8		
	ANCHOR—SPECIFY PERFS	2 1/2		22.00
	RECORDER No.	2 1/4	4 3/4	DEPTH
	D.C.			29.00
TOTAL DEPTH	3062			
	BULLNOSE	2 3/4	4 3/4	3.00
				TOTAL TAIL PIPE 60.00
				TOTAL TEST TOOL 62.40

DST CHARTS FOR COMPARATIVE VISUAL ANALYSIS

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: CAMBRIAN

REC NO. 2015
DST NO. 1
DEPTH 2985

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
RUN IN HOLE	0.	0.	
	83.0	1335.3	
INITIAL HYDRO PRESSURE	125.0	1335.3	
INITIAL PREFLOW PRESSURE	0.	33.7	
FINAL PREFLOW PRESSURE	15.0	33.7	
START INITIAL SHUT-IN	0.	33.7	
	5.0	71.8	4.00
	10.0	98.2	2.50
	15.0	117.3	2.00
	20.0	133.4	1.75
	25.0	148.1	1.60
	30.0	158.4	1.50
	35.0	168.6	1.43
	40.0	180.4	1.37
	45.0	187.7	1.33
	50.0	196.5	1.30
	55.0	203.8	1.27
INITIAL SHUT-IN PRESSURE	63.0	212.6	1.24
START FLOW PERIOD	0.	212.6	
INITIAL FLOW PRESSURE	1.0	27.9	
	10.0	29.3	
	20.0	29.3	
	30.0	29.3	
	40.0	29.3	
	50.0	29.3	
	60.0	29.3	
	70.0	30.8	
	80.0	30.8	

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: CAMBRIAN

REC NO. 2015
DST NO. 1
DEPTH 2985

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
FINAL FLOW PRESSURE	92.0	32.3	
START FINAL SHUT-IN	0.	32.3	
	5.0	82.1	22.40
	10.0	104.1	11.70
	15.0	120.2	8.13
	20.0	133.4	6.35
	25.0	143.7	5.28
	30.0	155.4	4.57
	35.0	165.7	4.06
	40.0	174.5	3.68
	45.0	181.8	3.38
	50.0	190.6	3.14
	55.0	196.5	2.95
	60.0	202.3	2.78
	65.0	209.7	2.65
	70.0	214.1	2.53
	75.0	219.9	2.43
	80.0	225.8	2.34
FINAL SHUT-IN PRESSURE	88.0	231.7	2.22
RUN OUT OF HOLE	0.	231.7	
FINAL HYDRO PRESSURE	1.0	1333.8	
	15.0	1333.8	
OUT OF HOLE	85.0	0.	

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: CAMBRIAN
RECOVERY TYPE USED IN CALCULATIONS: MUD

REC NO. 2015
DST NO. 1
DEPTH 2985
INTERVAL 3002-3062

SUMMARY OF CALCULATIONS

1 FIRST SHUT-IN

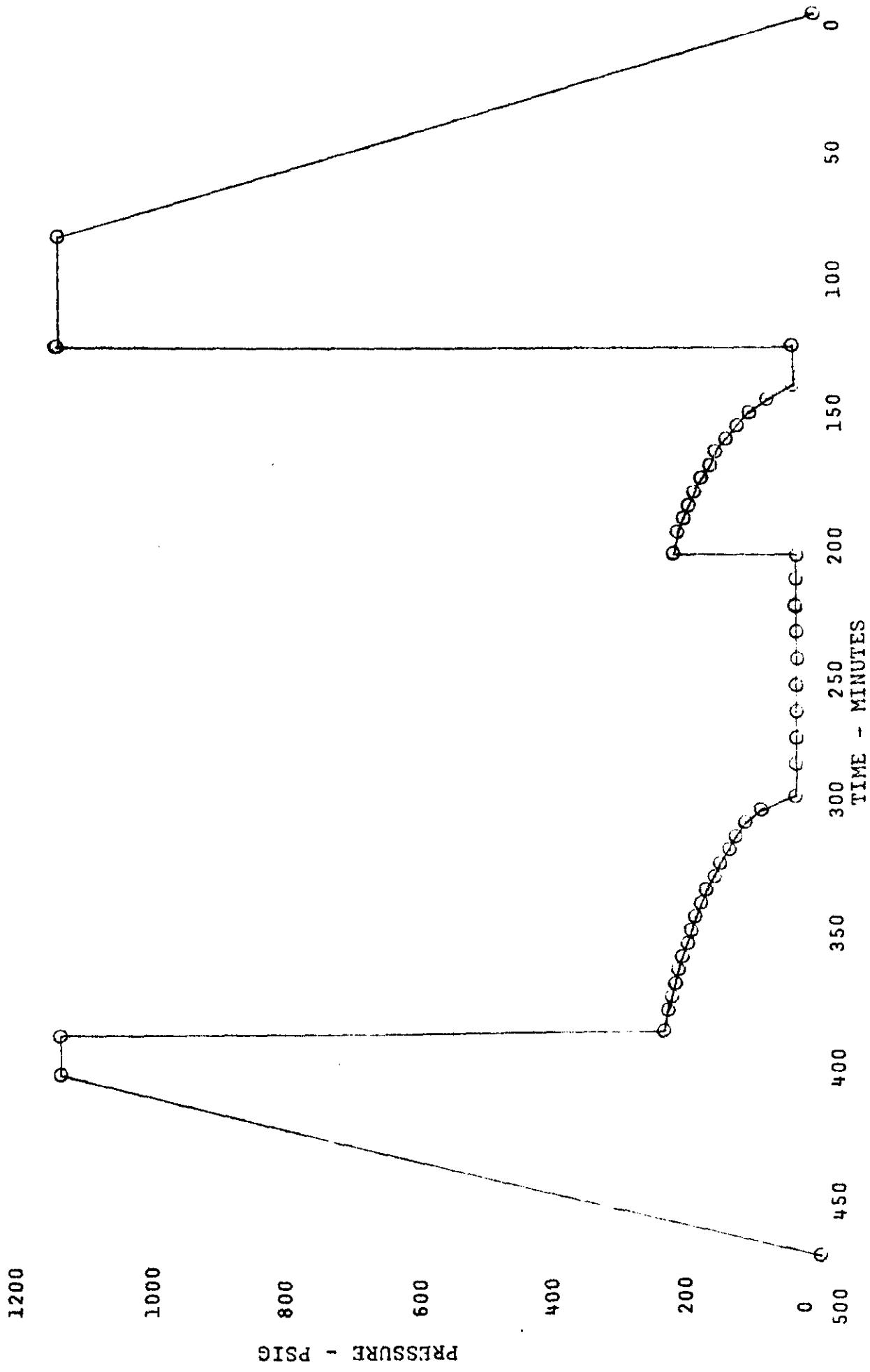
EXTRAPOLATED FORMATION PRESSURE -----	284.8 PSIG
SLOPE OF EXTRAPOLATED LINE -----	775.80 PSI/CYCLE
ROOT MEAN SQUARE DEVIATION OF FITTED LINE -----	0.20 PSI
NUMBER OF POINTS IN SHUT-IN -----	13
NUMBER OF POINTS USED FOR EXTRAPOLATION -----	4

2 SECOND SHUT-IN

EXTRAPOLATED FORMATION PRESSURE -----	339.2 PSIG
SLOPE OF EXTRAPOLATED LINE -----	309.71 PSI/CYCLE
ROOT MEAN SQUARE DEVIATION OF FITTED LINE -----	0.51 PSI
NUMBER OF POINTS IN SHUT-IN -----	18
NUMBER OF POINTS USED FOR EXTRAPOLATION -----	4
DIFFERENCE (2ND-1ST EXTRAPOLATION) -----	54.4 PSI

3 RESERVOIR AND FLUID PROPERTIES

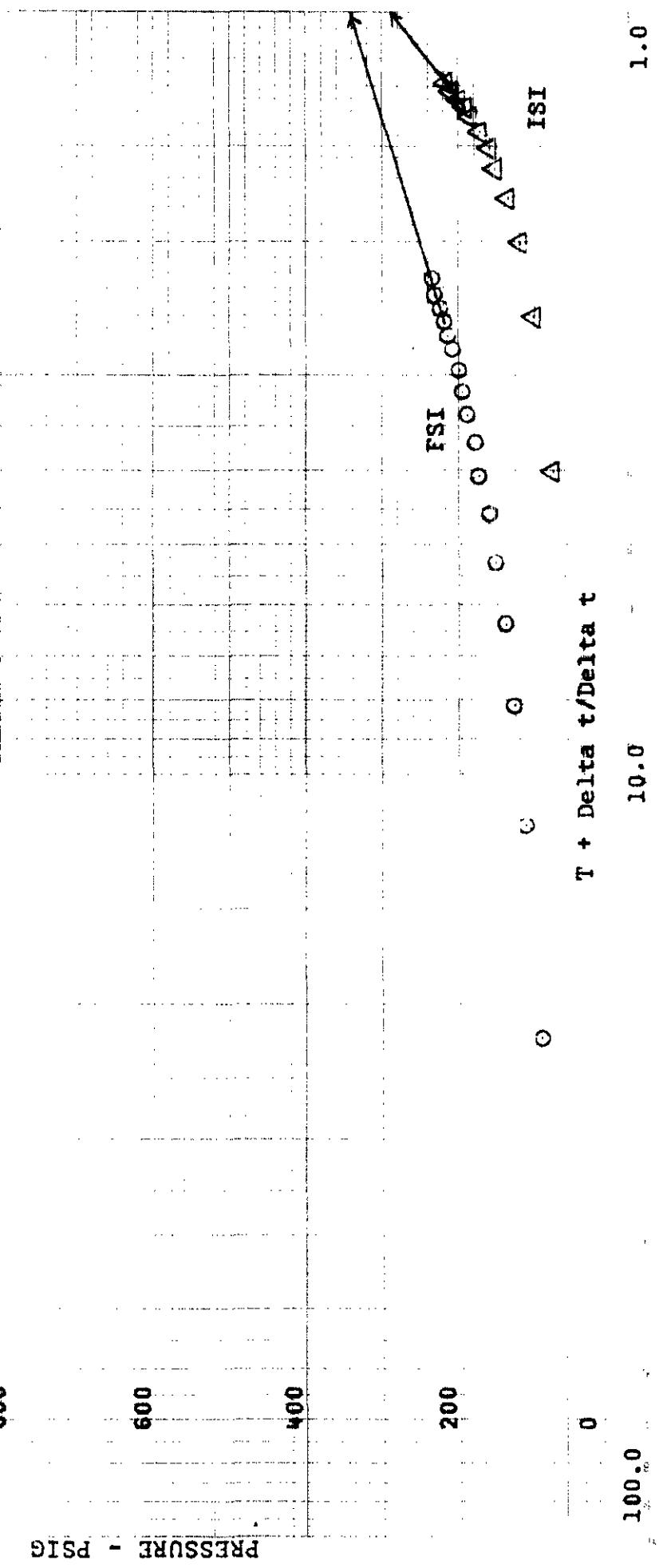
NET PAY -----	60.00 FT
RESERVOIR POROSITY -----	15.00 PERCENT
PRODUCTION RATE -----	4.3 BPD
FORMATION VOLUME FACTOR -----	1.000 RB/STB
FLUID VISCOSITY -----	0.760 C.P.
TOTAL COMPRESSIBILITY X 10 ⁻⁶ -----	7.200 /PSI
RESERVOIR TEMPERATURE -----	95.0 F
FINAL FLOWING PRESSURE -----	32.3 PSIG
TOTAL FLOW TIME -----	107.0 MIN


4 CALCULATION RESULTS

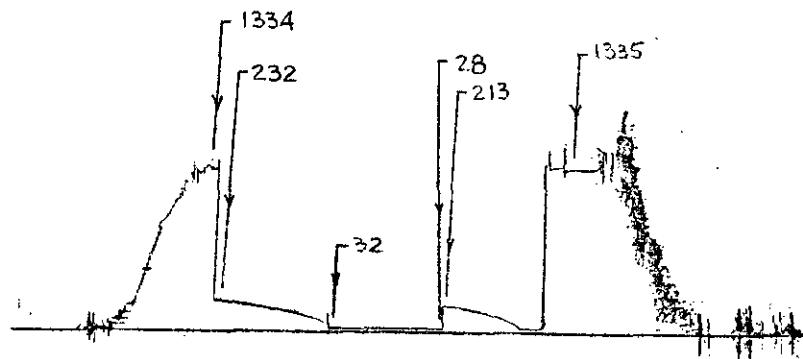
ESTIMATED DAMAGE RATIO -----	0.36
PERMEABILITY THICKNESS -----	1.7 MD FT
PERMEABILITY -----	0.03 MD
SKIN FACTOR -----	-2.03
APPROXIMATE DRAINAGE RADIUS -----	8.1 FT
PRODUCTIVITY INDEX -----	0.014 BPD/PSI

UNION MOBIL COVILLE LAKE D-45

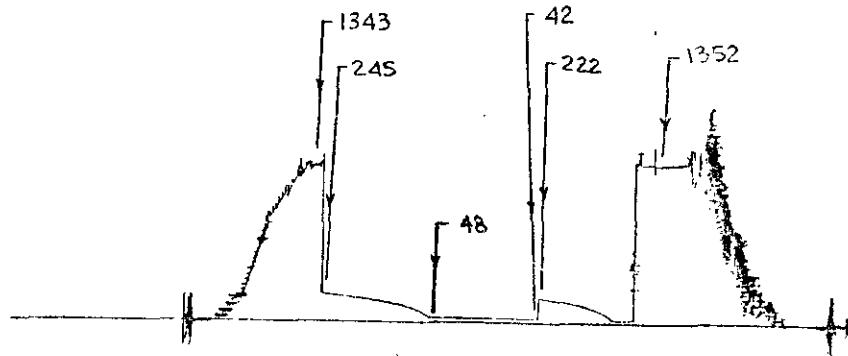
DST NO. 1


REC. NO. 2015

UNION MOBIL COVILLE LAKE D-45


DST NO. 1

$P^* = 339.2$ PSIG



DST RECORDER CHARTS

UNION MOBIL COVILLE LAKE D-45
DST NO. 1
INSIDE REC. NO. 2015

UNION MOBIL COVILLE LAKE D-45
DST NO. 1
OUTSIDE REC. NO. 3852

BJ SERVICE DIVISION
BORG-WARNER (CANADA) LIMITED

COLVILLE
UNION ^D - 45

TEST NO. 2

DRILL-STEM TEST DATA

Well Name	UNION D-45	Test No.	2
Well Number	D-45	Zone Tested	
Company	UNION OIL OF CANADA LTD.	Interval	3186 - 3233
Comp. Rep.	Tester	Date	APRIL 29, 1973

Type of Test RFS Tool No.

Preflow: mins. ISI mins. Flow mins. FSI mins.

DEPTH	IN REC. No. 2015 5720 RANGE 12	BTM REC. No. 3852 5800 RANGE 12	HR. CLOCK	REC. No.	RANGE	HR. CLOCK
Initial Hydro Mud Press	1454	1467				
Initial Shut-In Press						
Initial Flow Press						
Final Flow Press						
Final Shut-In Press						
Final Hydro Mud Press	1454	1467				

Mud Drop	Fluid Loss	Mud Weight
Viscosity	Temperature °F	Net Pay Tested
Top Packer Depth	Bottom Packer Depth	Total Depth
Drill Pipe Size	Wt.	Fr. Run
Surface Choke Size	Bottom Choke Size	Main Hole Size
Anchor Size	Rot Hole Size	Feet of Rot Hole
Cushion Amount	Type	Rubber Size

Fluid Recovery Total Feet	
Recovered	Feet of

Gus Recovery	How Measured	Riser size:				
mins.	Temp. °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp °F	Press Rdg.	psi	Orifice Size	≡	MCF/Day

Bleed Off Time for Drill Pipe

REMARKS:

MISRUN.

TESTING REPORT

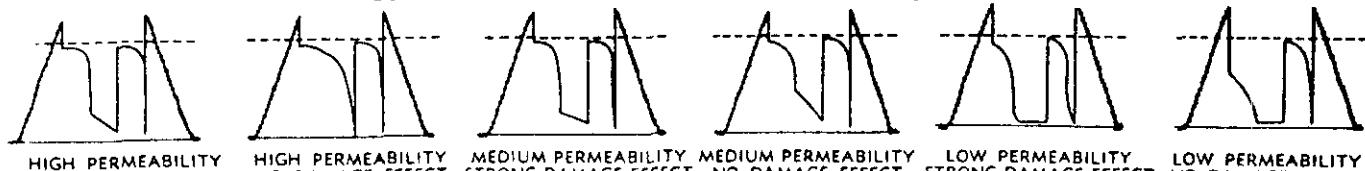
WEIGHT INDICATOR READING

PRIOR TO SETTING PACKERS

AFTER PULL PACKERS LOOSE

1. PACKER DEPTH

2. PACKER DEPTH

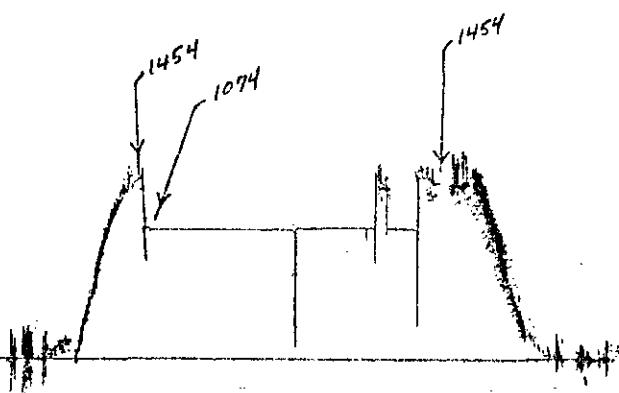

3. PACKER DEPTH

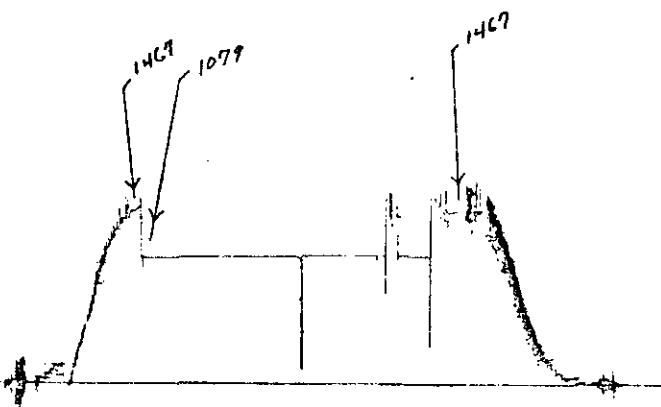
4. PACKER DEPTH

TOTAL DEPTH

		ID	OD	LENGTH
	4S LANDING SUB			
	4S CHAMBER			
	4S TOOL OR P.O. SUB			1.00
	COCKSIC JARS			6.00
	SHUT IN TOOL			4 3/4
	R.F.S. No. 2015	2 1/4	4 3/4	2.50
	R.F.S. No.	2 1/4	4 3/4	
	HYDRAULIC TOOL		4 3/4	7.20
	JARS	1	4 3/4	
	RECORDER No.	2 1/4	4 3/4	5.00
	RECORDER No.	2 1/4	4 3/4	DEPTH 3175
	SAFETY JOINT	2 11/16	4 3/4	2.00
	BY PASS SUB	1 5/32	4 3/4	
1. PACKER DEPTH	PACKER	1 OR 7/8		
2. PACKER DEPTH 3186	PACKER	1 OR 7/8		5.00 TOOL ABOVE INTERVAL 34.90
	ANCHOR-SPECIFY S.D.	2 1/2		1.00
	BLANK OFF OR BY PASS SUB	1 5/32	4 3/4	
	RECORDER No. 3852	2 1/4	4 3/4	5.00 DEPTH 3188
3. PACKER DEPTH	PACKER	1 OR 7/8		TOTAL INTERVAL
4. PACKER DEPTH	PACKER	1 OR 7/8		
	ANCHOR-SPECIFY PERFS	2 1/2		10.00
	RECORDER No.	2 1/4	4 3/4	DEPTH
	D.C.			28.00
	BULLNOSE	2 1/4	4 3/4	3.00
				TOTAL TAIL PIPE 47.00
				TOTAL TEST TOOL 53.90

DST CHARTS FOR COMPARATIVE VISUAL ANALYSIS




TESTING REPORT

DST RECORDER CHARTS

UNION D-45
DST NO. 2
INSIDE REC. NO. 2015

UNION D-45
DST NO. 2
BTM REC. NO. 3852

BJ SERVICE DIVISION
BORG-WARNER (CANADA) LIMITED

UNION MOBIL COVILLE LAKE

D-45

TEST NO. 3

DRILL-STEM TEST DATA

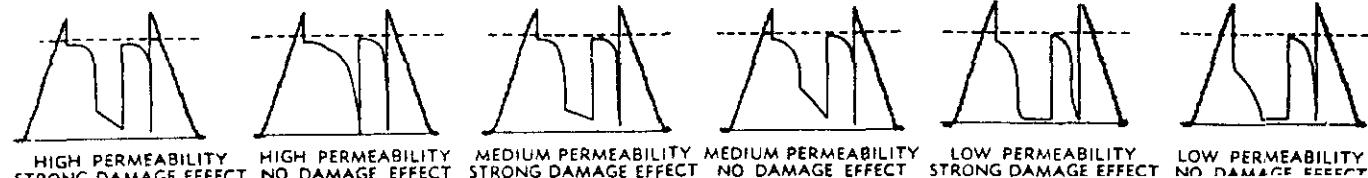
Well Name	UNION MOBIL COVILLE LAKE	Test No.	3
Well Number	D-45	Zone Tested	CAMBRIAN
Company	UNION OIL COMPANY OF CANADA LTD.	Interval	3186 - 3233
Comp. Rep.	T. RAMSEY	Tester	C. MARTINEAU
		Date	APRIL 29, 1973

Type of Test **BOTTOM HOLE** RFS Tool No.Preflow **5** mins. ISI **54** mins. Flow **142** mins. FSI **111** mins.

DEPTH	IN REC. No. 2015 5750	RANGE 12	HR CLOCK	OUT REC. No. 3852 5800	RANGE 12	HR CLOCK	REC. No.	RANGE	HR. CLOCK
Initial Hydro Mud Press		3176			3188				
Initial Shut-In Press		1484			1468				
Initial Flow Press		1080			1084				
Final Flow Press		309			325				
Final Shut-In Press		1049			1062				
Final Hydro Mud Press		1085			1094				
		1484			1478				

Mud Drop	NIL	Fluid Loss	Mud Weight	8.9	
Viscosity	52	Temperature °F	Net Pay Tested	47	
Top Packer Depth	3186	Bottom Packer Depth	NIL	Total Depth	3233
Drill Pipe Size	3.5	Wt	13.3	Drill Collar I.D.	Ft. Run 472
Surface Choke Size		Bottom Choke Size	0.50	Main Hole Size	6.125
Anchor Size	4.75	Rot Hole Size	6 2/32	Feet of Rot Hole	
Cushion Amount		Type		Rubber Size	

Fluid Recovery Total Feet	2300		
Recovered	2300	Feet of	SALT WATER (40,000 PPM)
Recovered		Feet of	


Gas Recovery	How Measured		Riser size:			
mins.	Temp. °F	Press. Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press. Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press. Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press. Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press. Rdg.	psi	Orifice Size	≡	MCF/Day
mins.	Temp. °F	Press. Rdg.	psi	Orifice Size	≡	MCF/Day

Bleed Off Time for Drill Pipe

REMARKS: **GOOD AIR BLOW DECREASING TO VERY WEAK IN 140 MINUTES.**

WEIGHT INDICATOR READING
PRIOR TO SETTING PACKERS
AFTER PULL PACKERS LOOSE

		ID	OD	LENGTH
	4S LANDING SUB			
	4S CHAMBER			
	4S TOOL OR P.O. SUB			1.00
	CO SUB			
	SHUT IN TOOL		4 3/4	6.20
	R.F.S. No.	2 1/4	4 3/4	2.50
	R.F.S. No.	2 1/4	4 3/4	
	HYDRAULIC TOOL		4 3/4	7.20
	JARS	1	4 3/4	
	RECORDER No. 2015	2 1/4	4 3/4	5.00
	RECORDER No.	2 1/4	4 3/4	DEPTH
	SAFETY JOINT	2 11/16	4 3/4	2.00
	BY PASS SUB	1 5/32	4 3/4	
1. PACKER DEPTH	PACKER	1 OR 1/8		
2. PACKER DEPTH 3186	PACKER	1 or 1/8		5.00 TOOL ABOVE INTERVAL 28.90
	ANCHOR—SPECIFY S. D.	2 1/2		1.00
	BLANK OFF OR BY PASS SUB	1 5/32	4 3/4	
	RECORDER No. 3852	2 1/4	4 3/4	5.00 DEPTH 3188
3. PACKER DEPTH	PACKER	1 OR 1/8		TOTAL INTERVAL 47
4. PACKER DEPTH	PACKER	1 OR 1/8		
	ANCHOR—SPECIFY PERFS	2 1/2		10.00
	RECORDER No.	2 1/4	4 3/4	DEPTH
	D.C.			28.00
TOTAL DEPTH 3233	BULLNOSE	2 3/4	4 3/4	3.00
				TOTAL TAIL PIPE 47.00
				TOTAL TEST TOOL 47.90

DST CHARTS FOR COMPARATIVE VISUAL ANALYSIS

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: CAMBRIAN

REC NO. 2015
DST NO. 3
DEPTH 3176

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
RUN IN HOLE	0.	0.	
	63.0	1484.1	
INITIAL HYDRO PRESSURE	80.0	1484.1	
INITIAL PREFLOW PRESSURE	0.	102.6	
FINAL PREFLOW PRESSURE	5.0	258.1	
START INITIAL SHUT-IN	0.	258.1	
	5.0	997.1	2.00
	10.0	1041.9	1.50
	15.0	1057.8	1.33
	20.0	1063.6	1.25
	25.0	1069.4	1.20
	30.0	1072.3	1.17
	35.0	1073.7	1.14
	40.0	1075.1	1.12
	45.0	1076.6	1.11
	50.0	1078.0	1.10
INITIAL SHUT-IN PRESSURE	54.0	1079.5	1.09
START FLOW PERIOD	0.	1079.5	
INITIAL FLOW PRESSURE	1.0	309.4	
	10.0	451.6	
	20.0	582.1	
	30.0	686.2	
	40.0	768.3	
	50.0	832.8	
	60.0	884.2	
	70.0	923.8	
	80.0	956.0	
	90.0	980.9	

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: CAMBRIAN

REC NO. 2015
DST NO. 3
DEPTH 3176

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
	100.0	1000.0	
	110.0	1017.3	
	120.0	1028.9	
	130.0	1041.9	
FINAL FLOW PRESSURE	142.0	1049.1	
START FINAL SHUT-IN	0.	1049.1	
	2.0	1069.4	74.50
	5.0	1072.3	30.40
	10.0	1075.1	15.70
	20.0	1078.0	8.35
	30.0	1079.5	5.90
	40.0	1080.9	4.68
	50.0	1081.6	3.94
	60.0	1082.4	3.45
	70.0	1083.1	3.10
	80.0	1083.1	2.84
	90.0	1083.8	2.63
	100.0	1084.5	2.47
FINAL SHUT-IN PRESSURE	111.0	1085.3	2.32
RUN OUT OF HOLE	0.	1085.3	
FINAL HYDRO PRESSURE	1.0	1484.1	
	10.0	1484.1	
OUT OF HOLE	85.0	0.	

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: CAMBRIAN
RECOVERY TYPE USED IN CALCULATIONS: WATER

REC NO. 2015
DST NO. 3
DEPTH 3176
INTERVAL 3186-3233

SUMMARY OF CALCULATIONS

1 FIRST SHUT-IN

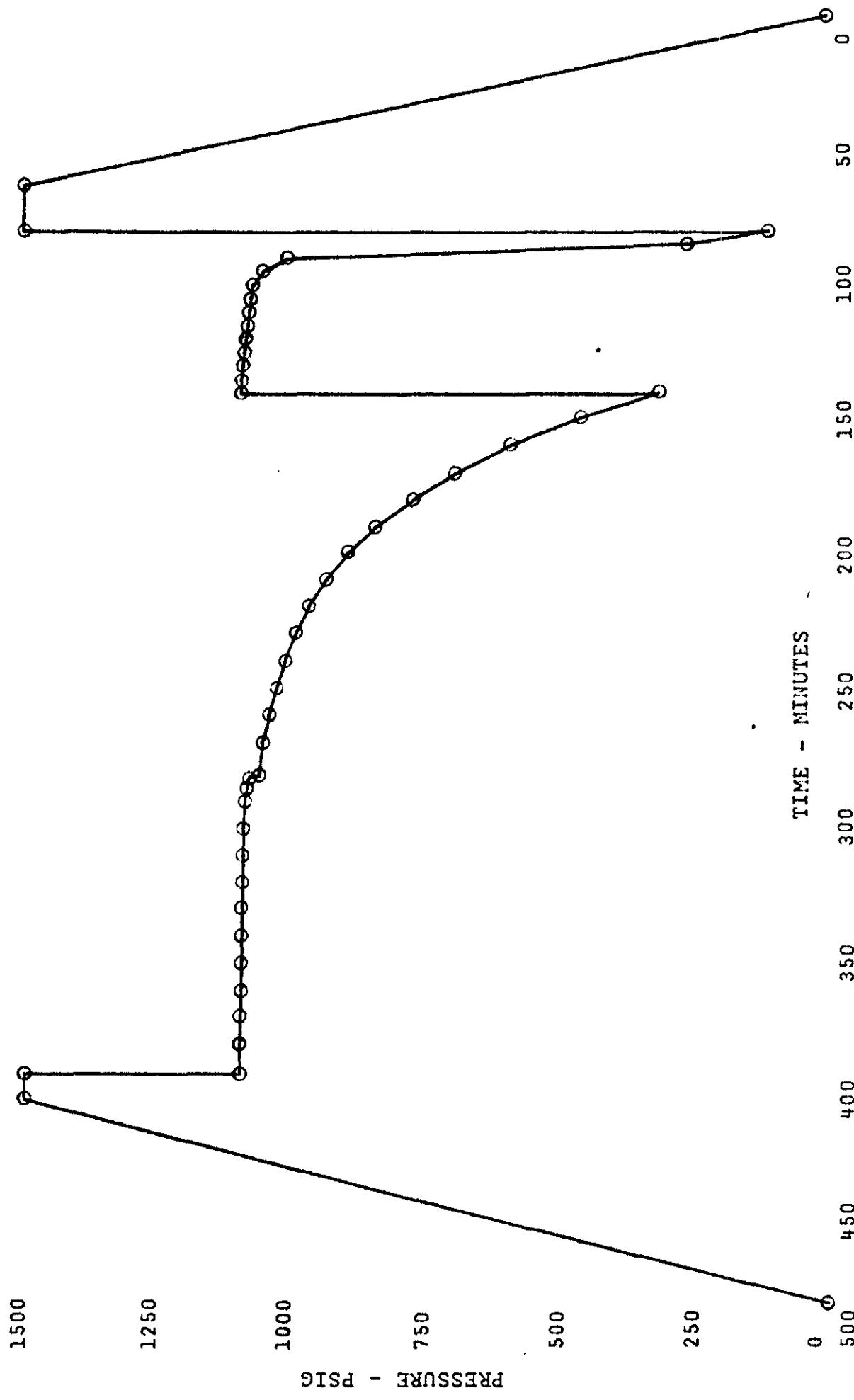
EXTRAPOLATED FORMATION PRESSURE -----	1092.1 PSIG
SLOPE OF EXTRAPOLATED LINE -----	334.79 PSI/CYCLE
ROOT MEAN SQUARE DEVIATION OF FITTED LINE -----	0.21 PSI
NUMBER OF POINTS IN SHUT-IN -----	12
NUMBER OF POINTS USED FOR EXTRAPOLATION -----	4

2 SECOND SHUT-IN

EXTRAPOLATED FORMATION PRESSURE -----	1094.4 PSIG
SLOPE OF EXTRAPOLATED LINE -----	25.05 PSI/CYCLE
ROOT MEAN SQUARE DEVIATION OF FITTED LINE -----	0.04 PSI
NUMBER OF POINTS IN SHUT-IN -----	14
NUMBER OF POINTS USED FOR EXTRAPOLATION -----	4
DIFFERENCE (2ND-1ST EXTRAPOLATION) -----	2.3 PSI

3 RESERVOIR AND FLUID PROPERTIES

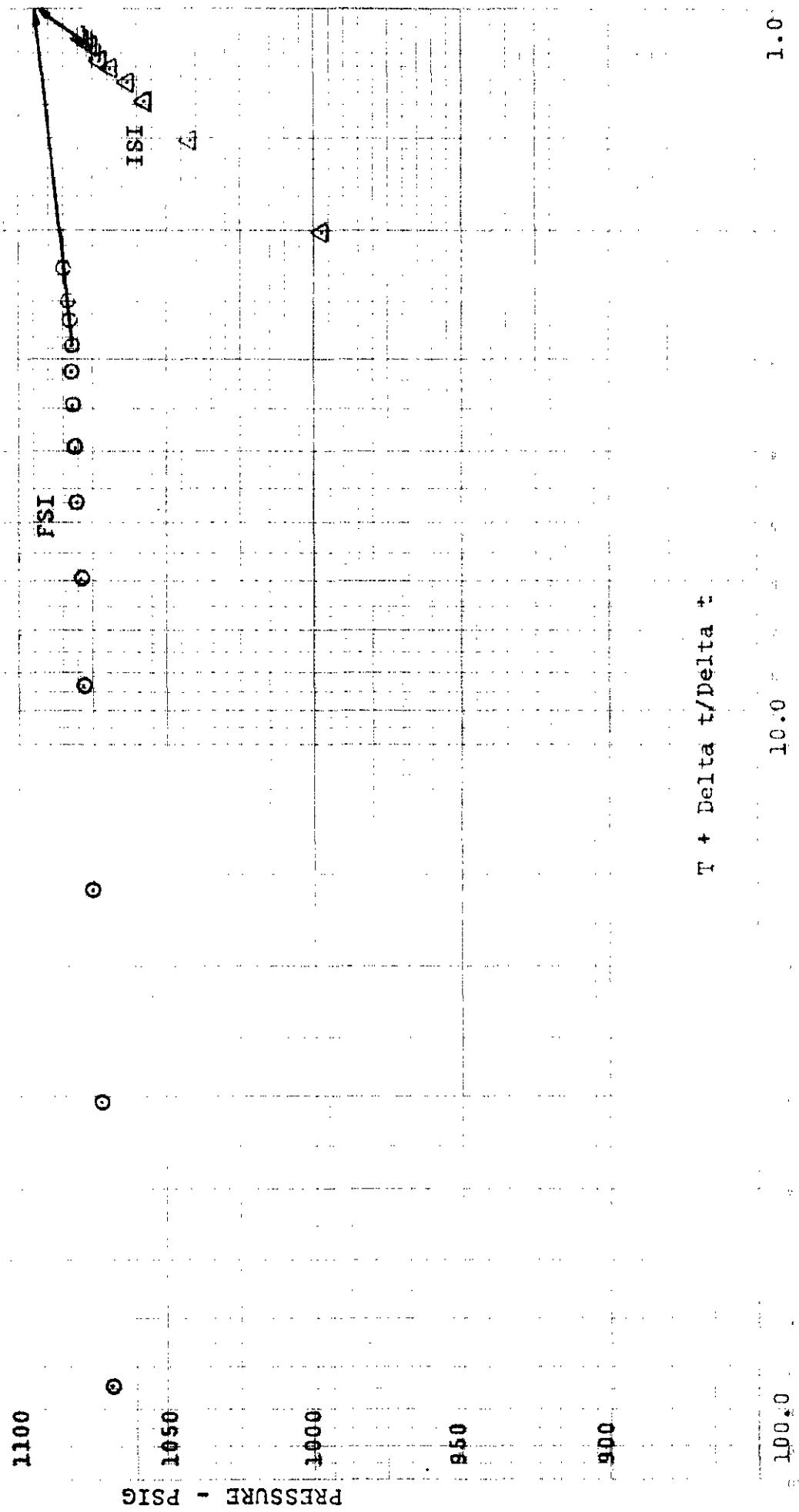
NET PAY -----	47.00 FT
RESERVOIR POROSITY -----	15.00 PERCENT
PRODUCTION RATE -----	170.0 BPD
FORMATION VOLUME FACTOR -----	1.000 RB/STB
FLUID VISCOSITY -----	0.760 C.P.
TOTAL COMPRESSIBILITY X 10 ⁻⁶ -----	7.200 /PSI
RESERVOIR TEMPERATURE -----	95.0 F
FINAL FLOWING PRESSURE -----	1049.1 PSIG
TOTAL FLOW TIME -----	147.0 MIN


4 CALCULATION RESULTS

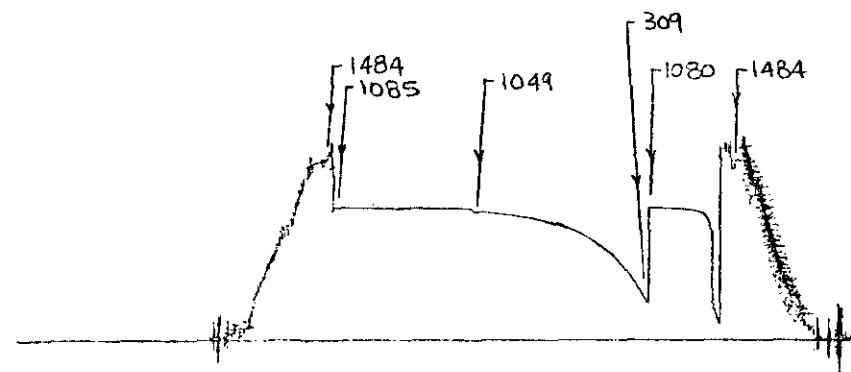
ESTIMATED DAMAGE RATIO -----	0.32
PERMEABILITY THICKNESS -----	838.2 MD FT
PERMEABILITY -----	17.83 MD
SKIN FACTOR -----	-4.46
APPROXIMATE DRAINAGE RADIUS -----	236.2 FT
PRODUCTIVITY INDEX -----	3.756 BPD/PSI

UNION MOBIL COVILLE LAKE D-45

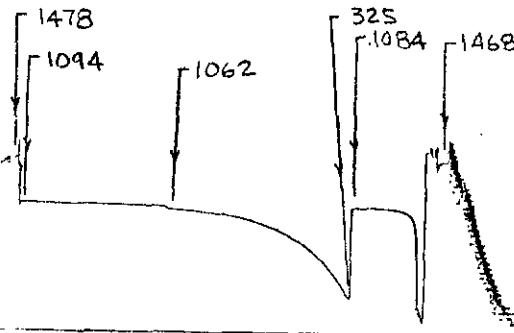
DST NO. 3


REC. NO. 2015

UNION MOBIL COVILLE LAKE D-45


DST NO. 3

$P^* = 1094.4$ PSIG



DST RECORDER CHARTS

UNION MOBIL COVILLE LAKE D-45
DST NO. 3
INSIDE REC. NO. 2015

UNION MOBIL COVILLE LAKE D-45
DST NO. 3
OUTSIDE REC. NO. 3852

BJ SERVICE DIVISION
BORG-WARNER (CANADA) LIMITED

UNION MOBIL COVILLE LAKE

D-45

TEST NO. 4

DRILL-STEM TEST DATA

Well Name	UNION MOBIL COVILLE LAKE	Test No.	4
Well Number	D-45	Zone Tested	OLD FORT SAND
Company	UNION OIL COMPANY OF CANADA LTD.	Interval	3207 - 3224
Comp. Rep.	T. RAMSEY	Tester	C. MARTINEAU Date MAY 5, 1973

Type of Test **SINGLE STRADDLE** RFS Tool No.

Preflow 5 mins. ISI 115 mins. Flow 111 mins. FSI 139 mins.

DEPTH	IN REC No. 3852 5800 RANGE 12 HR CLOCK 3196 1453 1081 262 961 1081 1447	IN REC No. 2015 5750 RANGE 12 HR CLOCK 3199 1454 1081 265 956 1083 1447	BTM REC. No. 3687 5750 RANGE 24 HR. CLOCK 3245 1480 1460
Initial Hydro Mud Press			
Initial Shut In Press			
Initial Flow Press			
Final Flow Press			
Final Shut-In Press			
Final Hydro Mud Press			

Mud Drop	NIL	Fluid Loss	8.9
Viscosity	60	Temperature °F	Net Pay Tested 18.0
Top Packer Depth	3207	Bottom Packer Depth 3224	Total Depth 3850
Drill Pipe Size	3.5 IF	Wt. 13.3 Drill Collar I.D.	Ft. Run
Surface Choke Size	0.75	Bottom Choke Size 0.50	Main Hole Size 6.125
Anchor Size	4.50	Rat Hole Size	Rubber Size
Cushion Amount		Type	

Fluid Recovery Total Feet	2200	
Recovered	500	Feet of
Recovered	1700	Feet of
Recovered		Feet of
Recovered		Feet of
Recovered		Feet of

SLIGHTLY OIL CUT SALT WATER
SLIGHTLY GASSIFIED SALT WATER

Gas Recovery How Measured Riser size

mins.	Temp. °F	Press Rdg.	psi	Orifice Size	=	MCF/Day
mins	Temp. °F	Press Rdg.	psi	Orifice Size	=	MCF/Day
mins	Temp °F	Press Rdg.	psi	Orifice Size	=	MCF/Day
mins	Temp. °F	Press Rdg.	psi	Orifice Size	=	MCF/Day
mins	Temp °F	Press Rdg.	psi	Orifice Size	=	MCF/Day
mins	Temp °F	Press Rdg.	psi	Orifice Size	=	MCF/Day

Bleed Off Time for Drill Pipe

REMARKS:

WEIGHT INDICATOR READING
PRIOR TO SETTING PACKERS
AFTER PULL PACKERS LOOSE

1. PACKER DEPTH _____

2. PACKER DEPTH 3207

3. PACKER DEPTH 3224

4. PACKER DEPTH _____

TOTAL DEPTH 3850

		ID	OD	LENGTH
	45 LANDING SUB			
	45 CHAMBER			
	45 TOOL OR P.O. SUB			1.00
	CO SUB			
	SHUT IN TOOL		4 1/4	5.20
	R.F.S. No.	2 1/4	4 1/4	
	R.F.S. No.	2 1/4	4 1/4	
	HYDRAULIC TOOL		4 1/4	7.20
	JARS	1	4 1/4	
	RECORDER No. 3852	2 1/4	4 1/4	4.00 DEPTH 3196
	RECORDER No. 2015	2 1/4	4 1/4	4.00 DEPTH 3194
	SAFETY JOINT	2 11/16	4 1/4	
	BY PASS SUB	1 5/32	4 1/4	
1. PACKER DEPTH	PACKER	1 OR 7/8		
2. PACKER DEPTH 3207	PACKER	1 or 7/8		5.00 TOOL ABOVE INTERVAL 27.40
	ANCHOR—SPECIFY S.D.	2 1/2		1.00
	PERFS			10.00
	PERFS			3.00
	BLANK OFF OR BY PASS SUB	1 5/32	4 1/4	
	RECORDER No.	2 1/4	4 1/4	DEPTH _____
3. PACKER DEPTH 3224	PACKER	1 OR 7/8		4.00 TOTAL INTERVAL 18.00
				2.00
4. PACKER DEPTH	PACKER	1 OR 7/8		
	ANCHOR—SPECIFY PERFS	2 1/2		15.00
	PERFS			3.00
	RECORDER No. 3687	2 1/4	4 1/4	5.00 DEPTH 3245
	D.P.			598.00
TOTAL DEPTH 3850	BULLNOSE	2 3/4	4 1/4	3.00 TOTAL TAIL PIPE 626.00
				TOTAL TEST TOOL 68.00

DST CHARTS FOR COMPARATIVE VISUAL ANALYSIS

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: OLD FORT SAND

REC NO. 2015
DST NO. 4
DEPTH 3199

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
RUN IN HOLE	0.	0.	
	75.0	1453.8	
INITIAL HYDRO PRESSURE	110.0	1453.8	
INITIAL PREFLOW PRESSURE	0.	107.0	
FINAL PREFLOW PRESSURE	5.0	200.9	
START INITIAL SHUT-IN	0.	200.9	
	5.0	998.5	2.00
	10.0	1039.0	1.50
	15.0	1053.5	1.33
	20.0	1063.6	1.25
	25.0	1067.9	1.20
	30.0	1070.8	1.17
	35.0	1072.3	1.14
	40.0	1075.1	1.12
	45.0	1075.9	1.11
	50.0	1076.6	1.10
	55.0	1076.6	1.09
	60.0	1077.3	1.08
	65.0	1078.0	1.08
	70.0	1078.0	1.07
	75.0	1078.8	1.07
	80.0	1079.5	1.06
	85.0	1080.2	1.06
	90.0	1080.2	1.06
	95.0	1080.2	1.05
	100.0	1080.2	1.05
	105.0	1080.9	1.05
	110.0	1080.9	1.05
INITIAL SHUT-IN PRESSURE	115.0	1080.9	1.04
START FLOW PERIOD	0.	1080.9	

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: OLD FORT SAND

REC NO. 2015
DST NO. 4
DEPTH 3199

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
INITIAL FLOW PRESSURE	1.0	265.4	
	10.0	387.1	
	20.0	495.6	
	30.0	588.0	
	40.0	665.7	
	50.0	733.1	
	60.0	787.4	
	70.0	831.4	
	80.0	871.0	
	90.0	904.7	
	100.0	932.6	
FINAL FLOW PRESSURE	111.0	956.0	
START FINAL SHUT-IN	0.	956.0	
	2.0	1041.9	61.00
	5.0	1050.6	25.00
	10.0	1059.2	13.00
	15.0	1063.6	9.00
	20.0	1066.5	7.00
	25.0	1067.9	5.80
	30.0	1070.1	5.00
	35.0	1072.3	4.43
	40.0	1073.7	4.00
	45.0	1075.1	3.57
	50.0	1076.6	3.40
	55.0	1078.0	3.18
	60.0	1078.0	3.00
	65.0	1078.8	2.85
	70.0	1079.5	2.71
	75.0	1079.5	2.60
	80.0	1079.5	2.50
	85.0	1080.2	2.41
	90.0	1080.2	2.33
	95.0	1080.9	2.26
	100.0	1080.9	2.20
	105.0	1081.6	2.14
	110.0	1081.6	2.09
	115.0	1081.6	2.04
	120.0	1082.4	2.00

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: OLD FORT SAND

REC NO. 2015
DST NO. 4
DEPTH 3199

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
	125.0	1082.4	1.96
	130.0	1083.1	1.92
	135.0	1083.1	1.89
FINAL SHUT-IN PRESSURE	139.0	1083.1	1.86
RUN OUT OF HOLE	0.	1083.1	
FINAL HYDRO PRESSURE	1.0	1446.5	
	5.0	1446.5	
OUT OF HOLE	94.0	0.	

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: OLD FORT SAND
RECOVERY TYPE USED IN CALCULATIONS: WATER

REC NO. 2015
DST NO. 4
DEPTH 3199
INTERVAL 3207-3224

SUMMARY OF CALCULATIONS

1 FIRST SHUT-IN

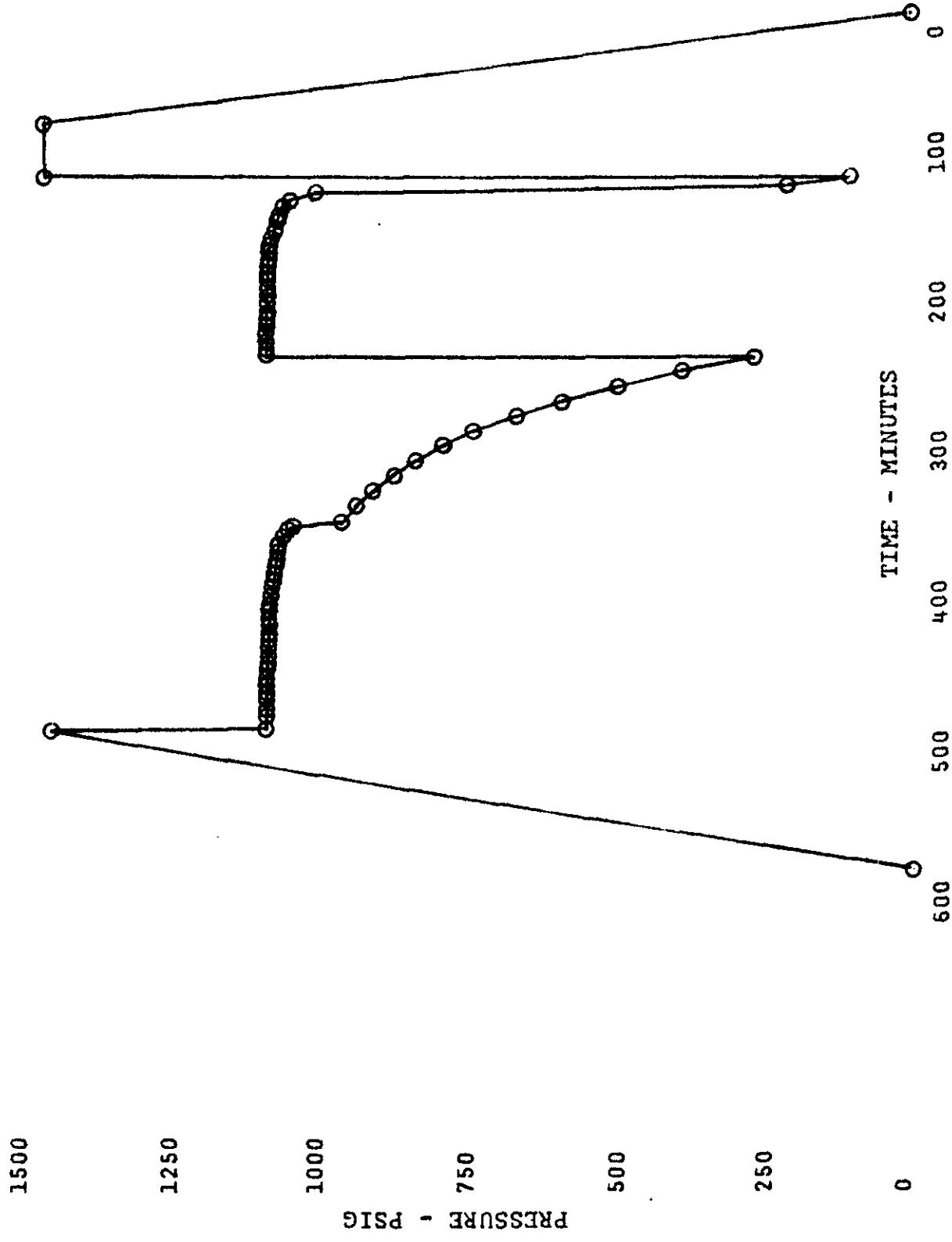
EXTRAPOLATED FORMATION PRESSURE -----	1085.2 PSIG
SLOPE OF EXTRAPOLATED LINE -----	217.26 PSI/CYCLE
ROOT MEAN SQUARE DEVIATION OF FITTED LINE -----	0.41 PSI
NUMBER OF POINTS IN SHUT-IN -----	24
NUMBER OF POINTS USED FOR EXTRAPOLATION -----	20

2 SECOND SHUT-IN

EXTRAPOLATED FORMATION PRESSURE -----	1091.3 PSIG
SLOPE OF EXTRAPOLATED LINE -----	29.25 PSI/CYCLE
ROOT MEAN SQUARE DEVIATION OF FITTED LINE -----	0.54 PSI
NUMBER OF POINTS IN SHUT-IN -----	30
NUMBER OF POINTS USED FOR EXTRAPOLATION -----	26
DIFFERENCE (2ND-1ST EXTRAPOLATION) -----	6.2 PSI

3 RESERVOIR AND FLUID PROPERTIES

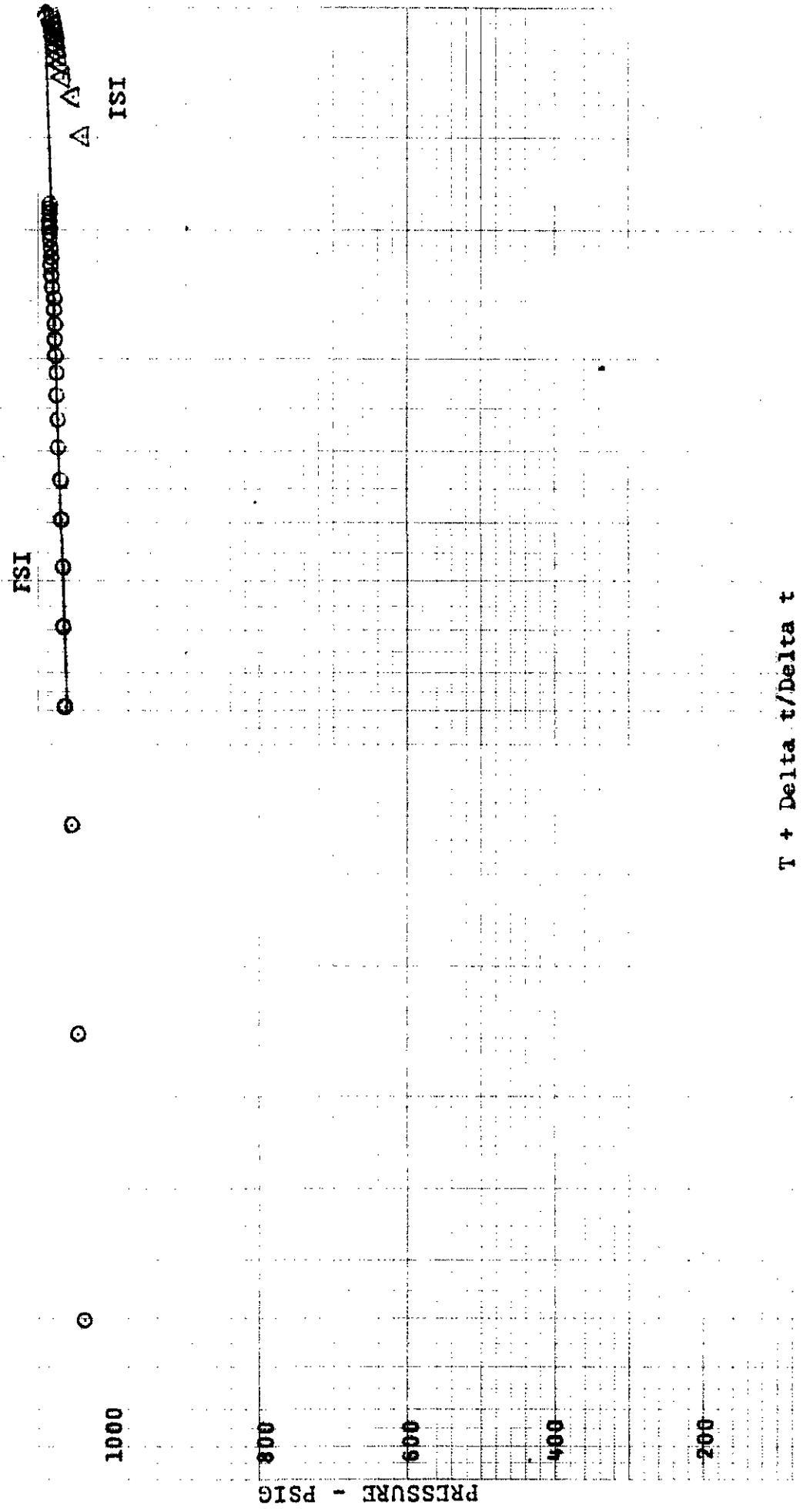
NET PAY -----	18.00 FT
RESERVOIR POROSITY -----	15.00 PERCENT
PRODUCTION RATE -----	199.4 BPD
FORMATION VOLUME FACTOR -----	1.000 RB/STB
FLUID VISCOSITY -----	0.760 C.P.
TOTAL COMPRESSIBILITY X 10 ⁻⁶ -----	7.200 /PSI
RESERVOIR TEMPERATURE -----	95.0 F
FINAL FLOWING PRESSURE -----	956.0 PSIG
TOTAL FLOW TIME -----	120.0 MIN


4 CALCULATION RESULTS

ESTIMATED DAMAGE RATIO -----	0.77
PERMEABILITY THICKNESS -----	841.8 MD FT
PERMEABILITY -----	46.76 MD
SKIN FACTOR -----	-1.60
APPROXIMATE DRAINAGE RADIUS -----	345.6 FT
PRODUCTIVITY INDEX -----	1.473 BPD/PSI

UNION MOBIL COVILLE LAKE D-45

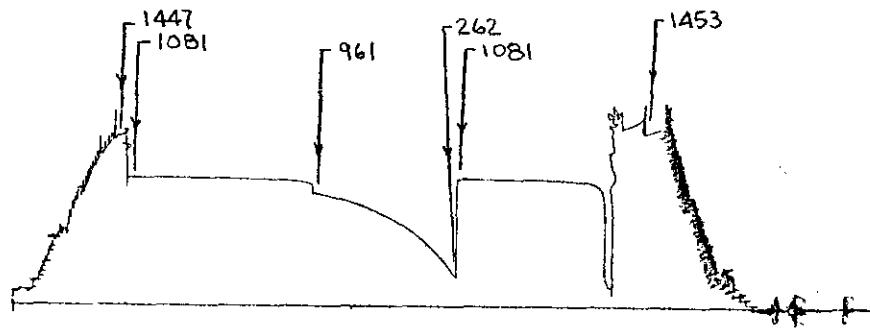
DST NO. 4


REC. NO. 2015

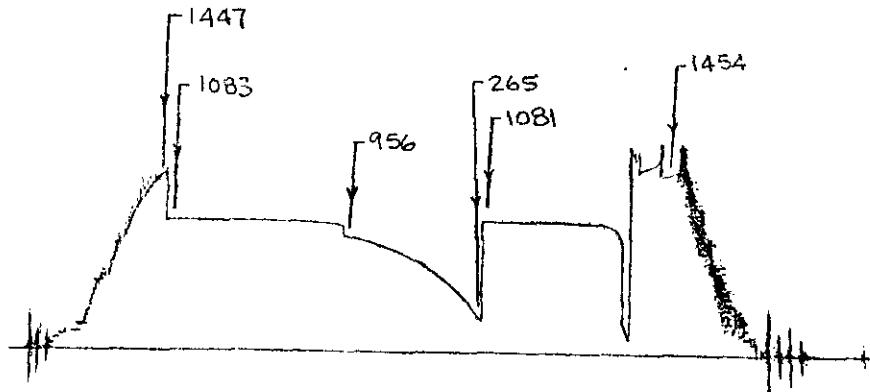
UNION MOBIL COVILLE LAKE D-45

DST NO. 4

$P^* = 1091.3$ PSIG

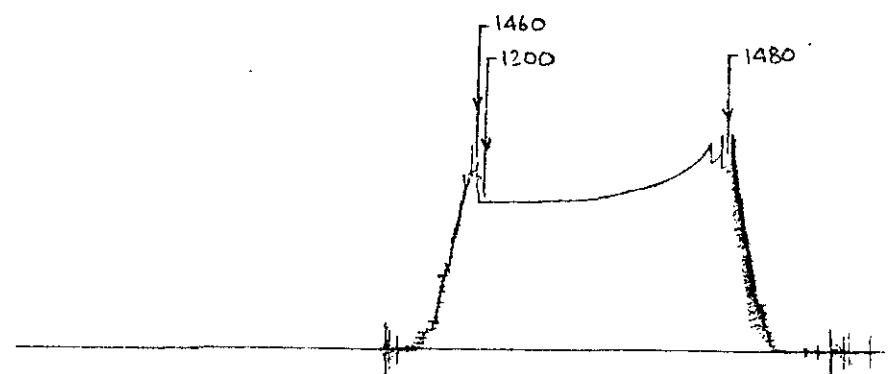

1.0

10.0


1000

DST RECORDER CHARTS

UNION MOBIL COVILLE LAKE D-45
DST NO. 4
INSIDE REC. NO. 3852



UNION MOBIL COVILLE LAKE D-45
DST NO. 4
INSIDE REC. NO. 2015

DST RECORDER CHARTS

UNION MOBIL COVILLE LAKE D-45
DST NO. 4
BTM REC. NO. 3687

BJ SERVICE DIVISION
BORG-WARNER (CANADA) LIMITED

UNION MOBIL COVILLE LAKE

D-45

TEST NO. 5

DRILL-STEM TEST DATA

Well Name	UNION MOBIL COVILLE LAKE	Test No.	5
Well Number	D-45	Zone Tested	OLD FORT SAND
Company	UNION OIL COMPANY OF CANADA LTD.	Interval	3253 - 3278
Compl. Rep.	T. RAMSEY	Tester	C. MARTINEAU
Date			MAY 6, 1973

Type of Test **SINGLE STRADDLE** RFS Tool No

Preflow	10 mins ISI	61 mins. Flow	116 mins. FSI	112 mins.
	IN REC No. 2015	OUT REC. No. 3852	BTM REC. No. 3687	
	5750 RANGE 12 HR. CLOCK	5800 RANGE 12 HR CLOCK	5750 RANGE 24 HR. CLOCK	
DEPTH	3244	3257	3281	
Initial Hydro Mud Press	1561	1570	1587	
Initial Shut In Press	1098	1098		
Initial Flow Press	367	375		
Final Flow Press	1023	1032		
Final Shut In Press	1087	1099		
Final Hydro Mud Press	1471	1467	1449	

Mud Drop	NIL	Fluid Loss		Mud Weight	8.9
Viscosity	50	Temperature F	95	Net Pay Tested	25.0
Top Packer Depth	3253	Bottom Packer Depth	3278	Total Depth	3850
Drill Pipe Size	3.5 IF	Wt	13.3	Drill Collar ID	
Surface Choke Size	0.75	Bottom Choke Size	0.50	Main Hole Size	6.50
Anchor Size	4.75	Rat Hole Size		Feet of Rat Hole	
Cushion Amp. Int		Type		Rubber Size	5.25

Fluid Recovery Total Feet	2200	
Recovered	2200	Feet of
Recovered		Feet of

Gas Recovered	Flow Measured		Riser size
mins	Temp. F	Press Rdg	psi
mins	Temp. F	Press Rdg	psi
mins	Temp. F	Press Rdg	psi
mins	Temp. F	Press Rdg	psi
mins	Temp. F	Press Rdg	psi
mins	Temp. F	Press Rdg	psi

Bleed Off Time for Drill Pipe

REMARKS.

TESTING REPORT

WEIGHT INDICATER READING
PRIOR TO SETTING PACKERS
AFTER PULL PACKERS LOOSE

		ID	OD	LENGTH
	45 LANDING SUB			
	45 CHAMBER			
	45 TOOL OR P.O. SUB			1.00
	CO SUB			
	SHUT IN TOOL		4 1/4	5.20
	R.F.S. No.	2 1/4	4 1/4	
	R.F.S. No.	2 1/4	4 1/4	
	HYDRAULIC TOOL		4 1/4	7.20
	JARS	1	4 1/4	
	RECORDER No. 2015	2 1/4	4 1/4	5.00
	RECORDER No.	2 1/4	4 1/4	DEPTH
	SAFETY JOINT	2 11/16	4 1/4	
	BY PASS SUB	1 5/32	4 1/4	
1. PACKER DEPTH	PACKER	1 OR 7/8		
2. PACKER DEPTH 3253	PACKER	1 or 7/8		5.00 TOOL ABOVE INTERVAL 24.00
	ANCHOR-SPECIFY S.D.	2 1/2		1.00
	BLANK OFF OR BY PASS SUB	1 5/32	4 1/4	
	RECORDER No. 3852	2 1/4	4 1/4	5.00 DEPTH 3257
	PERFS			15.00
3. PACKER DEPTH 3278	PACKER	1 OR 7/8		4.00 TOTAL INTERVAL 25.00
				2.00
4. PACKER DEPTH	PACKER	1 OR 7/8		
	ANCHOR-SPECIFY	2 1/2		
	RECORDER No. 3687	2 1/4	4 1/4	1.00 DEPTH 3281
	D.P.			566.00
TOTAL DEPTH 3850	BULLNOSE	2 3/4	4 1/4	3.00 TOTAL TAIL PIPE 572.00
				TOTAL TEST TOOL 54.00

DST CHARTS FOR COMPARATIVE VISUAL ANALYSIS

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: OLD FORT SAND

REC NO. 2015
DST NO. 5
DEPTH 3244

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
RUN IN HOLE	0.	0.	
	63.0	1560.7	
INITIAL HYDRO PRESSURE	80.0	1560.7	
INITIAL PREFLOW PRESSURE	0.	145.2	
FINAL PREFLOW PRESSURE	10.0	334.3	
START INITIAL SHUT-IN	0.	334.3	
	5.0	1020.2	3.00
	10.0	1054.9	2.00
	15.0	1069.4	1.67
	20.0	1076.6	1.50
	25.0	1082.4	1.40
	30.0	1086.7	1.33
	35.0	1089.6	1.29
	40.0	1092.5	1.25
	45.0	1094.7	1.22
	50.0	1096.1	1.20
	55.0	1096.8	1.18
INITIAL SHUT-IN PRESSURE	61.0	1098.3	1.16
START FLOW PERIOD	0.	1098.3	
INITIAL FLOW PRESSURE	1.0	366.6	
	10.0	519.1	
	20.0	648.1	
	30.0	741.9	
	40.0	813.8	
	50.0	865.1	
	60.0	909.1	
	70.0	942.8	
	80.0	967.7	

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: OLD FORT SAND

REC NO. 2015
DST NO. 5
DEPTH 3244

TIME - PRESSURE INCREMENTS

REMARKS	TIME MIN.	PRESSURE PSIG	T+DELTA(T)/ DELTA(T)
	90.0	988.3	
	100.0	1005.8	
FINAL FLOW PRESSURE	116.0	1023.1	
START FINAL SHUT-IN	0.	1023.1	
	2.0	1052.0	64.00
	10.0	1059.2	13.60
	20.0	1065.0	7.30
	30.0	1069.4	5.20
	40.0	1072.3	4.15
	50.0	1075.1	3.52
	60.0	1078.0	3.10
	70.0	1079.5	2.80
	80.0	1081.6	2.57
	90.0	1083.8	2.40
	100.0	1085.3	2.26
FINAL SHUT-IN PRESSURE	112.0	1086.7	2.12
RUN OUT OF HOLE	0.	1086.7	
FINAL HYDRO PRESSURE	1.0	1471.1	
	7.0	1471.1	
OUT OF HOLE	81.0	0.	

WELL NAME: UNION MOBIL COVILLE LAKE
WELL LOCATION: D-45
FORMATION: OLD FORT SAND
RECOVERY TYPE USED IN CALCULATIONS: WATER

REC NO. 2015
DST NO. 5
DEPTH 3244
INTERVAL 3253-3278

SUMMARY OF CALCULATIONS

1 FIRST SHUT-IN

EXTRAPOLATED FORMATION PRESSURE -----	1110.2 PSIG
SLOPE OF EXTRAPOLATED LINE -----	180.41 PSI/CYCLE
ROOT MEAN SQUARE DEVIATION OF FITTED LINE -----	0.20 PSI
NUMBER OF POINTS IN SHUT-IN -----	13
NUMBER OF POINTS USED FOR EXTRAPOLATION -----	5

2 SECOND SHUT-IN

EXTRAPOLATED FORMATION PRESSURE -----	1106.8 PSIG
SLOPE OF EXTRAPOLATED LINE -----	61.09 PSI/CYCLE
ROOT MEAN SQUARE DEVIATION OF FITTED LINE -----	0.12 PSI
NUMBER OF POINTS IN SHUT-IN -----	13
NUMBER OF POINTS USED FOR EXTRAPOLATION -----	5
DIFFERENCE (2ND-1ST EXTRAPOLATION) -----	-3.3 PSI

3 RESERVOIR AND FLUID PROPERTIES

NET PAY -----	25.00 FT
RESERVOIR POROSITY -----	15.00 PERCENT
PRODUCTION RATE -----	186.6 BPD
FORMATION VOLUME FACTOR -----	1.000 RB/STB
FLUID VISCOSITY -----	0.760 C.P.
TOTAL COMPRESSIBILITY X 10 ⁻⁶ -----	7.200 /PSI
RESERVOIR TEMPERATURE -----	95.0 F
FINAL FLOWING PRESSURE -----	1023.1 PSIG
TOTAL FLOW TIME -----	126.0 MIN

4 CALCULATION RESULTS

ESTIMATED DAMAGE RATIO -----	0.25
PERMEABILITY THICKNESS -----	377.3 MD FT
PERMEABILITY -----	15.09 MD
SKIN FACTOR -----	-4.75
APPROXIMATE DRAINAGE RADIUS -----	201.2 FT
PRODUCTIVITY INDEX -----	2.229 BPD/PSI

UNION MOBIL COVILLE LAKE D-45

DST NO. 5

REC. NO. 2015

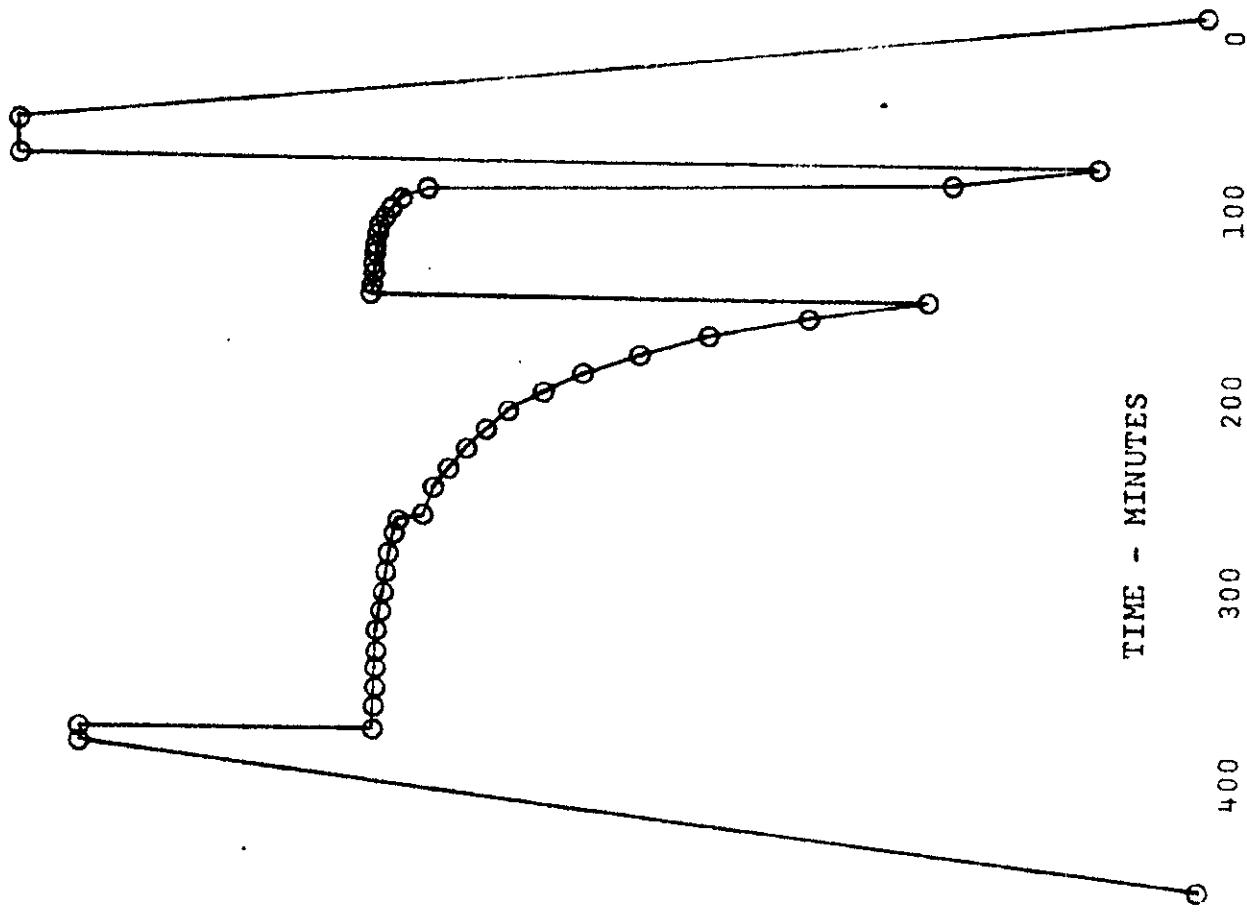
PRESSURE - PSIG

1500

1250

1000

750


500

250

0

TIME - MINUTES

400
300
200
100
0

UNION MOBIL COVILLE LAKE D-45
1120

DST NO. 5

$P^* = 1106.8$ PSIG

PRESSURE - PSIG

1100

1080

1060

1040

1020

1000

100.0

10.0

$T + \Delta t / \Delta t$

1.0

FSI

FSI

0

0

0

1000

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

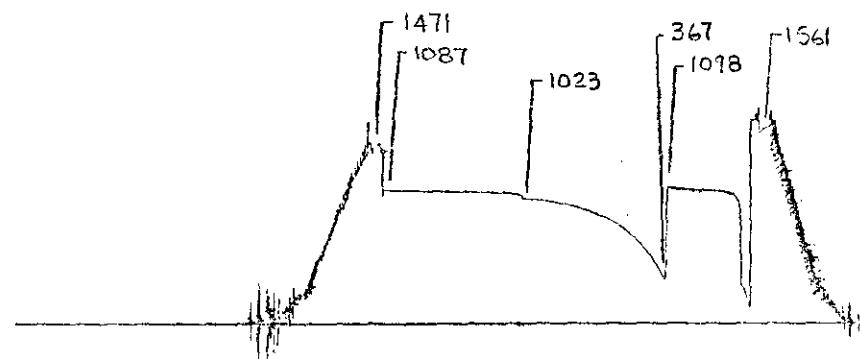
Δ

Δ

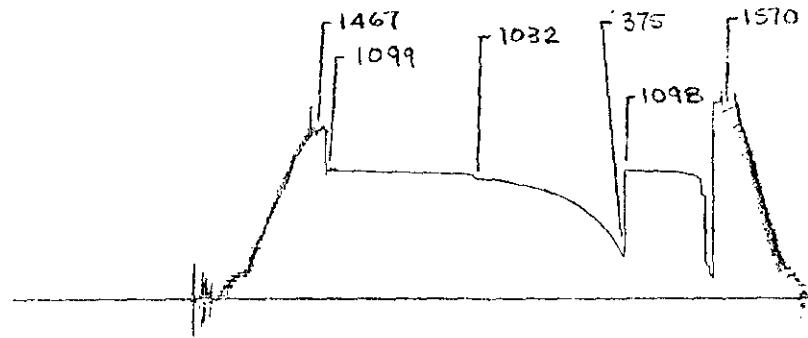
Δ

Δ

Δ

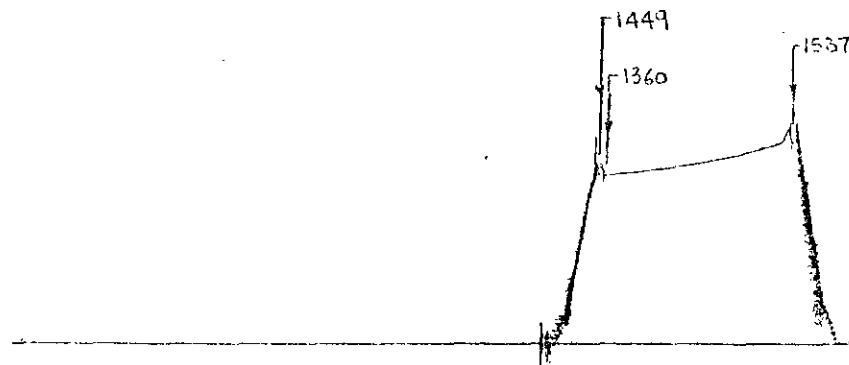

Δ

Δ


Δ

DST RECORDER CHARTS

UNION MOBIL COVILLE LAKE D-45
DST NO. 5
INSIDE REC. NO. 2015



UNION MOBIL COVILLE LAKE D-45
DST NO. 5
OUTSIDE REC. NO. 3852

DST RECORDER CHARTS

UNION MOBIL COVILLE LAKE D-45
DST NO. 5
BTM REC. NO. 3687

Special Core Analysis Study
for
UNION OIL COMPANY OF CANADA LIMITED
Stopover K-44 and Colville D-45 Wells

COIBC
COLVILLE D-45

MEMORANDUM

October 22, 1987

87295ACC0062

D.B. GRASS
A-348

Visual Source Rock Report on Five Wells, Central Mackenzie Valley, NWT.

1. Gulf Fina N. Colville L-21 3685-3706 ft Non-source. ?Colonial algal cells 3730-3742 ft Non-source.
2. Atlantic Arctic Circle Ontario K-04 7966-8006 ft Non-source. Rare ?colonial algal cells 8008-8024 ft Non-source. Rare ?colonial algal cells 8761-8782 ft Non-source. Kerogen fragments present black, TAI 7 very rare ?colonial algal cells
3. Candell et al Police Island L-66 4287-4313 ft Non-source
4. Imperial Windflower G-77 1350-1370 ft Non-source
5. Union Mobil Colville D-45 3018-3030 ft Poor source for hydrocarbons Amorphous, blob-like, medium brown coloured kerogen abundant ?colonial algal cells (some in tetrads) 3057-3081 ft Non-source. As above but less amorphous material and very abundant algal cells. Medium brown colour on usual TAI scale would be 5, or "past peak" oil, pre-peak gas. 3102-3116 ft Non-source. ?Colonial algal cells in decreased numbers, no kerogen material as in two samples above. 3128-3136 ft Non-source. Barren.

Comment: Normally, all samples which test non-source (less than 0.05 kerogen ml/15 gm sample) are deemed as unsuitable for further source-rock evaluation. However, samples at 3057-81 ft in the Colville D-45 well and 3685-3706 ft in the Colville L-21 well were recommended for study. This was in order to see if something could be learned of the nature of the kerogen material in these samples. A subsequent report was not enlightening on the matter. However, another sample with similar ?algal material at 3018-3030 ft in Mobil Colville D-45 indicated presence of liquid hydro-carbon generating material at early peak oil generating stage. Hence the visual reading indicated a slightly higher

CF02862

Page 2

generating stage than rock-eval. (Geochemistry Services Group, Tulsa Research Center, Technical Service 879169CI by R. J. Harwood, October, 1987).

W. Bauder

WWBRIDEAUX
Geological Associate

WWB/WWB

AMOCO PRODUCTION COMPANY
RESEARCH CENTER

AUTHORIZED BY D. B. GRASS
TECHNICAL SERVICE NUMBER 879169

TABLE 1: ROCKEVAL PYROLYSIS DATA
DATE 05/07/90

SAMPLE NUMBER	TOP OF INTERVAL FEET	FORMATION	TOTAL ORGANIC CARBON WT% ROCKEVAL TOC (S1 X 1000)	PPM VOLATILE HYDROCARBONS TOC	PPM GENERATED (S2 X 1000)	GEN/TOC	TEMP OF MAX GEN VOL	VOL/GEN
UNION MOBIL COLVILLE D-45								
I-500	3018.0	MT. CAP	.4	110	.03	1060	.27	447 .09
I-501	3057.0	MT. CAP	< .1	30	.15	120	.60	NR .20
PEX FINA N COLVILLE L-21								
I-502	3685.0	MT. CAP	.1	10	.01	120	.11	NR .08

NR indicates 'not reliable'

TABLE 2: BITUMEN DATA

SAMPLE NUMBER	FIELD NO. OR DEPTH FEET TOP** BOTTOM	FORMATION	TOTAL ORG C WT%	BITUMEN BBL/AF PPM	SAT HC BBL/AF PPM	BIT/TOC	SAT HC BBL/AF PPM	NC17/PR	NC18/PR	CPI	PR/ PH
UNION MOBIL COLVILLE D-45											
I-500	3018.0 - 3030.0	MT. CAP	.4	9	511						
I-501	3018.0 - 3030.0	MT. CAP	.4	9	511						

TABLE 3: VISUAL AND VITRINITE REFLECTANCE

SAMPLE NUMBER	FIELD NO. OR DEPTH FEET TOP** BOTTOM	FORMATION	VIT REFLECTANCE %RC	VISUAL COUNTS	VISUAL SCALE	KEROGEN DESCRIPTION
UNION MOBIL COLVILLE D-45						
I-500	3018.0 - 3030.0	MT. CAP	.32	65		AMORPHOUS
I-501	3018.0 - 3030.0	MT. CAP	.32	65		AMORPHOUS

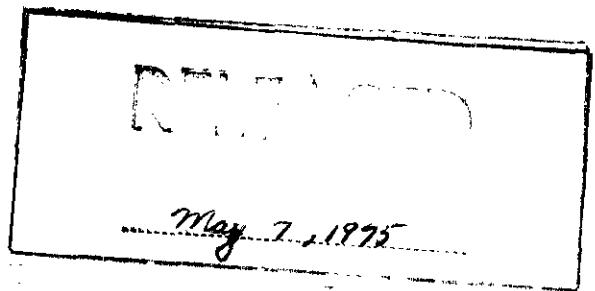
TABLE 4: ELEMENTAL ANALYSIS DATA

SAMPLE NUMBER	FIELD NO. OR DEPTH FEET TOP** BOTTOM	FORMATION	NORM. ELEMENTAL ANALYSIS, WT. % CARBON HYDROGEN OXYGEN NITROGEN	% SULFUR REC	ASH WT. %	ATOMIC RATIO O/C	ATOMIC RATIO H/C	CARBON ISOTOPES KEROGEN
UNION MOBIL COLVILLE D-45								
I-500	3018.0 - 3030.0	MT. CAP	8.4	7.0	8.0	1.1	.07	1.00

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS


Special Core Analysis Study

for

UNION OIL COMPANY OF CANADA LIMITED

Stopover K-44 and Colville D-45 Wells

Northwest Territories, Canada

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

March 25, 1976

Union Oil Company of Canada Limited
P. O. Box 999
Calgary, Alberta T2P 2K6
Canada

Attention: Mr. Lorne D. McCluskey

Subject: Special Core Analysis Study
Stopover K-44 and Colville D-45 Wells
Northwest Territories, Canada
File Number: SCAL-75150

Gentlemen:

In letters dated April 25, 1975, June 2, 1975, and June 16, 1975 from Lorne D. McClusky, Core Laboratories, Inc., was requested to perform: (1) Water-Oil Relative Permeability Tests, (2) Mercury Injection Tests, (3) Capillary Pressure Tests, (4) Formation Resistivity Factor Measurements, and (5) Formation Resistivity Index Measurements on sandstone core plugs from the subject wells. The results of the water-oil relative permeability tests are presented herein. The remaining tests are in progress and test results will be submitted as the data becomes available. The core plugs used in this study are identified as to well, sample number, and depth interval on Page 1 and are lithologically described on Page 2.

Fifteen core plugs and nine slabbed well cores were submitted for use in this study. Core plugs, 1-inch in diameter, were drilled from the nine slabbed cores using a diamond core bit with water as the bit coolant and lubricant. All core plugs were extracted of hydrocarbons with toluene, leached of salt with methyl alcohol, and then dried. Air permeabilities and Boyle's law porosities were determined on the cleaned and dried core plugs. The results of the permeability and porosity determinations were submitted to a representative of Union Oil Company of

Canada Limited. Based on the permeability and porosity determinations, core plugs were selected for further testing.

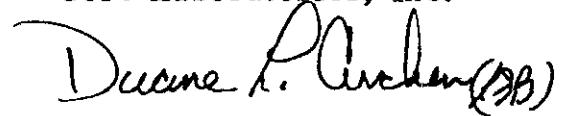
Eleven core plugs, six from the Stopover well and five from the Colville well, were evacuated and saturated with either a simulated Stopover formation water or a simulated Colville formation water. Initial (pseudo-connate) water saturations which averaged 13.0 per cent pore space for the Colville D-45 well and 21.5 per cent pore space for the Stopover K-44 well were established using a centrifugal technique. Effective permeabilities to oil were measured in the presence of the initial water saturations. One core plug from each well contained insufficient permeability for further testing and was deleted from the testing program. Water-oil relative permeability tests were performed using the proper injection water. The results of the water-oil relative permeability tests are summarized by well on Page 3, presented in tabular form on Pages 4 through 11, and in graphical form on Pages 12 through 27.

Because of the limited oil production following water breakthrough for Sample 115, insufficient data was available to calculate the relative permeability characteristics. The results of this test are summarized on Page 3 with the water-oil relative permeability data; however, only end-point data is presented.

The properties of the fluids used in the water-oil relative permeability tests are listed below for your convenience.

Fluid	Temperature, °F.	Density, gm/cc.	Viscosity, Centipoises
Refined Mineral Oil	70	0.8348	20.6
	90	0.8272	12.9
	110	0.8196	8.61
Simulated Colville Water	70	1.038	1.067
	90	1.035	0.845
	110	1.032	0.687
Simulated Stopover Water	70	1.023	1.026
	90	1.019	0.810
	110	1.014	0.653

Union Oil Company of Canada Limited
Stopover K-44 and Colville D-45 Wells


Page Three

The results of the tests on Samples 50A and 98 from the Stopover K-44 well indicate both channeling and plugging. The channeling is indicated by the rapid increase in the relative permeability-to-water curves (Pages 21 and 25) at the low water saturations and the plugging is indicated by the suppressed relative permeability-to-water curves at the high water saturations.

Should you have any questions pertaining to these test results, or if we can be of any assistance, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc.

Duane L. Archer, Manager
Special Core Analysis

DLA:JWW:tl
10 cc. - Addressee

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 1 of 27

File SCAL-75150

Company Union Oil Company of Canada Limited
Number of Wells Two
Field As Noted

Formation Old Fort Sand
County Northwest Territories
State Canada

Identification of Samples

Sample
Number

Company

Well

Depth, Feet

Stopover Field

50A	Union Oil Co. of Canada Ltd.	Union Oil Stopover K-44	2784.1-85.0
88			2813.2-13.5
98			2820.8-21.9
103			2825.6-26.2
115			2834.3-34.9

Colville Field

1	Union Oil Co. of Canada Ltd.	Union Mobile Colville D-45	3183.2-83.7
11			3218.0-18.7
15			3223.0-23.4
18			3225.9-26.4

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

Page 2 of 27

File SCAL-75150

Lithological Description

Sample Number

Description

Colville D-45

1	Ss, lt gry, v/fn-silt grn, apparent SiO ₂ cement, well indurated, tr musc, pyrite
11	Ss, lt gry-white, fn-v/fn grn, apparent SiO ₂ cement, mod-poor indurated, med grn laminar, tr musc
15	Ss, lt gry-white, fn-v/fn grn, apparent SiO ₂ cement, mod-poor indurated, med grn laminae, tr musc
18	Ss, lt gry-white, fn-v/fn grn, apparent SiO ₂ cement, mod-poor indurated, med grn laminae

Stopover K-44

50A	Ss, red-brn, cse-v/fn grn, apparent SiO ₂ cement, well indurated, cse grn concentrations
88	Ss, buff-white, med-fn grn, apparent SiO ₂ cement, mod indurated, red-brn staining an upper portion
98	Ss, red-brn - buff white, med-fn grn, apparent SiO ₂ cement, well indurated, blotchy color staining, grns uniform
103	Ss, red-brn, cse-fn grn, apparent SiO ₂ cement, mod-poor indurated, blotchy color appearance
115	Ss, red-brn-buff white, med-fn grn, apparent SiO ₂ cement, well indurated, blotchy color appearance

Summary of Waterflood Test Results

Sample Number	Depth, Feet	Air Permeability, Millidarcys	Porosity, Per Cent	Initial Conditions		Terminal Conditions		Oil Recovered, Per Cent Pore Space	Oil Recovered, Per Cent Oil in Place
				Water Saturation, Per Cent Pore Space	Oil Permeability, Millidarcys	Water Saturation, Per Cent Pore Space	Permeability, Millidarcys		
				Colville D-45					
1	3183.2-83.7	0.35	11.7	14.6	0.065	39.2	0.028	46.2	54.0
11	3218.0-18.7	12	14.0	13.8	8.5	49.3	6.4	36.9	42.8
15	3223.0-23.4	7.3	13.2	11.6	4.8	52.4	4.1	36.0	40.8
18	3225.9-26.4	20	15.1	11.9	10.5	38.8	8.8	49.3	55.9
<u>Stopover K-44</u>									
50A	2784.1-85.0	1.2	8.3	28.7	0.67	52.4	0.001	18.9	26.6
88	2813.2-13.5	130	12.8	12.6	117	48.6	27	38.8	44.4
98	2820.8-21.9	12	10.1	25.8	9.0	55.3	0.15	18.9	25.5
103	2825.6-26.2	118	14.7	18.1	100	42.0	7.5	39.9	48.7
115*	2834.3-34.9	1.7	10.8	22.2	8.7	49.0	0.29	28.8	37.0

* Insufficient data for relative permeability calculation.

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 4 of 27

File SCAL-75150

Water-Oil Relative Permeability Data

Sample Number 1
 Air Permeability, Md. 0.35
 Oil Permeability at
 Initial Water Saturation, Md. 0.065

Initial Water Saturation,
 Per Cent Pore Space 14.6
 Porosity, Per Cent 11.7

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
14.6		.000	1.000
35.5	.070	.027	.388
43.2	.687	.103	.150
49.4	4.66	.205	.044
54.3	25.3	.304	.012
56.3	59.5	.345	.0058
58.6	216	.389	.0018
59.6	540	.405	.00075
60.8		.431	

* Relative to oil permeability.

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 5 of 27
 File SCAL-75150

Water-Oil Relative Permeability Data

Sample Number	11	Initial Water Saturation, Per Cent Pore Space	13.8
Air Permeability, Md.	12	Porosity, Per Cent	14.0
Oil Permeability at Initial Water Saturation, Md.	8.5		

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
13.8		.000	1.000
19.7	.098	.035	.355
23.4	.973	.178	.183
25.0	1.74	.240	.138
29.1	5.72	.389	.068
35.2	22.4	.538	.024
39.8	57.3	.617	.011
43.5	124	.661	.0053
45.5	188	.690	.0037
50.7		.746	

* Relative to oil permeability.

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 6 of 27

File SCAL-75150

Water-Oil Relative Permeability Data

Sample Number	15	Initial Water Saturation, Per Cent Pore Space	11.6
Air Permeability, Md.	7.3	Porosity, Per Cent	13.2
Oil Permeability at			
Initial Water Saturation, Md.	4.8		

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
11.6		.000	1.000
16.6	.511	.225	.440
20.7	2.07	.420	.203
22.1	2.93	.468	.160
23.5	4.12	.515	.125
27.8	10.4	.617	.059
31.7	22.7	.680	.030
39.0	97.5	.780	.0080
41.3	162	.805	.0050
47.6		.850	

* Relative to oil permeability.

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering***DALLAS, TEXAS**Page 7 of 27File SCAL-75150**Water-Oil Relative Permeability Data**

Sample Number	18	Initial Water Saturation, Per Cent Pore Space	11.9
Air Permeability, Md.	20	Porosity, Per Cent	15.1
Oil Permeability at Initial Water Saturation, Md.	10.5		

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
11.9		.000	1.000
24.2	.108	.038	.350
29.4	.723	.141	.195
32.0	1.43	.209	.146
36.3	4.00	.332	.083
42.5	15.0	.540	.036
44.9	23.0	.621	.027
47.3	36.5	.693	.019
50.0	58.4	.759	.013
53.1	87.9	.800	.0091
55.0	120	.825	.0069
61.2		.839	

* Relative to oil permeability.

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

DALLAS, TEXAS

Page 8 of 27File SCAL-75150**Water-Oil Relative Permeability Data**Sample Number 50A

Initial Water Saturation,

Air Permeability, Md. 1.2

Per Cent Pore Space

28.7

Oil Permeability at

Porosity, Per Cent

8.3Initial Water Saturation, Md. 0.67

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
28.7		.000	1.000
30.4	.050	.0049	.098
32.5	1.00	.010	.010
34.5	4.33	.013	.0030
35.9	7.78	.014	.0018
38.4	17.2	.016	.00093
40.6	33.8	.017	.00051
43.0	59.8	.018	.00030
47.6		.019	

* Relative to oil permeability.

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

DALLAS, TEXAS

Page 9 of 27File SCAL-75150**Water-Oil Relative Permeability Data**

Sample Number	88	Initial Water Saturation, Per Cent Pore Space	12.6
Air Permeability, Md.	130		
Oil Permeability at Initial Water Saturation, Md.	117	Porosity, Per Cent	12.8

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
12.6		.000	1.000
19.1	.0080	.0049	.610
24.3	.068	.027	.399
28.5	.199	.055	.277
31.3	.369	.076	.206
35.5	.835	.106	.127
39.4	1.94	.132	.068
42.4	4.62	.157	.034
44.4	9.10	.173	.019
45.8	14.8	.183	.012
46.7	21.6	.190	.0088
48.5	53.9	.205	.0038
49.3	92.2	.211	.0023
51.4		.231	

* Relative to oil permeability.

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 10 of 27

File SCAL-75150

Water-Oil Relative Permeability Data

Sample Number	98	Initial Water Saturation, Per Cent Pore Space	25.8
Air Permeability, Md.	12	Porosity, Per Cent	10.1
Oil Permeability at			
Initial Water Saturation, Md.	9.0		

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
25.8		.000	1.000
30.3	.040	.0078	.195
33.7	.214	.012	.056
38.3	1.52	.014	.0092
41.1	4.41	.015	.0034
43.1	16.7	.015	.0009
44.3	533	.016	.00003
44.7		.016	

* Relative to oil permeability.

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 11 of 27

File SCAL-75150

Water-Oil Relative Permeability Data

Sample Number 103

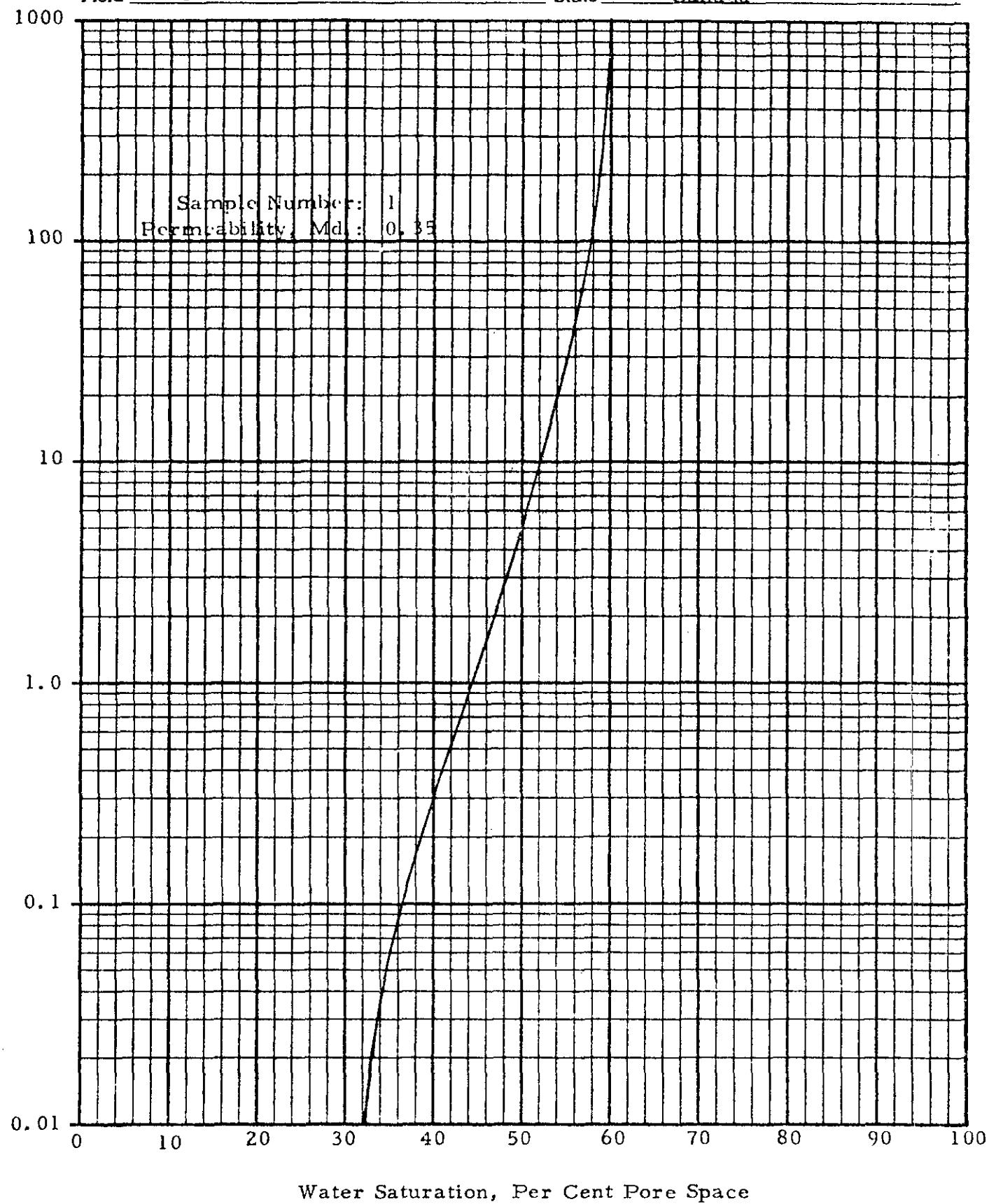
Initial Water Saturation,

Air Permeability, Md. 118

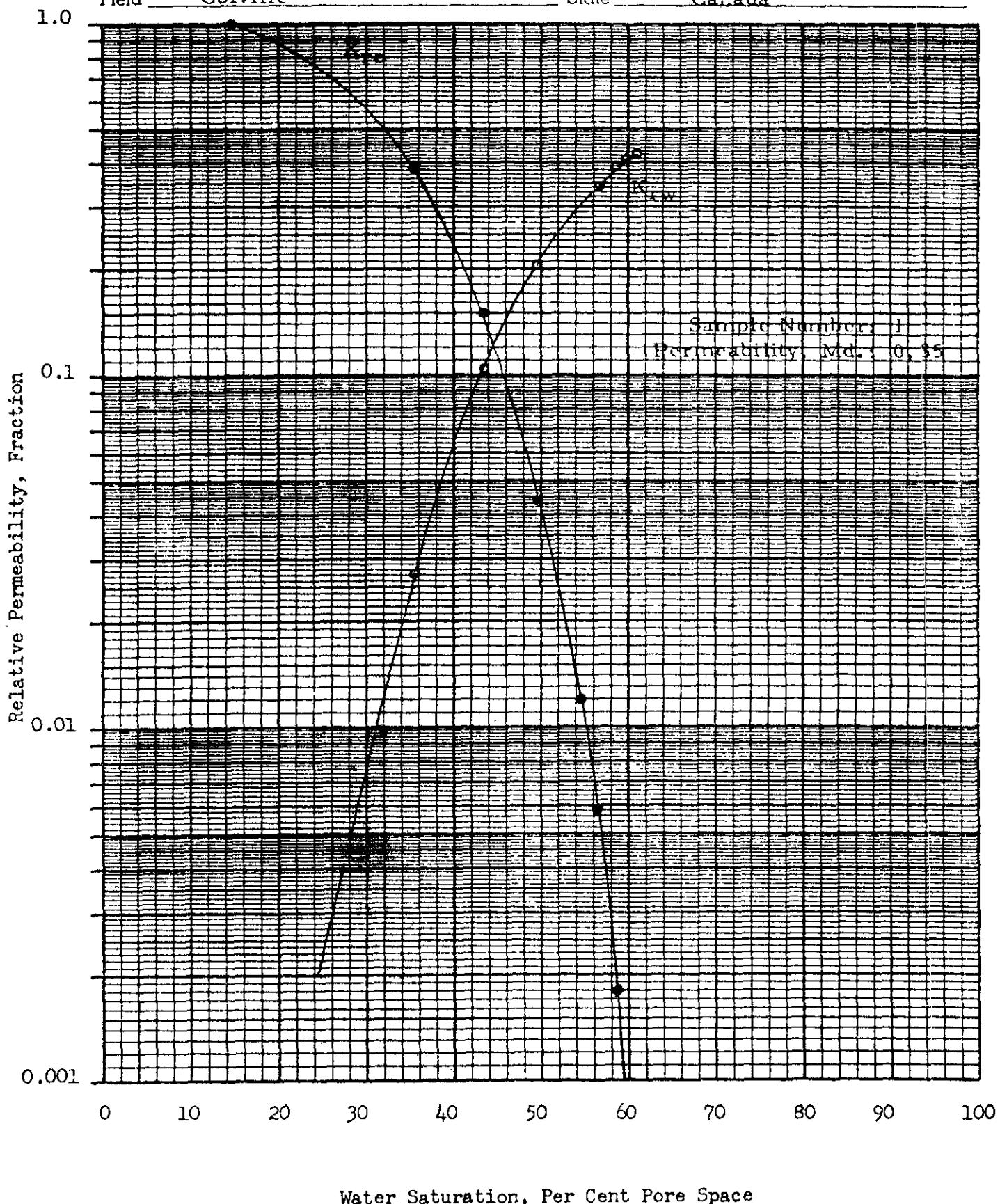
Per Cent Pore Space 18.1

Oil Permeability at

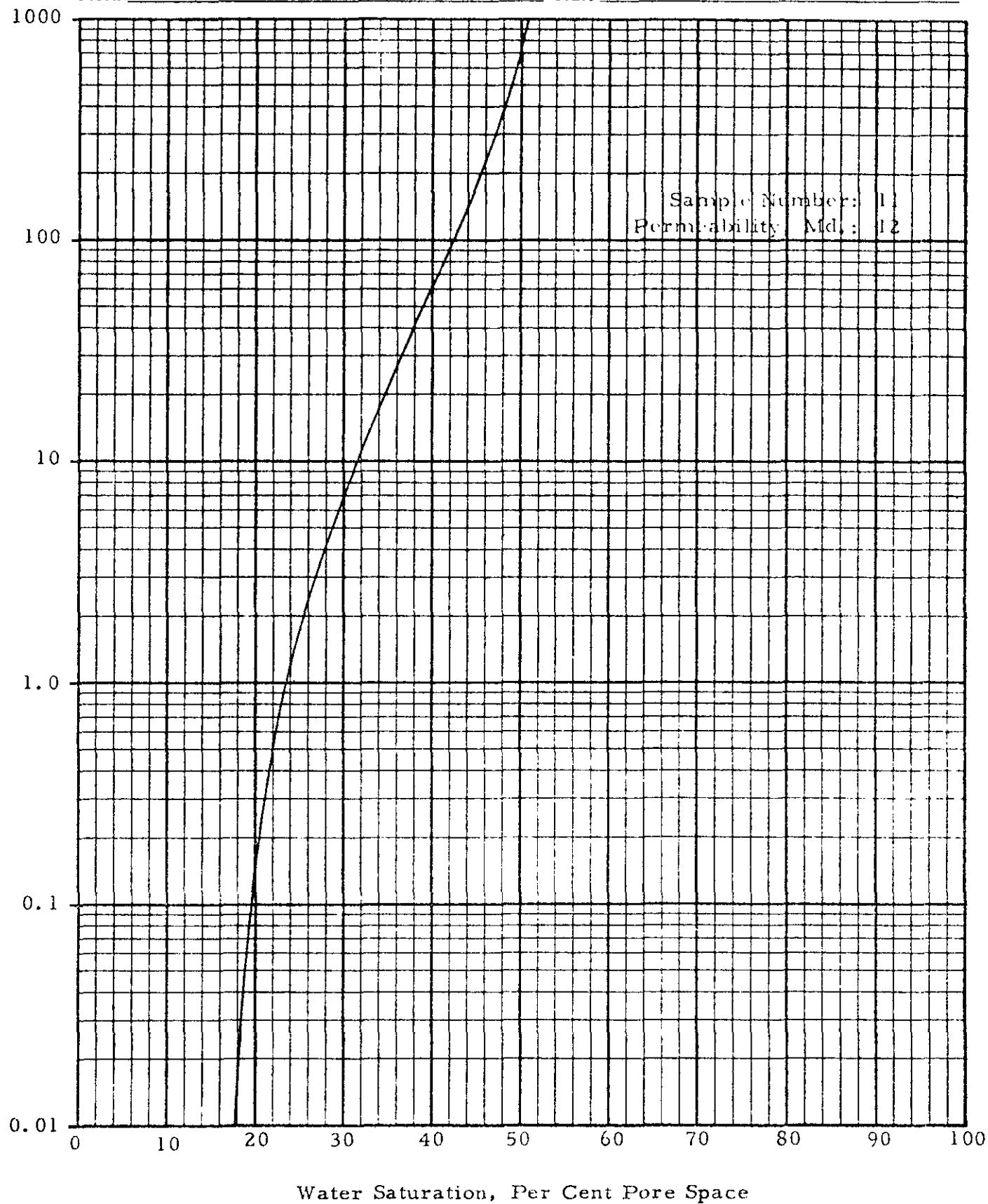
Porosity, Per Cent 14.7

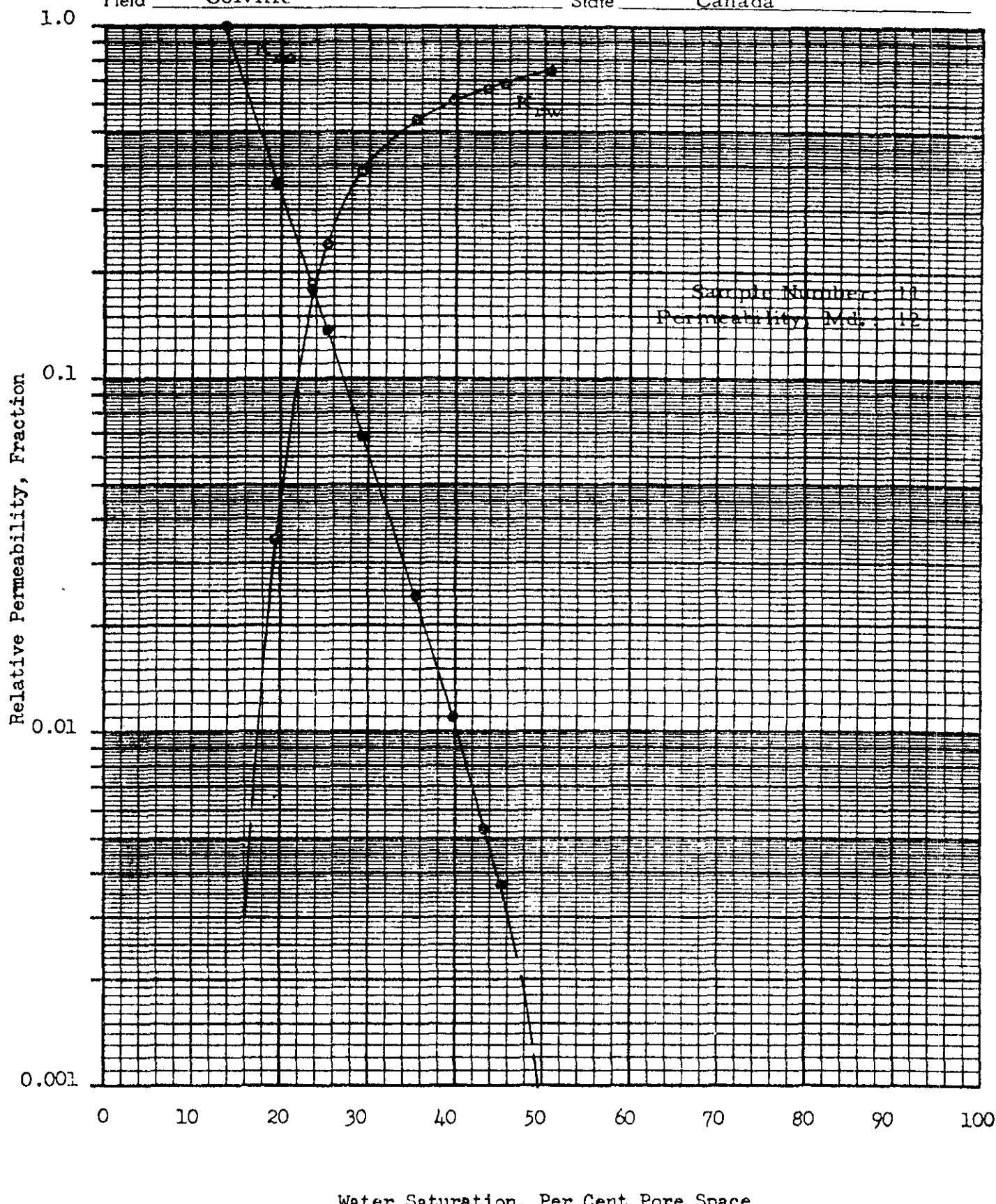

Initial Water Saturation, Md. 100

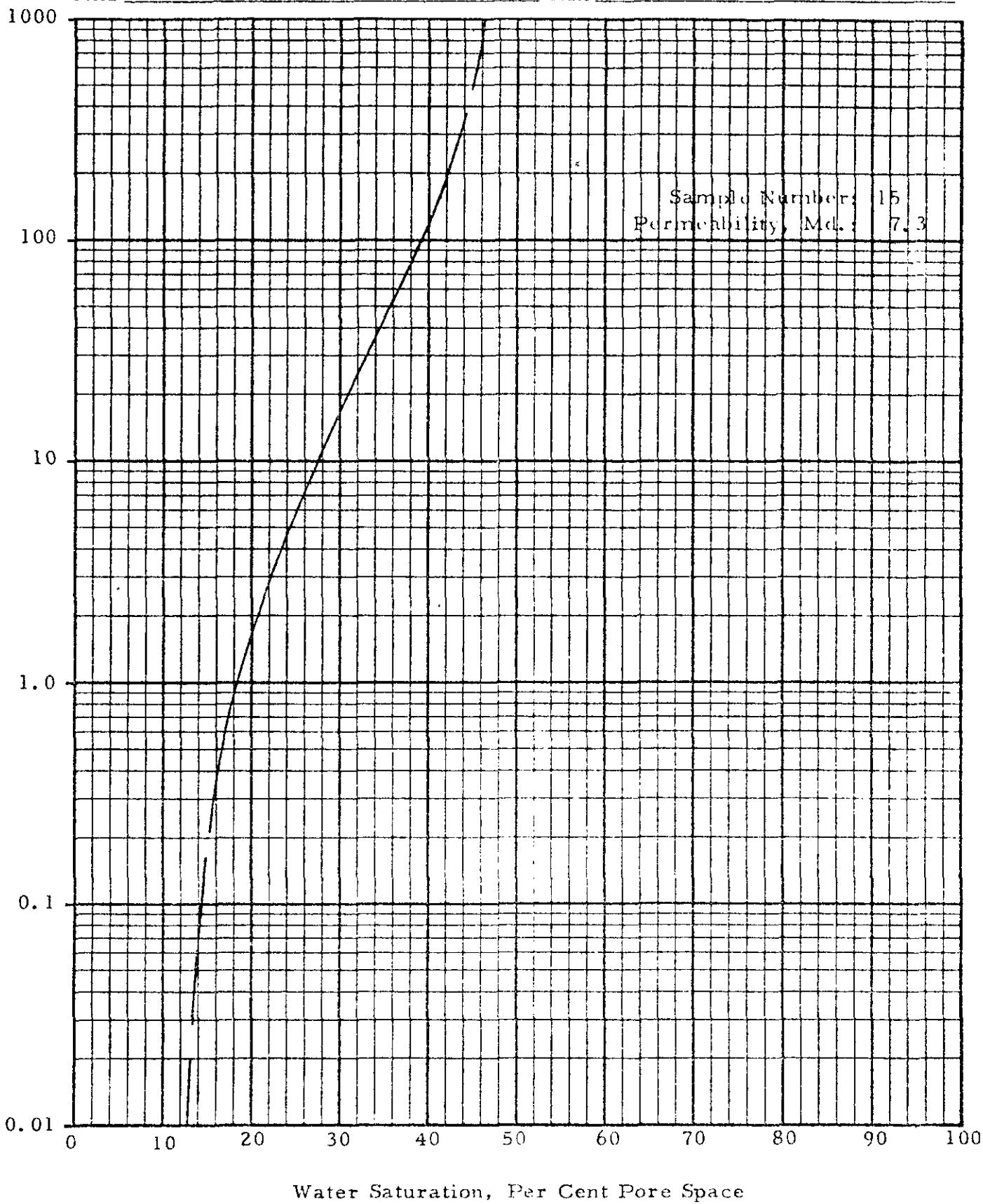
Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
18.1		.000	1.000
35.3	.0063	.0014	.221
41.2	.058	.0070	.121
47.3	.444	.024	.054
52.3	2.68	.045	.017
54.9	11.4	.057	.0050
55.9	35.8	.061	.0017
56.8	112	.067	.00060
57.3	260	.069	.00027
58.1		.075	

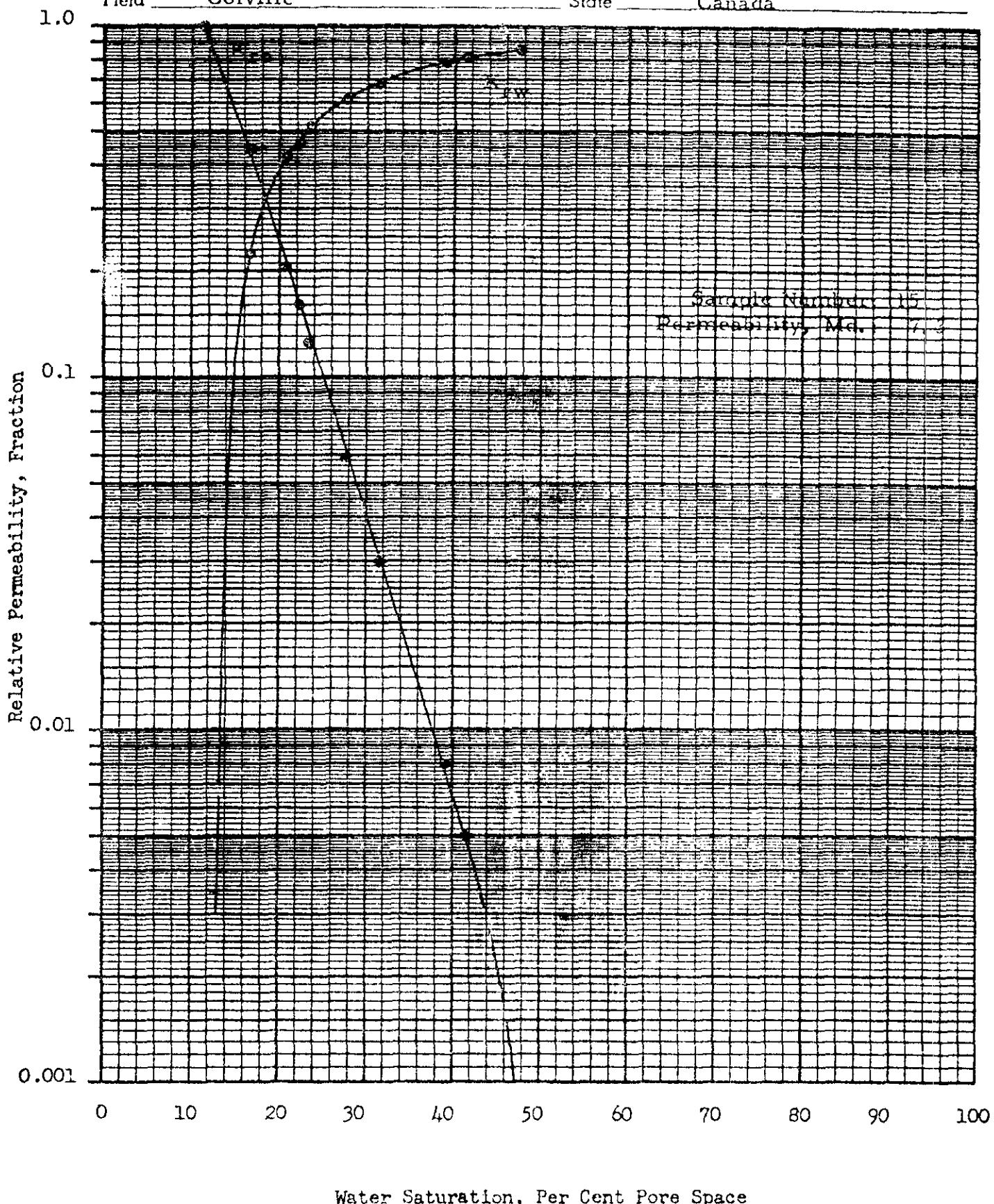

* Relative to oil permeability.

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

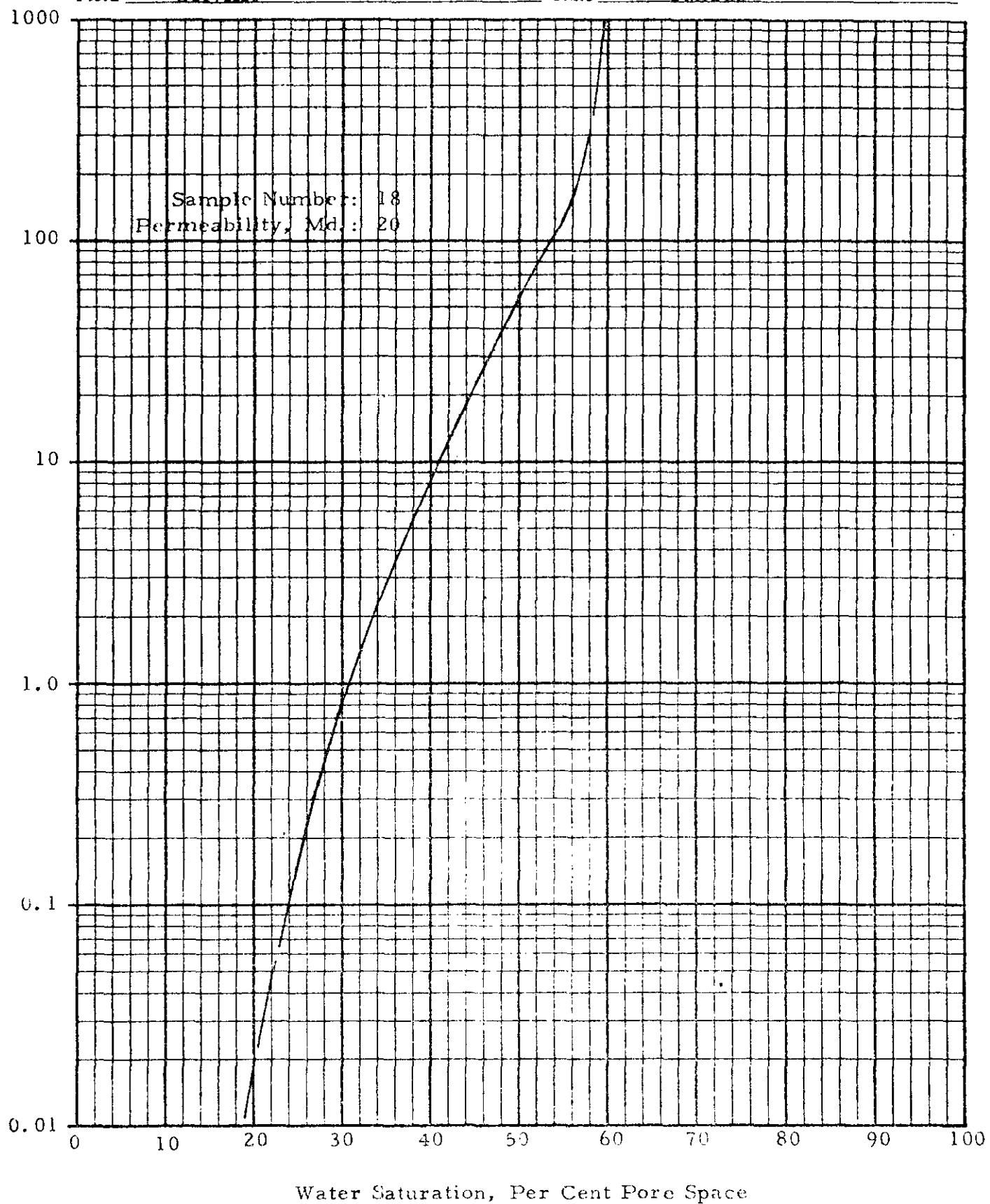

Water-Oil Relative Permeability Ratio


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

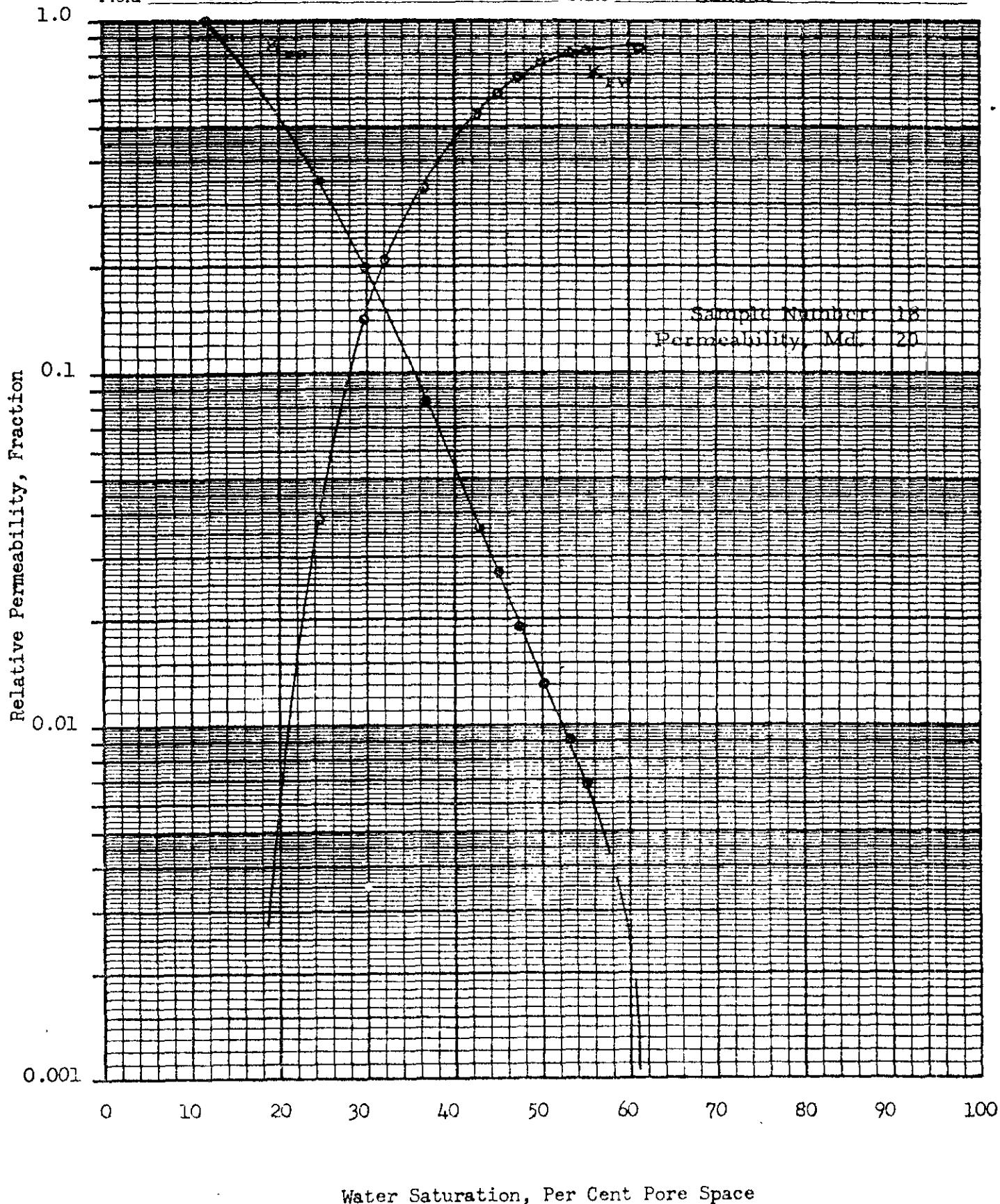

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

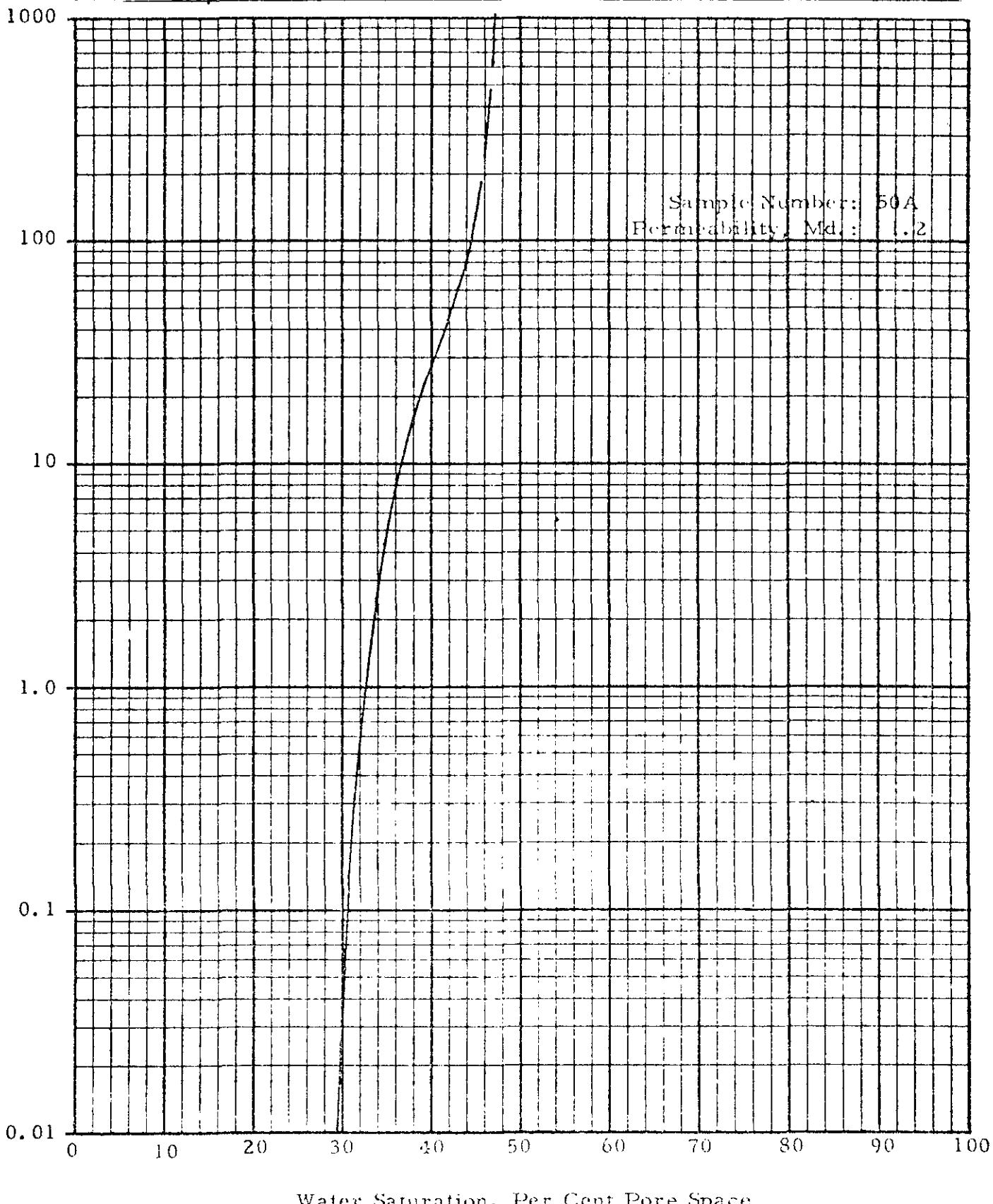
Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

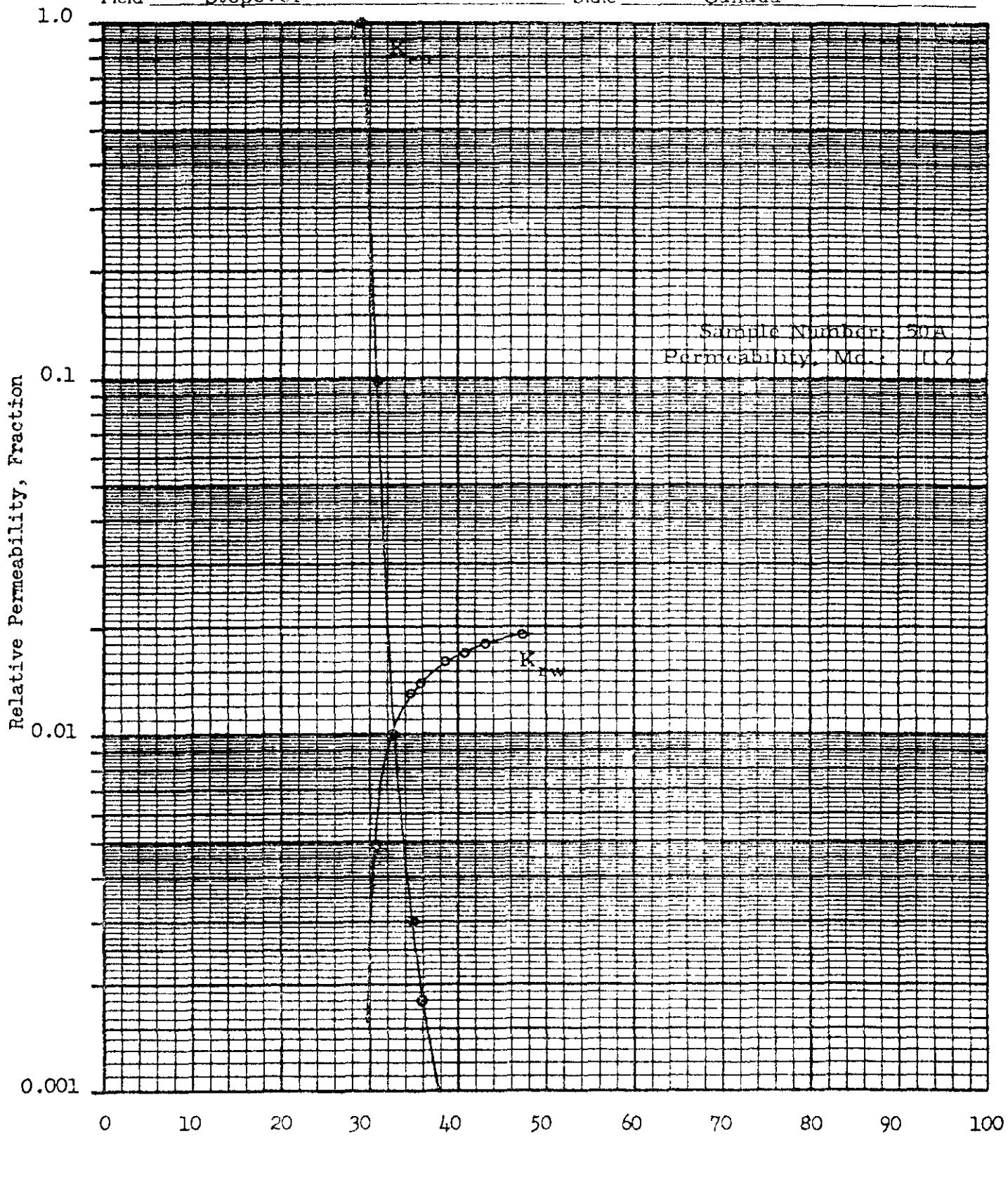


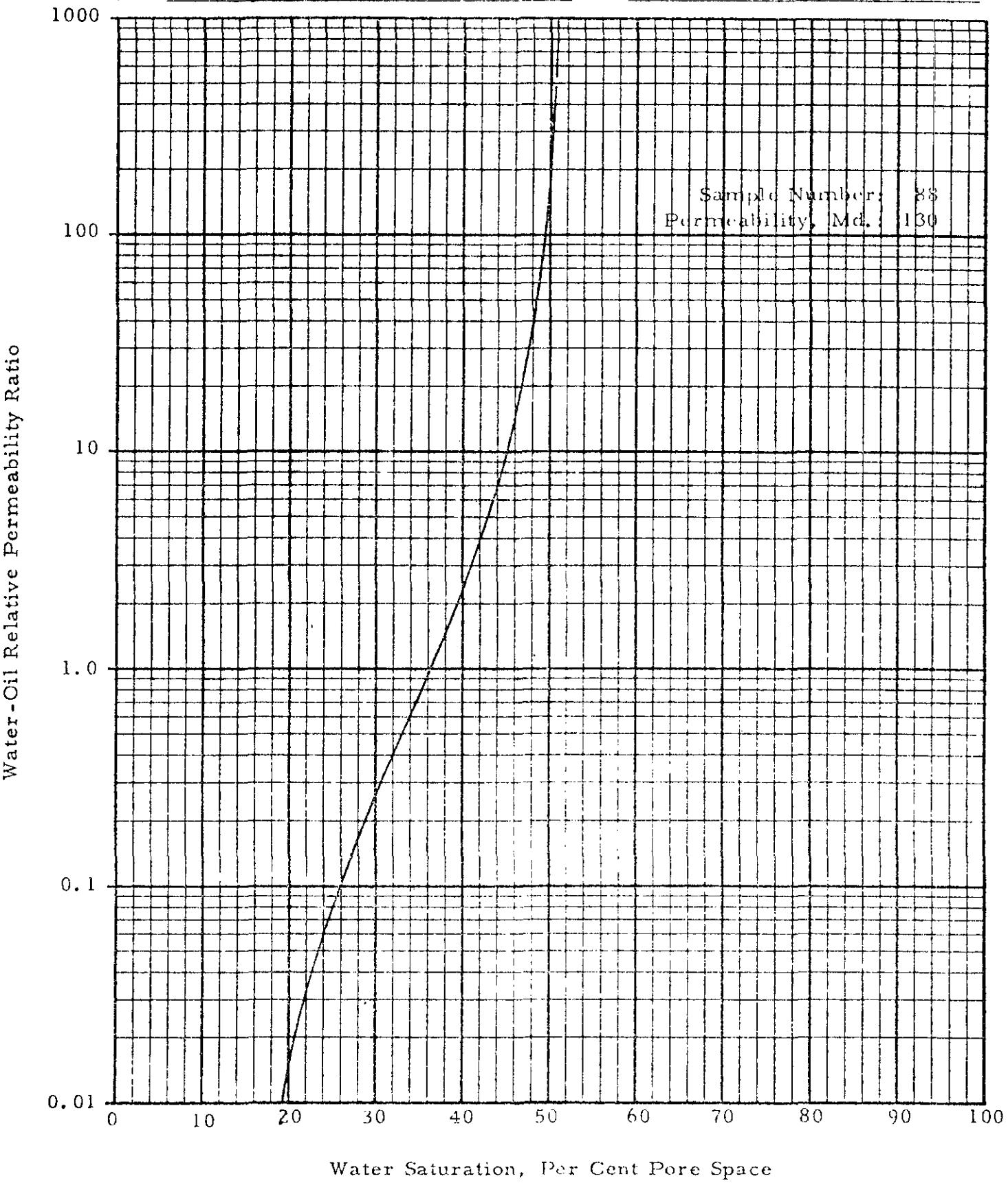
Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

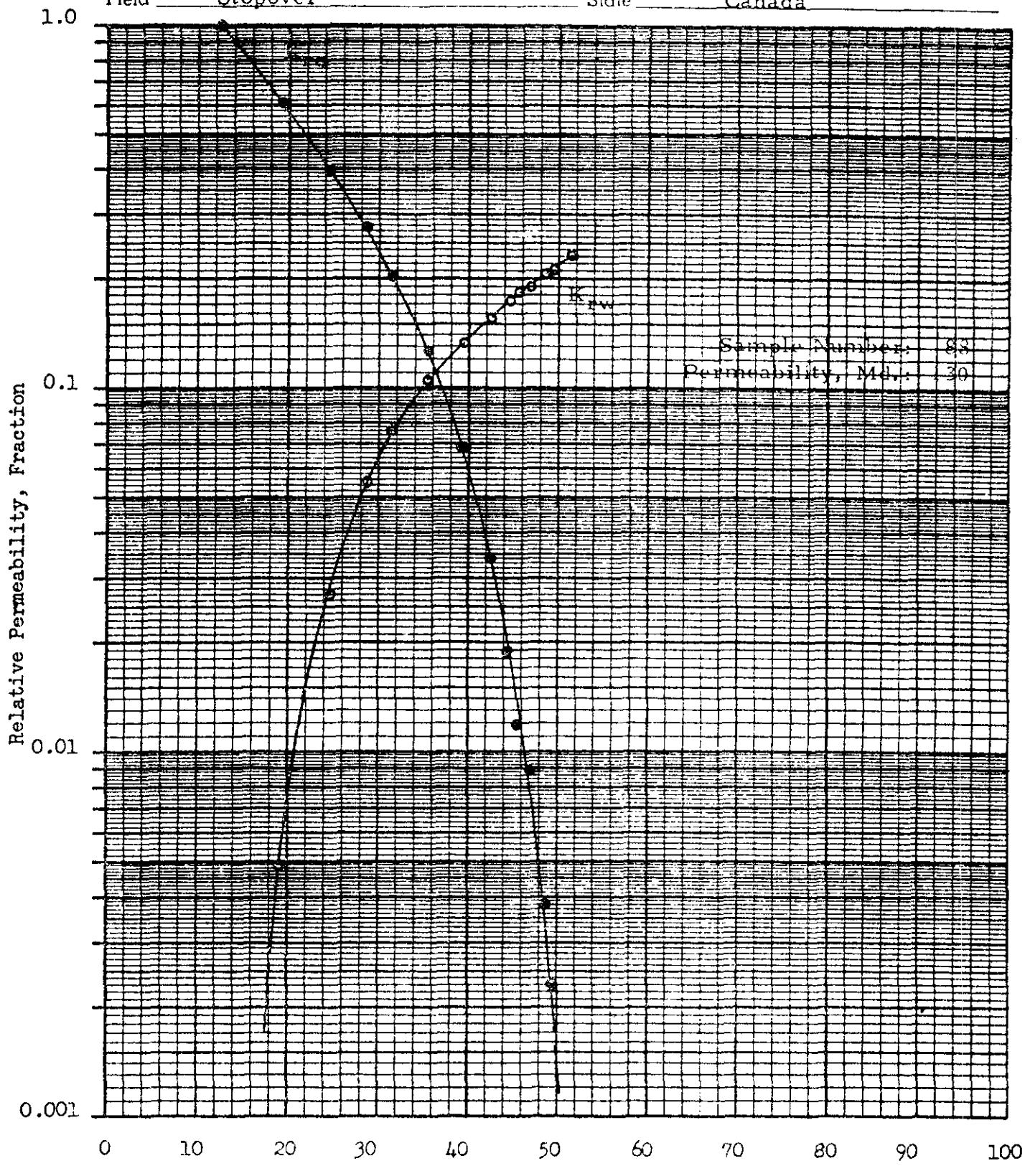


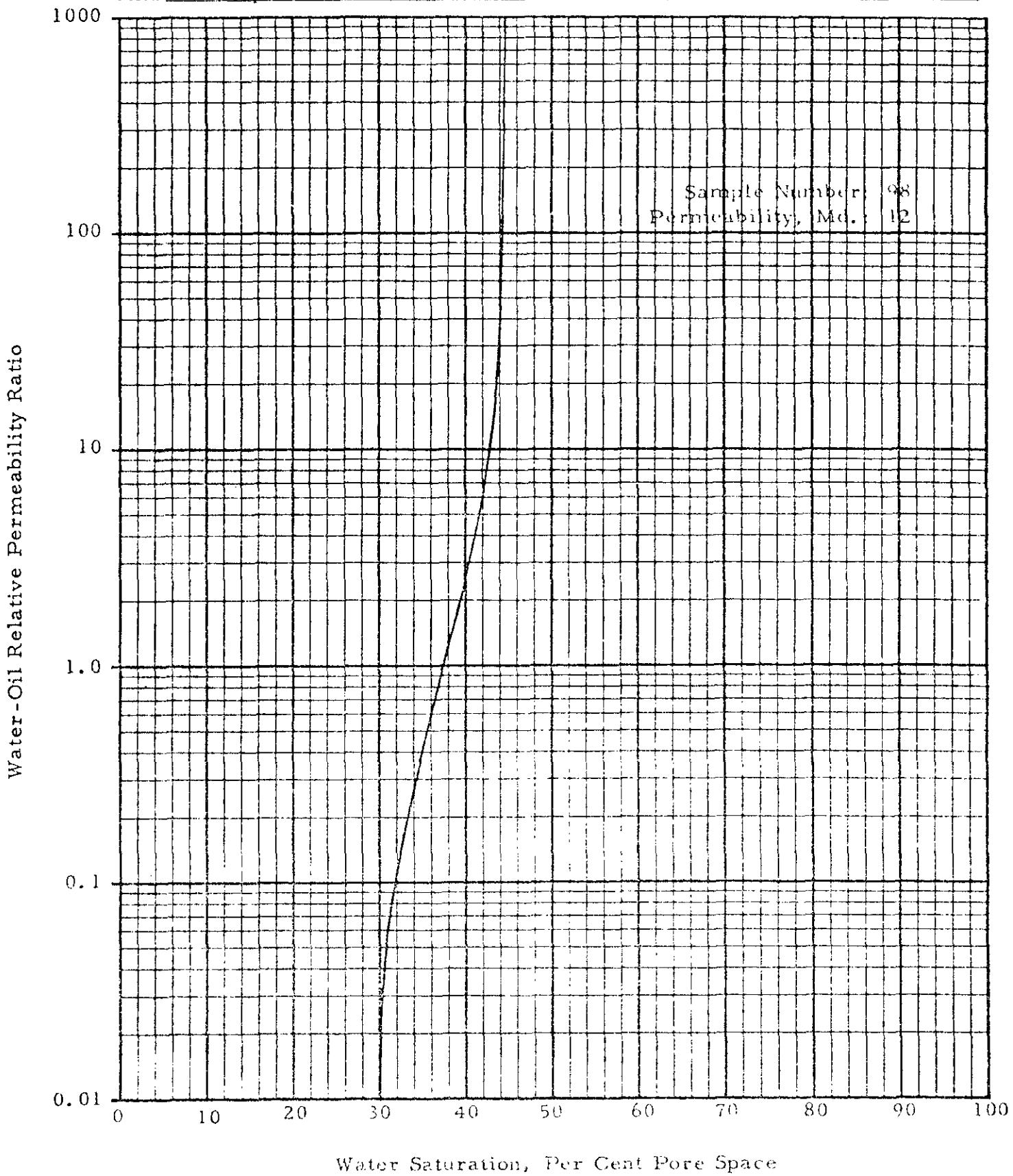
Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

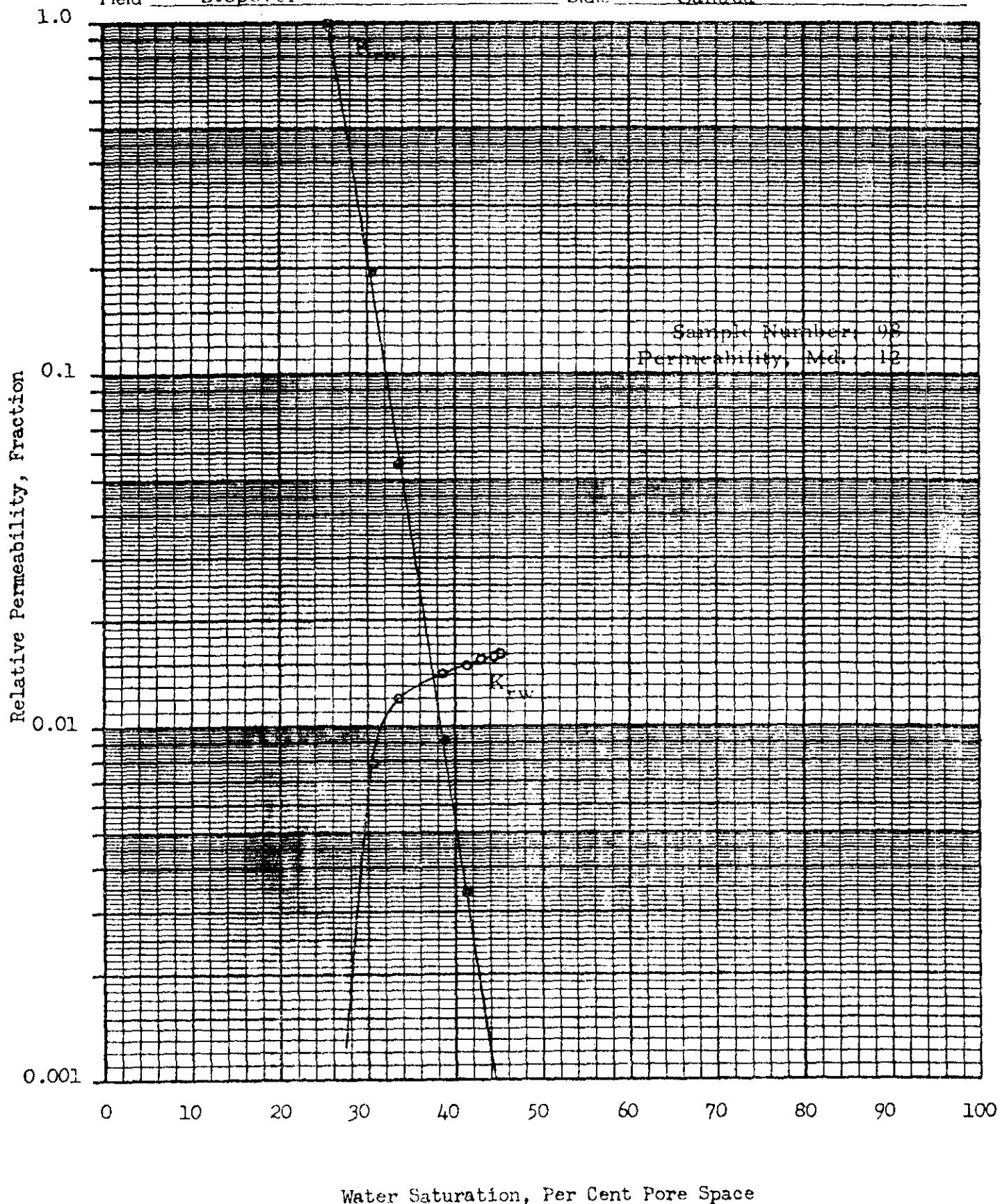

Water-Oil Relative Permeability Ratio

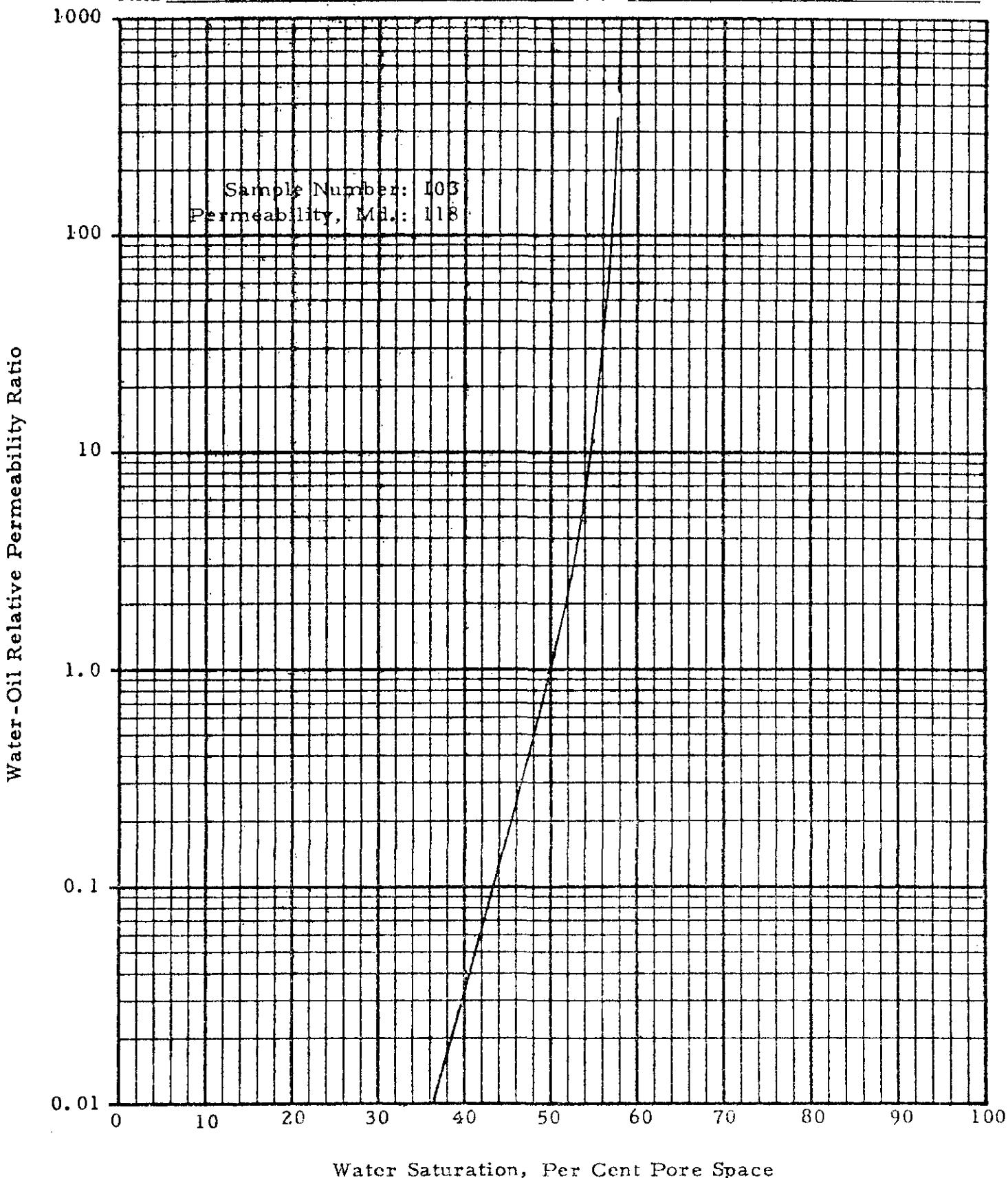

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

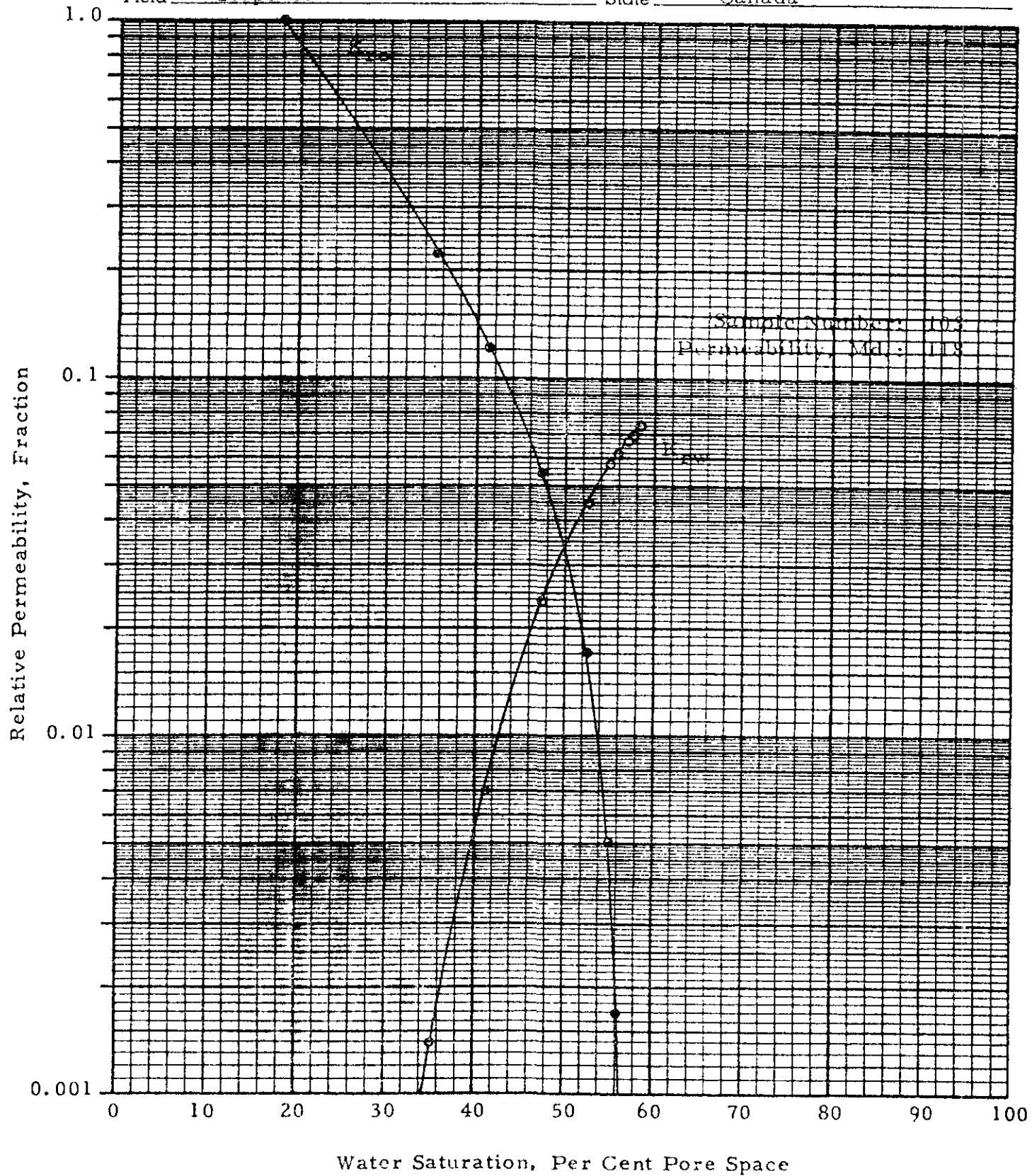

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Special Core Analysis Study
for
UNION OIL COMPANY OF CANADA LIMITED
Stopover K-44 and Colville D-45 Wells
Northwest Territories Canada

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

May 18, 1976

Union Oil Company of Canada Limited
P. O. Box 999
Calgary, Alberta T2P 2K6
Canada

Attention: Mr. Lorne D. McCluskey

Subject: Special Core Analysis Study
Stopover K-44 and Colville D-45 Wells
Northwest Territories
Canada
File Number: SCAL-75150

Gentlemen:

In letters dated April 25, 1975, June 2, 1975, and June 16, 1975, from Lorne D. McCluskey, Core Laboratories, Inc., was requested to perform: (1) Water-Oil Relative Permeability Tests, (2) Mercury Injection Tests, (3) Capillary Pressure Tests, (4) Formation Resistivity Factor Measurements, and (5) Formation Resistivity Index Measurements on sandstone core plugs from the subject wells. The results of the water-oil relative permeability tests were submitted in final form on March 25, 1976. The remaining tests are presented herein. The core plugs used in this study are identified as to well, sample number, and depth interval on Page 1 and are lithologically described on Page 2.

Fifteen core plugs and nine slabbed well cores were submitted for use in this study. Core plugs 1 inch in diameter were drilled from the nine slabbed cores with a diamond core bit using water as the bit coolant and lubricant. All core plugs were extracted of hydrocarbons with toluene, leached of salt with methyl alcohol, and then dried. Air permeabilities and porosities were determined on the cleaned and dried core plugs. The results of the permeability and porosity determinations were submitted to a representative of Union Oil Company of Canada Limited. Based on

the permeability and porosity determinations, core plugs were selected for further testing.

Eight core plugs, five from the Stopover well and three from the Colville well, were evacuated and saturated with appropriate simulated formation water. Six-point capillary pressure tests were performed using a porous-plate cell and an air-brine system. The results of the capillary pressure tests are presented by well in tabular form on Page 3 and in graphical form on Pages 4 through 8. The measured capillary pressure-saturation relationships correlate with both permeability and porosity for the Stopover and Colville wells.

Prior to performing the air-brine capillary pressure tests, the electrical resistivities of the brines and the brine saturated core plugs were measured. These measurements were repeated over a period of several days until the electrical resistivities stabilized indicating that ionic equilibrium within the core plugs had been attained. Formation resistivity factors were calculated from the electrical resistivity measurements and their relationships with porosity are presented in tabular form on Page 9 and in graphical form on Pages 10 and 11. Using Archie's equation, a cementation exponent "m" of 1.71 was calculated for the Stopover well. Using Archie's generalized equation, a cementation exponent "m" of 1.83 at an "a" intercept of 1.10 was calculated for the Colville well.

Electrical resistivities were measured at one equilibrium desaturation point on three core plugs from each the Stopover and the Colville wells. The formation resistivity-saturation relationships yield calculated saturation exponents "n" of 1.47 and 1.68 for the Stopover and Colville wells respectively.

Multi-point mercury injection tests were performed on eleven core plugs, six from the Stopover well and five from the Colville well, using injection pressures ranging from 3 psia to 1500 psia. The multi-point mercury injection tests are presented by well in tabular form on Pages 14 and 15, and in graphical form on Pages 16 through 21. The results of the wetting phase saturation injection pressure relationships correlate

Union Oil Company of Canada Limited
Stopover K-44 and Colville D-45 Wells

Page Three

with permeability and porosity for both wells. The inflections exhibited by the test results for Samples 89, 103A, 12, and 9 (Pages 18, 19 and 20) indicate the presence of multi-modal pore size distribution. The heterogeneous porosity systems present in the core plugs tested is not unusual for poorly sorted sandstone core material.

Should you have any questions pertaining to these test results or if we can be of any assistance, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc.

Duane L. Archer, Manager
Special Core Analysis

DLA:JWW:gb
10 cc. - Addressee

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 1 of 21

File SCAL-75150

Company Union Oil Co. of Canada Limited

Formation Old Fort Sand

Number of Wells Two

County Northwest Territories

Field Stopover and Colville

State Canada

Identification of Samples

Sample Number	Company	Well	Depth, Feet
<u>Stopover Field</u>			
45	Union Oil Company of Canada Ltd.	Union Oil Stopover K-44	2780.0-80.7
50			2784.1-85.0
50A			2784.1-85.0
70			2798.2-99.0
88			2813.2-13.5
89			2813.5-14.3
98			2820.8-21.9
98A			2820.8-21.9
103			2825.6-26.2
103A			2825.6-26.2
113			2832.4-33.1
115			2834.3-34.9

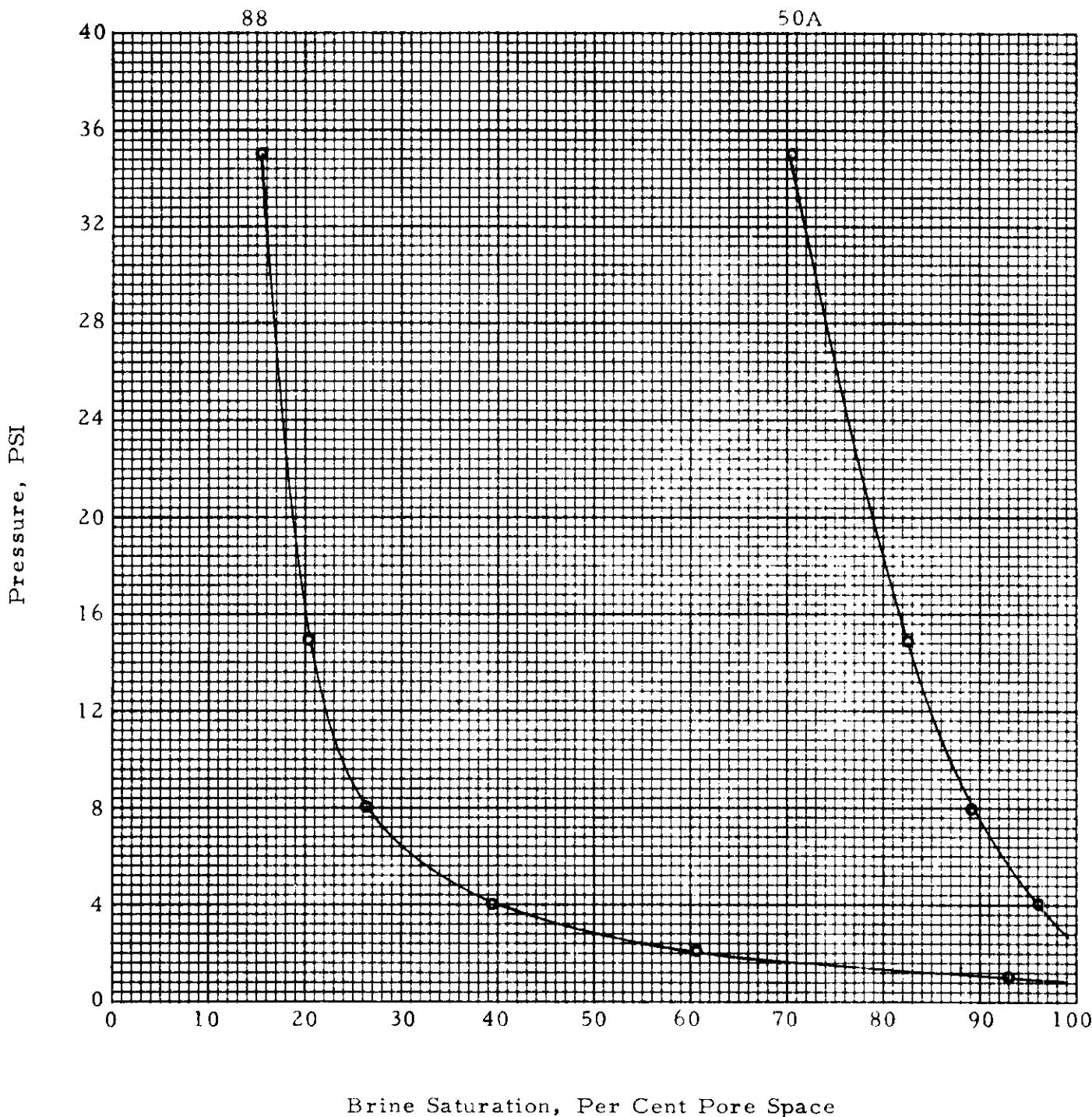
Colville Field

1	Union Oil Company of Canada Ltd.	Union Mobile Colville D-45	3183.2-83.7
4			3185.6-86.0
9			3190.8-91.8
10			3190.8-91.8
11			3218.0-18.7
12			3218.0-18.7
15			3223.0-23.4
18			3225.9-26.4

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering***DALLAS, TEXAS**Page 2 of 21File SCAL-75150**Lithological Description****Sample Number****Description****Stopover Field**

45 Ss, reddish brn, v/fn grn, well indurated, w/sh inclusions
50 Ss, gry-red, fn-v/fn grn, well indurated, w/sh
50A Ss, red-brn, cse-v/fn grn, apparent SiO_2 cement, well indurated, cse grn concentrations
70 Ss, red & gry, fn grn, v/sl/calc, mod indurated, w/clay pockets
88 Ss, buff-white, med-fn grn, apparent SiO_2 cement, mod indurated, red-brn staining an upper portion
89 Ss, gry, med-fn grn, v/sl/calc, mod indurated, w/fn grn lams, red stks
98 Ss, red-brn-buff white, med-fn grn, apparent SiO_2 cement, well indurated, blotchy color staining, grns uniform
98A Ss, red & gry, fn-med grn, well indurated, w/clay pockets
103 Ss, red-brn, cse-fn grn, apparent SiO_2 cement, mod-poor indurated, blotchy color appearance
103A Ss, red, fn-med grn, v/sl/calc, mod indurated
113 Ss, red, fn grn, well indurated, w/sh stks
115 Ss, red-brn-buff white, med-fn grn, apparent SiO_2 cement, well indurated, blotchy color appearance

Colville Field

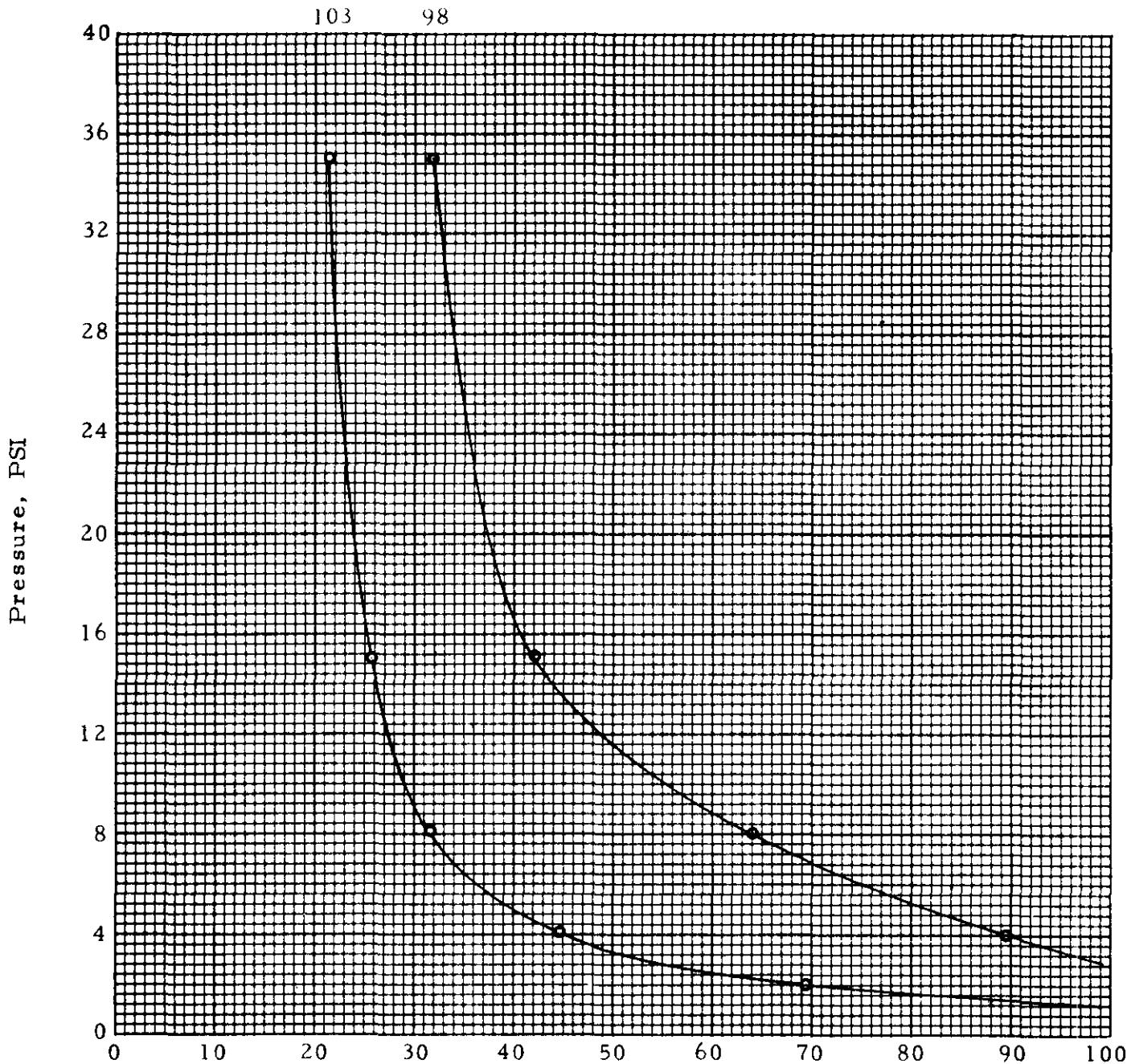

1 Ss, lt gry, v/fn-silt grn, apparent SiO_2 cement, well indurated, tr musc, pyrite
4 Ss, gry, v/fn grn, sl/calc, well indurated
9 Ss, gry, v/fn grn, sl/calc, well indurated
10 Ss, tan, v/fn grn, sl/calc, mod indurated
11 Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminar, tr musc
12 Ss, gry, fn grn, mod indurated
15 Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminae, tr musc
18 Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminae

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*
DALLAS, TEXASPage 3 of 21File SCAL-75150Air-Brine Capillary Pressure DataPressure, PSI: 1 2 4 8 15 35

<u>Sample Number</u>	<u>Permeability, Millidarcys</u>	<u>Porosity, Per Cent</u>	<u>Brine Saturation, Per Cent Pore Space</u>					
<u>Stopover Field</u>								
50A	1.2	8.3	100.0	100.0	96.0	89.0	82.6	70.3
88	130	12.8	92.9	60.8	39.5	26.3	20.3	15.6
98	12	10.1	100.0	100.0	89.4	64.0	42.0	31.9
103	118	14.4	100.0	69.4	44.8	31.5	25.6	21.3
115	1.7	10.8	100.0	100.0	91.6	63.9	41.7	31.9
<u>Colville Field</u>								
11	12	14.0	100.0	95.4	75.3	50.6	31.2	16.9
15	7.3	13.2	100.0	100.0	93.2	63.2	34.6	18.0
18	20	15.1	100.0	100.0	83.0	39.6	26.4	15.9

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Sample Number: 88 50A
Permeability, Md.: 130 1.2

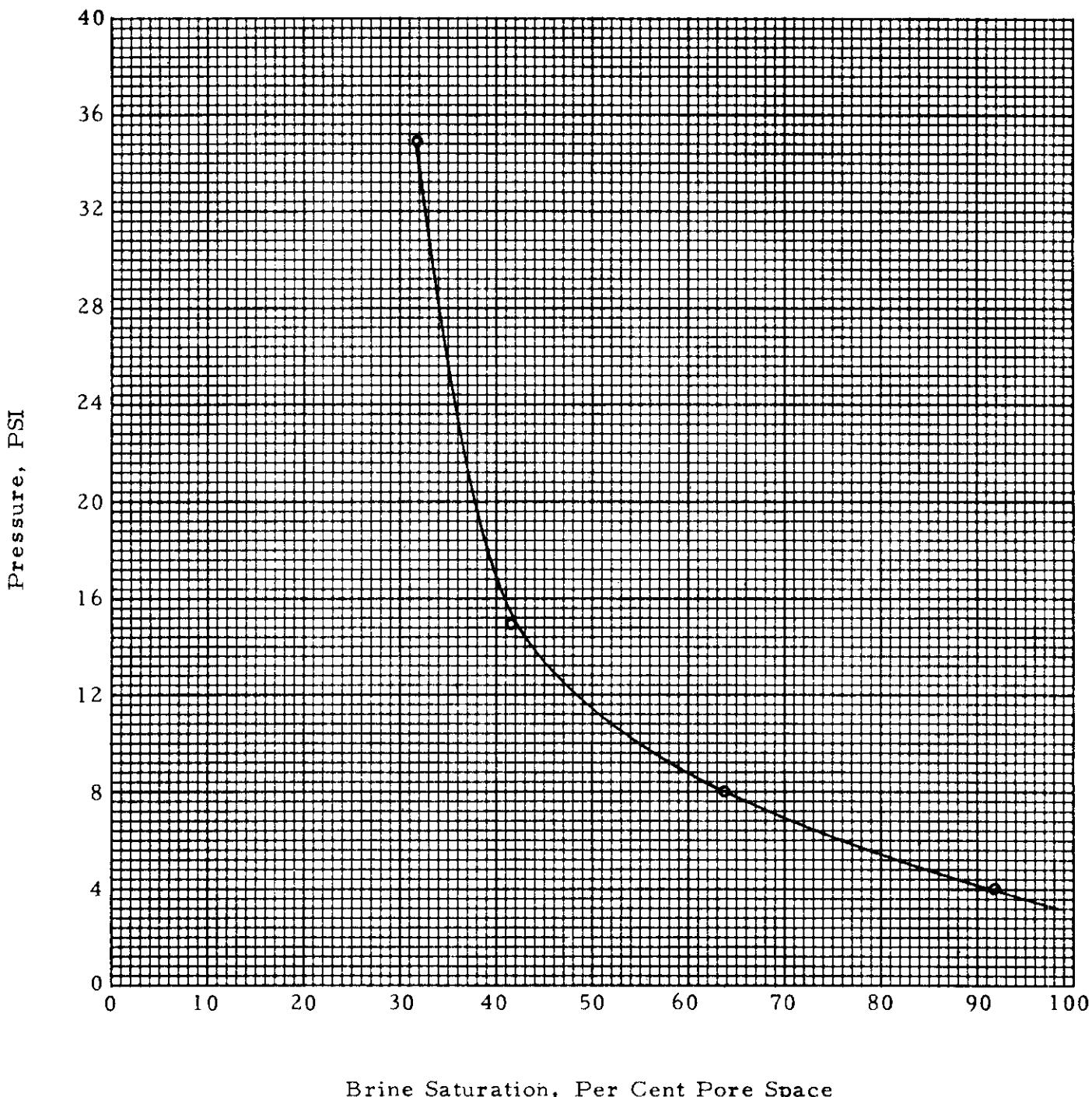

Brine Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 5 of 21
File SCAL-75150

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Sample Number: 103 98
Permeability, Md.: 118 12



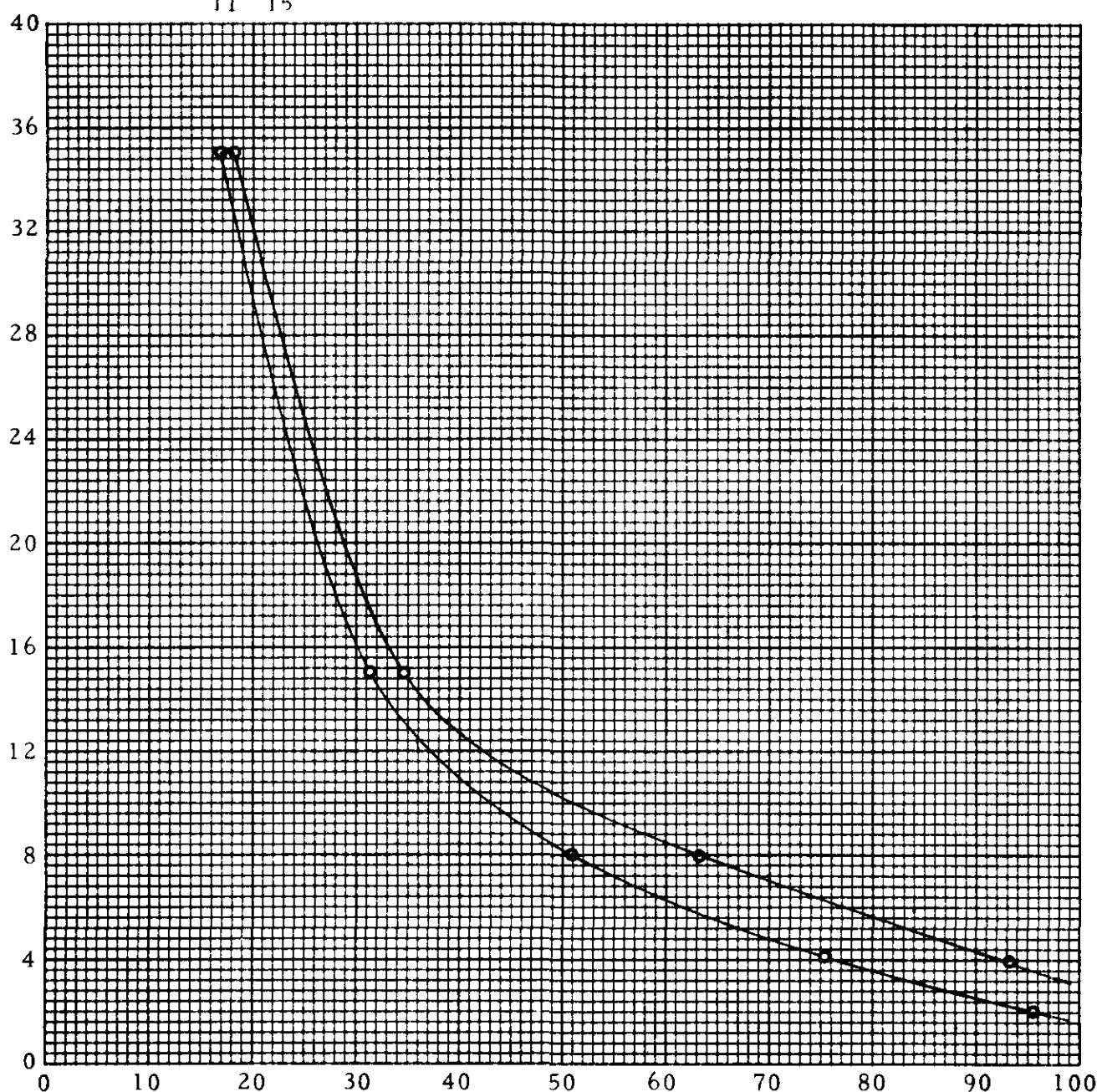
Brine Saturation, Per Cent Pore Space

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Sample Number: 115

Permeability, Md.: 1.7

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS


Page 7 of 21
File SCAL-75150

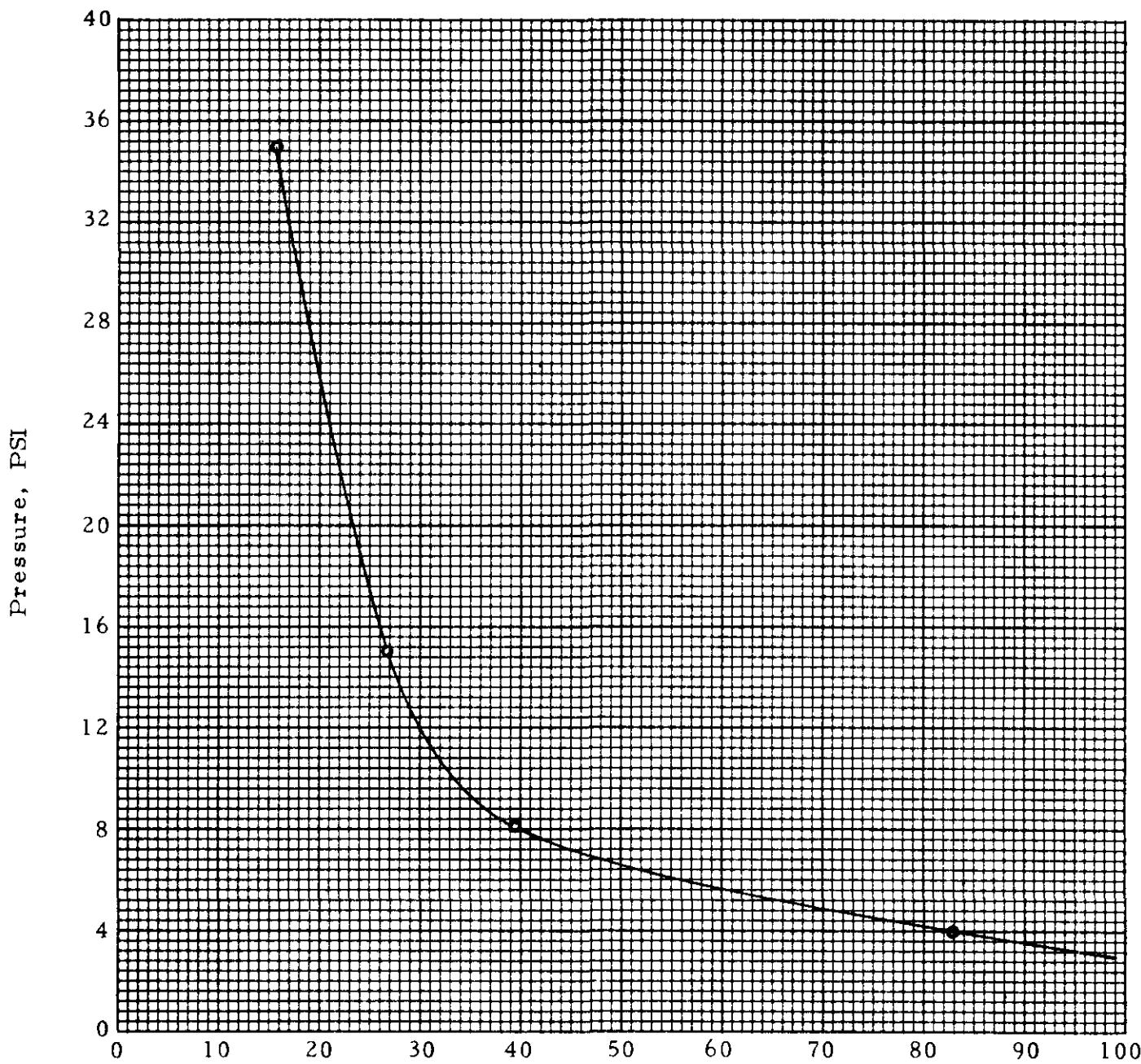
Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D45 County Northwest Territories
Field Colville State Canada

Sample Number: 11 15
Permeability, Md.: 12 7.3

11 15

Pressure, PSI

Brine Saturation, Per Cent Pore Space


CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

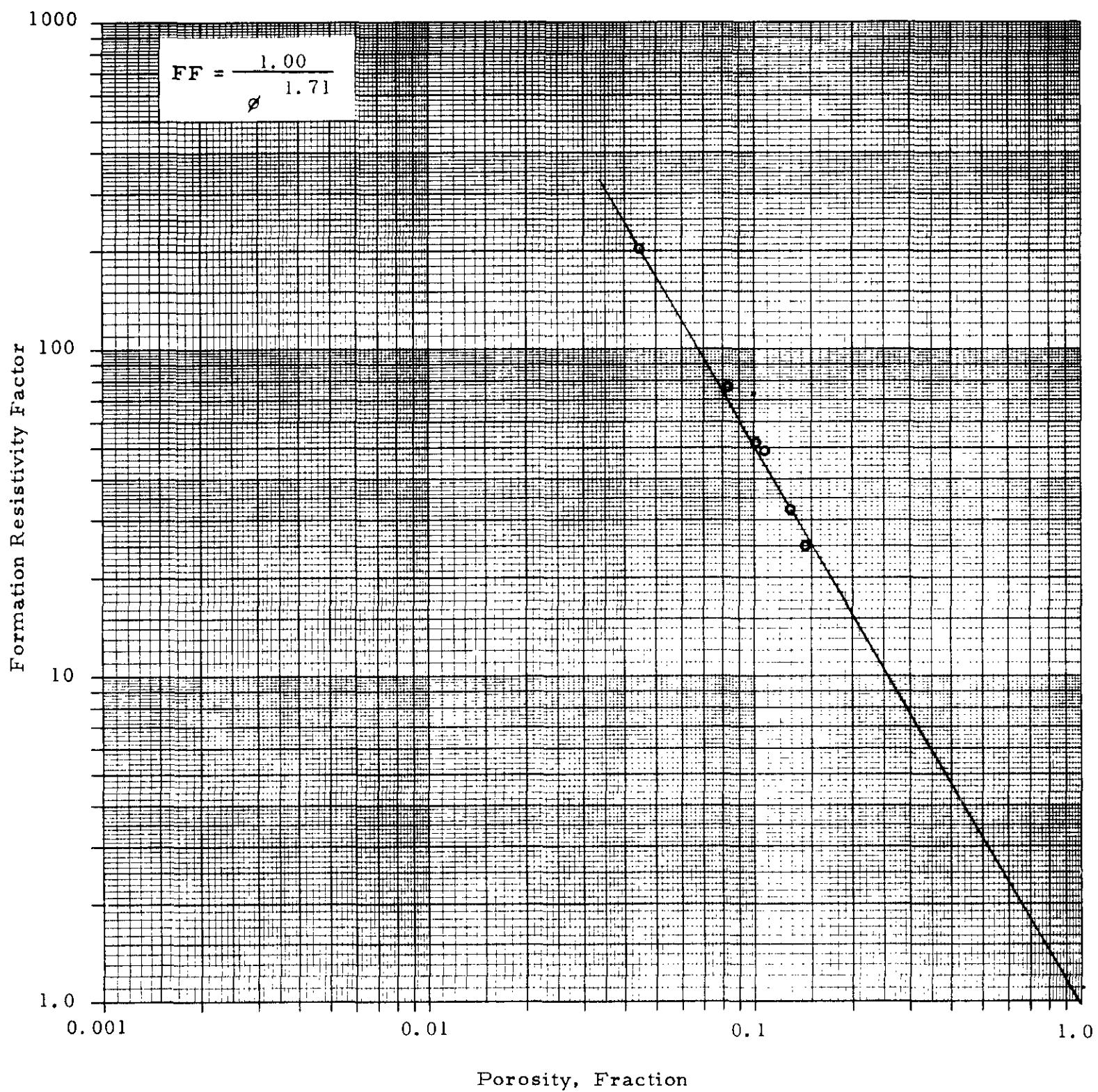
Page 8 of 21
File SCAL-75150

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada

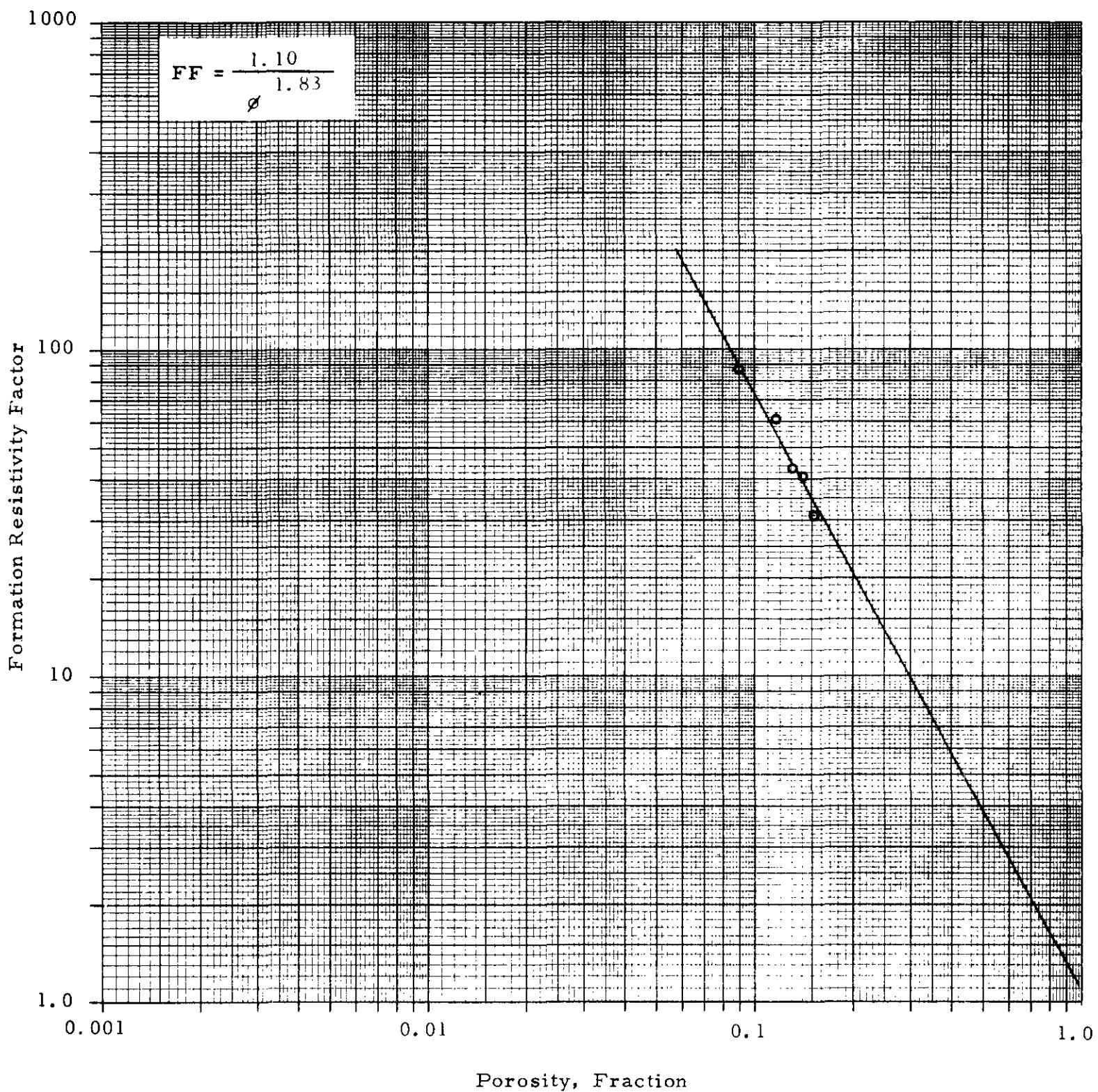
Sample Number: 18

Permeability, Md.: 20

Brine Saturation, Per Cent Pore Space

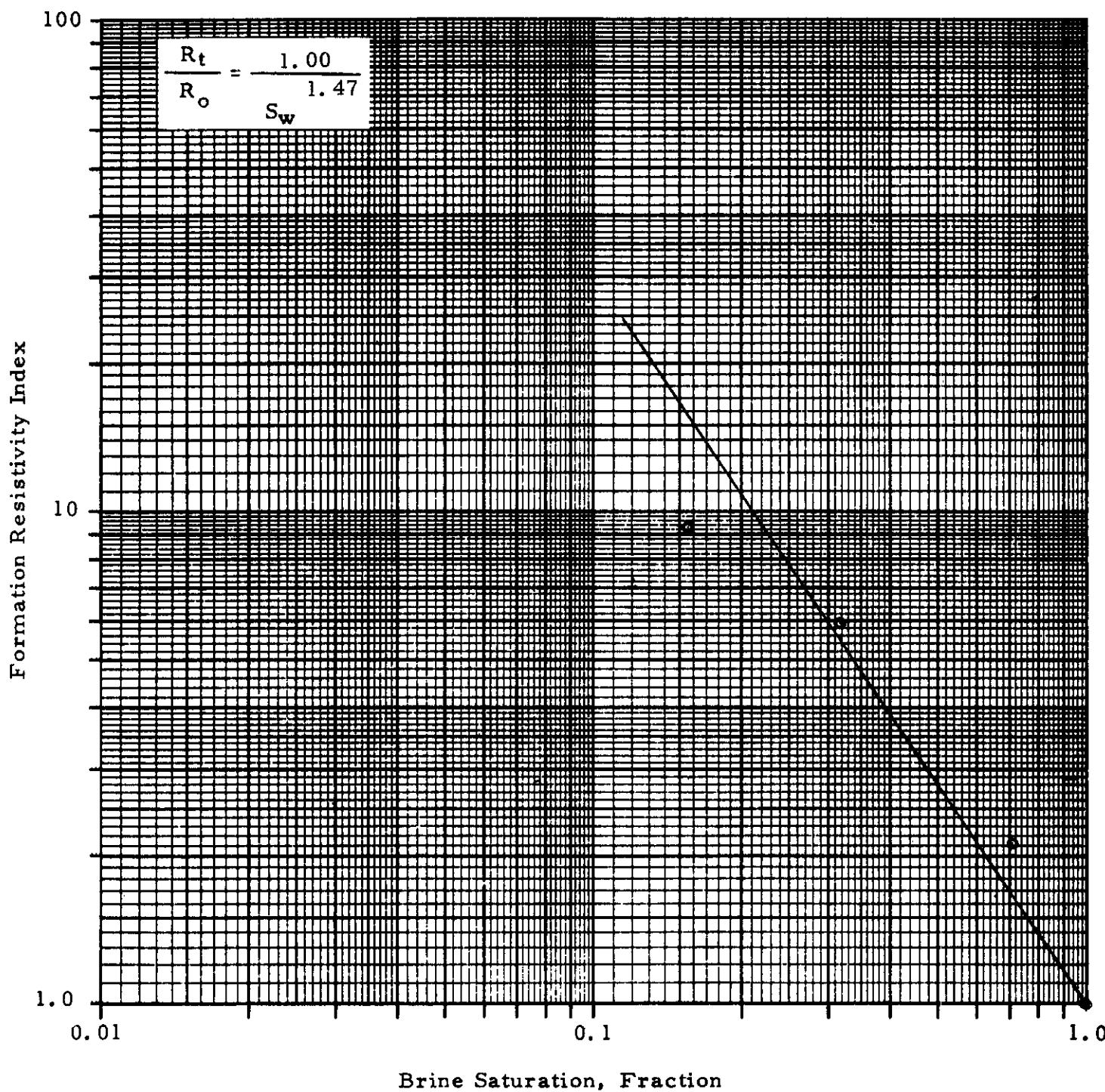

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering***DALLAS, TEXAS**Page 9 of 21File SCAL-75150**Formation Factor and Resistivity Index Data**Stopover FieldResistivity of Saturating Brine, Ohm-Meters: 0.253 @ 71° F.

<u>Sample Number</u>	<u>Porosity, Per Cent</u>	<u>Formation Factor</u>	<u>Brine Saturation, Per Cent Pore Space</u>	<u>Resistivity Index</u>
50A	8.3	76.1	100.0	1.00
			70.3	2.13
88	12.8	32.1	100.0	1.00
			15.6	9.29
98	10.1	51.8	100.0	1.00
			31.9	5.98
103	14.4	24.8	100.0	1.00
113	4.5	201	100.0	1.00
115	10.8	49.7	100.0	1.00

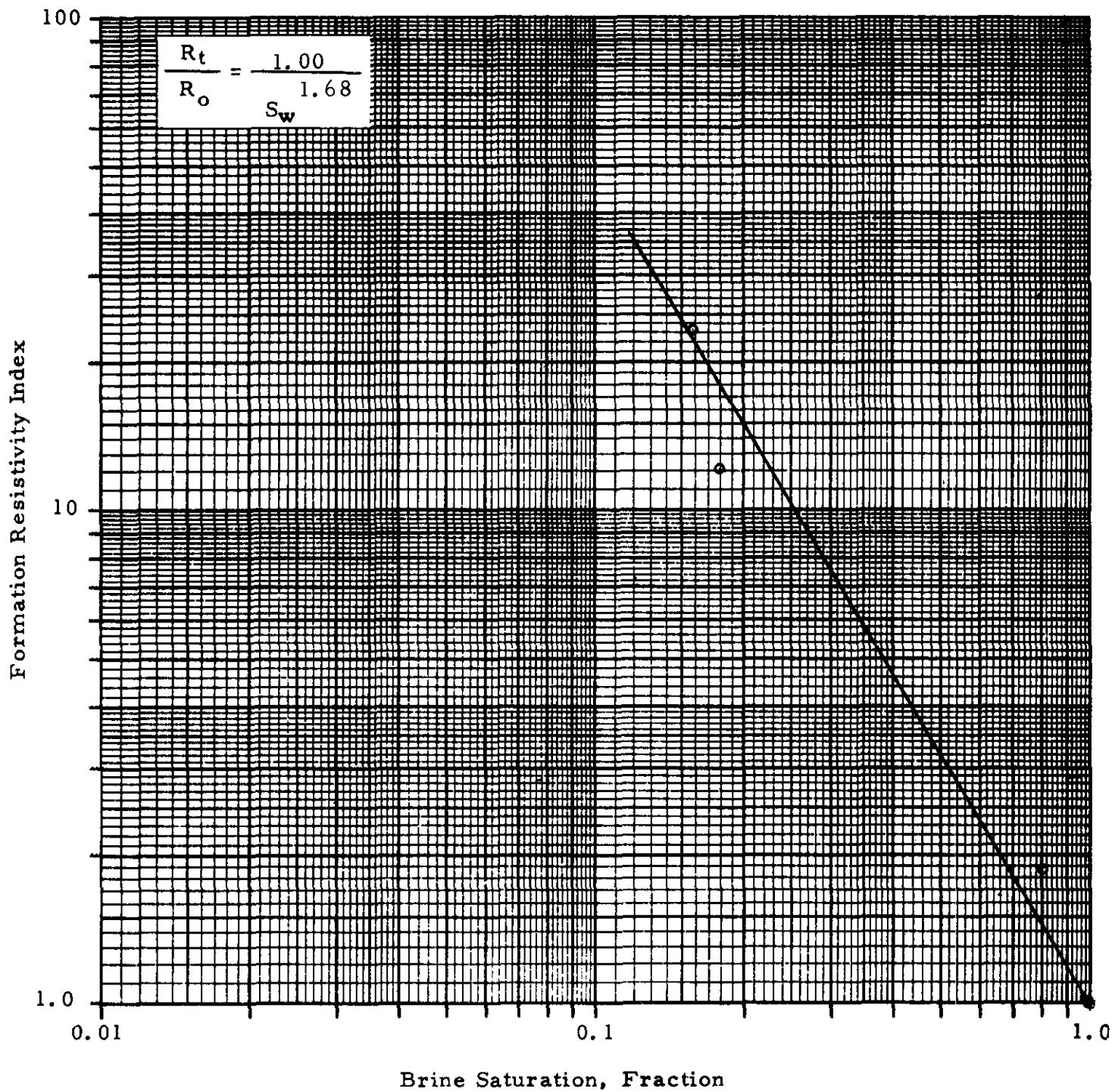

Colville FieldResistivity of Saturating Brine, Ohm-Meters: 0.120 @ 74° F.

1	11.7	60.8	100.0	1.00
			80.5	1.89
10	9.0	87.0	100.0	1.00
11	14.0	41.2	100.0	1.00
15	13.2	43.2	100.0	1.00
			18.0	12.0
18	15.1	31.1	100.0	1.00
			15.9	23.3

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada



Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada


Company Union Oil Co. of Canada Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Composite

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada

Composite

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 14 of 21
File SCAL-75150

Stopover Field

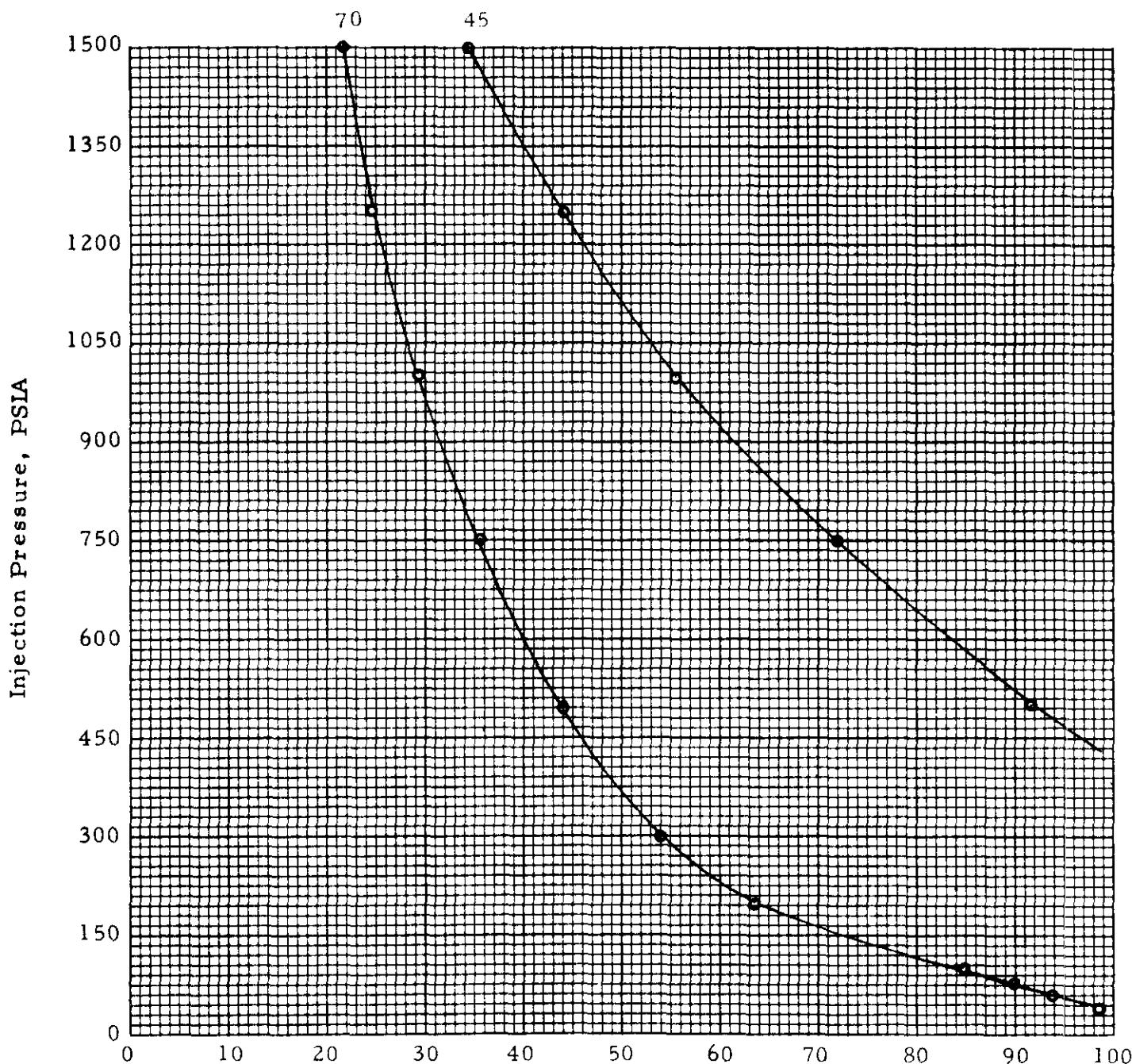
Mercury Injection Capillary Pressure Data

Sample Number:	45	50	70	89	98A	103A
Permeability, Md.:	0.033	0.28	1.3	233	5.5	60
Porosity, Per Cent:	5.6	6.6	13.7	13.2	9.7	14.6
Injection Pressure, PSIA	Wetting Phase Saturation, Per Cent Pore Space					
3	100.0	100.0	100.0	93.0	100.0	100.0
6	100.0	100.0	100.0	71.9	100.0	100.0
9	100.0	100.0	100.0	55.8	100.0	96.9
12	100.0	100.0	100.0	44.1	100.0	85.6
15	100.0	100.0	100.0	38.3	100.0	74.4
18	100.0	100.0	100.0	32.8	100.0	62.9
21	100.0	100.0	100.0	30.1	100.0	57.2
24	100.0	100.0	100.0	27.6	100.0	52.4
27	100.0	100.0	100.0	25.7	100.0	48.9
30	100.0	100.0	100.0	24.5	98.2	46.4
40	100.0	100.0	98.6	21.4	88.0	39.5
60	100.0	100.0	94.0	17.8	67.7	32.7
80	100.0	100.0	89.9	15.8	57.4	30.0
100	100.0	96.6	84.9	14.4	51.0	28.2
200	100.0	73.2	63.5	10.7	39.8	24.2
300	100.0	62.6	54.0	8.7	34.1	22.4
500	91.7	45.5	44.0	6.3	27.7	19.6
750	72.0	34.2	35.6	4.5	23.2	17.2
1000	55.6	28.3	29.3	4.2	20.8	15.0
1250	44.5	23.5	24.9	2.8	19.1	14.5
1500	34.5	21.4	21.9	2.7	18.1	12.2

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

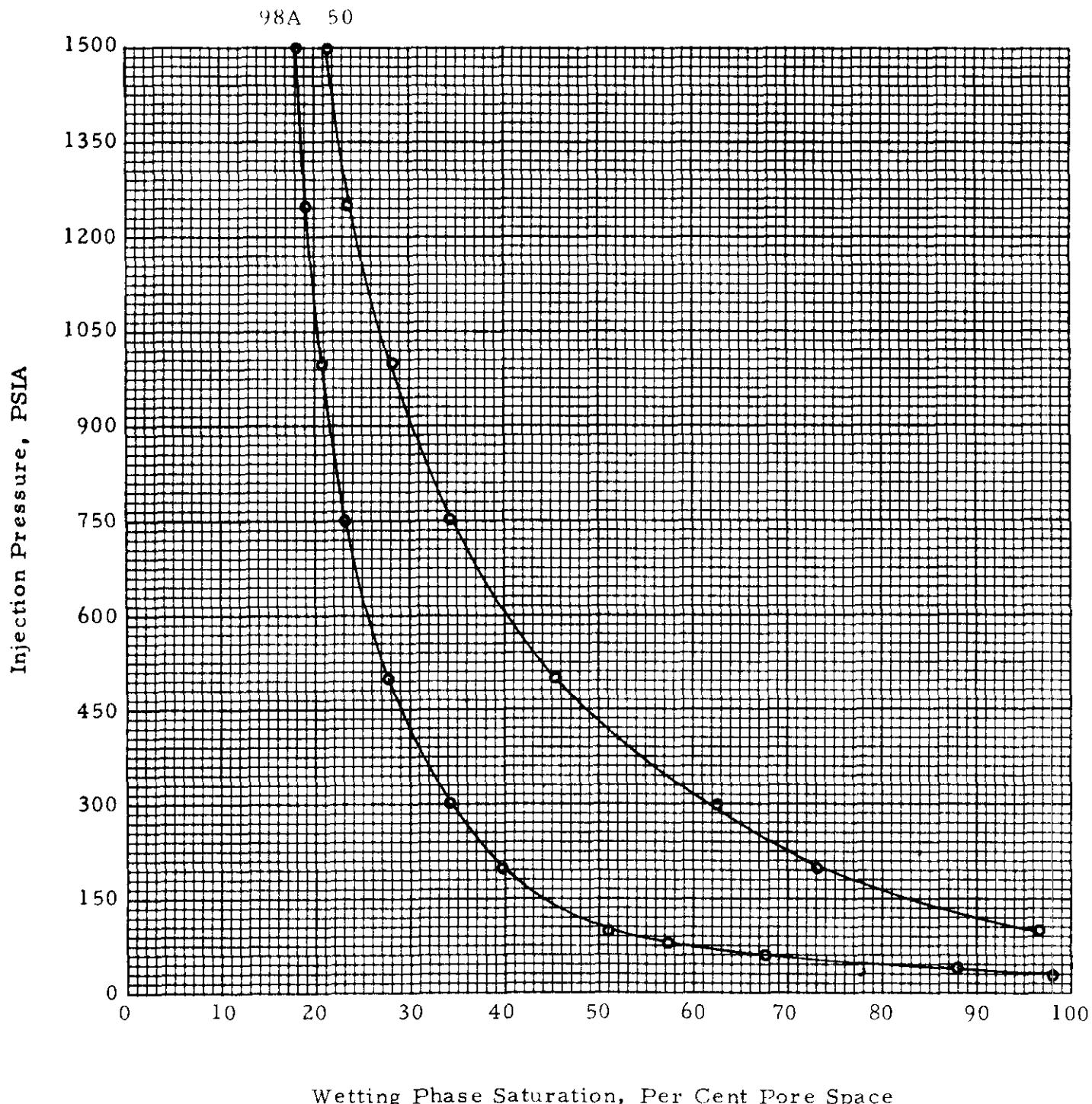
DALLAS, TEXAS

Page 15 of 21File SCAL-75150Colville FieldMercury Injection Capillary Pressure Data

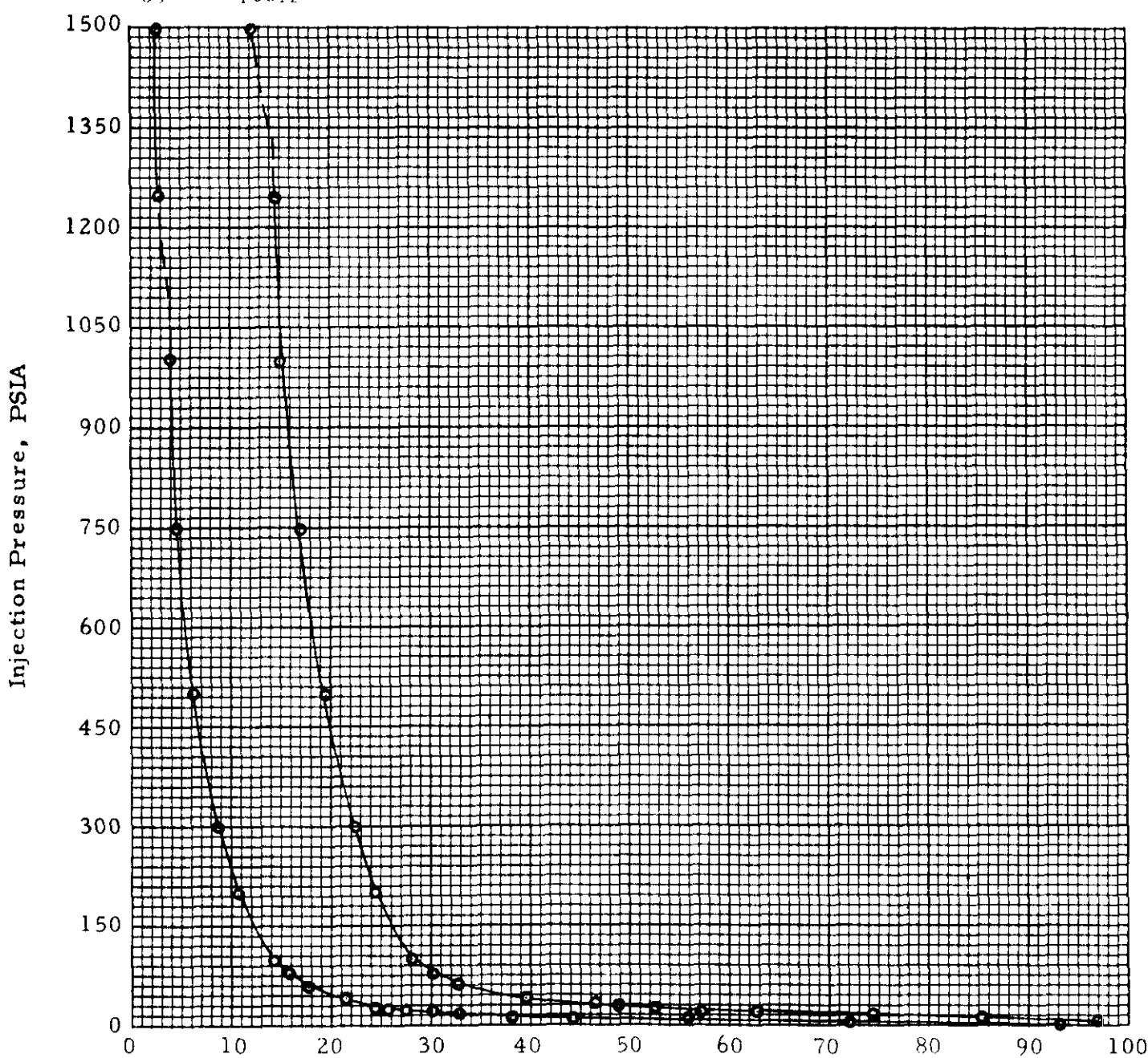

Sample Number:	4	9	11	12	18
Permeability, Md.:	0.56	0.035	18	82	25
Porosity, Per Cent:	11.8	7.9	13.9	12.6	14.6
Injection Pressure, PSIA					
		Wetting Phase Saturation, Per Cent Pore Space			
3	100.0	100.0	100.0	100.0	100.0
6	100.0	100.0	100.0	100.0	100.0
9	100.0	100.0	100.0	100.0	100.0
12	100.0	100.0	100.0	100.0	100.0
15	100.0	100.0	95.4	100.0	100.0
18	100.0	100.0	89.0	98.5	100.0
21	100.0	100.0	83.9	96.1	95.8
24	100.0	100.0	79.9	92.1	85.1
27	100.0	100.0	76.1	90.4	75.9
30	100.0	100.0	73.5	87.6	67.8
40	100.0	100.0	64.7	77.7	51.3
60	100.0	100.0	55.1	65.6	42.0
80	100.0	100.0	48.1	57.3	36.0
100	100.0	100.0	43.2	51.8	31.8
200	73.7	100.0	30.3	38.6	23.2
300	63.7	100.0	24.0	31.3	18.8
500	54.3	100.0	16.8	24.1	13.5
750	46.6	100.0	14.1	20.3	10.9
1000	40.7	78.2	12.2	17.5	9.8
1250	35.5	69.9	10.6	14.5	8.8
1500	31.4	60.5	10.2	13.8	8.7

CORE LABORATORIES, INC.
 Petroleum Reservoir Engineering
 DALLAS, TEXAS

Page 16 of 21
 File SCAL-75150

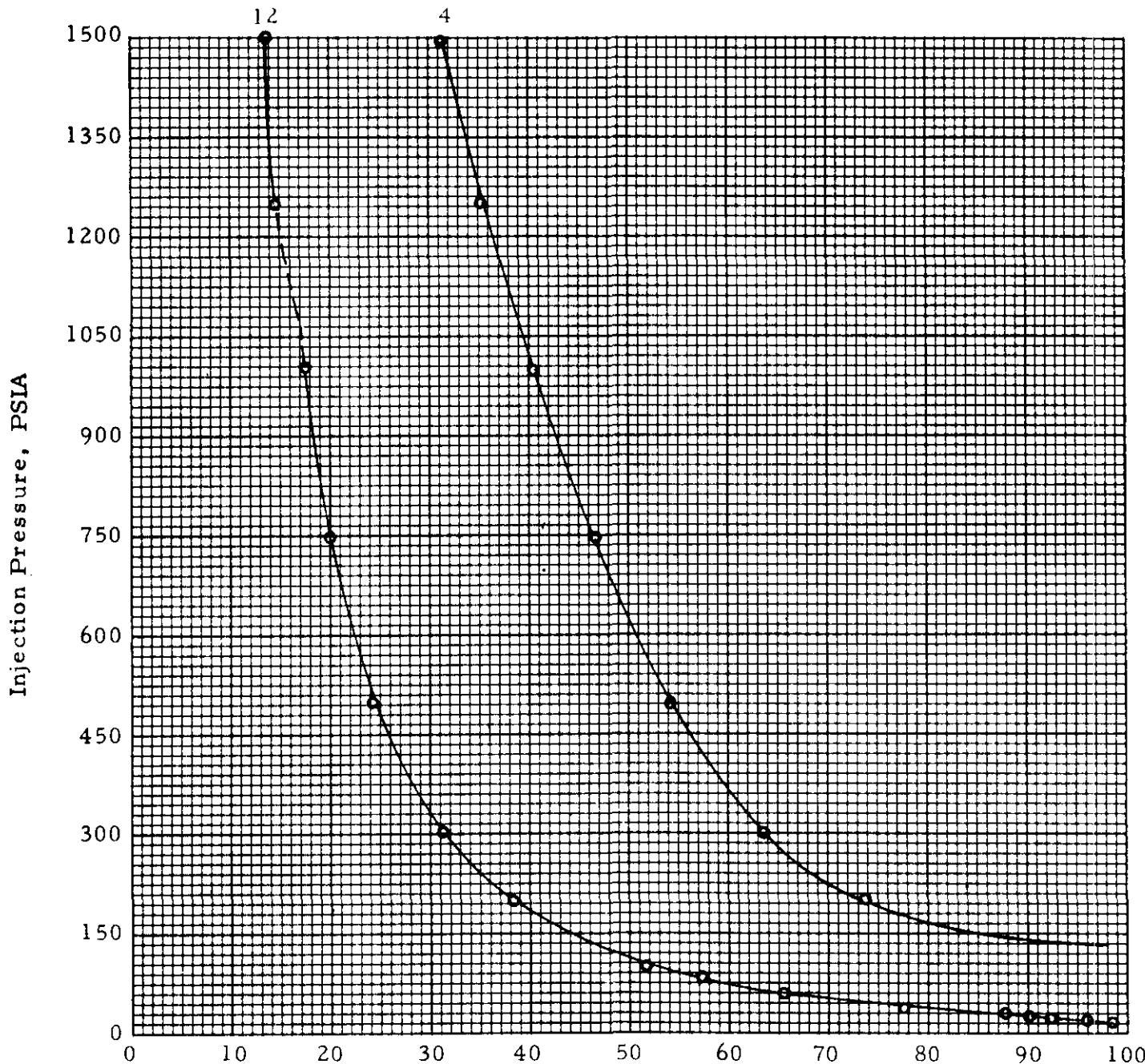

Company	Union Oil Co. of Canada Ltd.	Formation	Old Fort Sand
Well	Stopover K-44 & Colville D-45	County	Northwest Territories
Field	Stopover	State	Canada

Sample Number:	70	45
Permeability, Md. :	1.3	0.033


Wetting Phase Saturation, Per Cent Pore Space

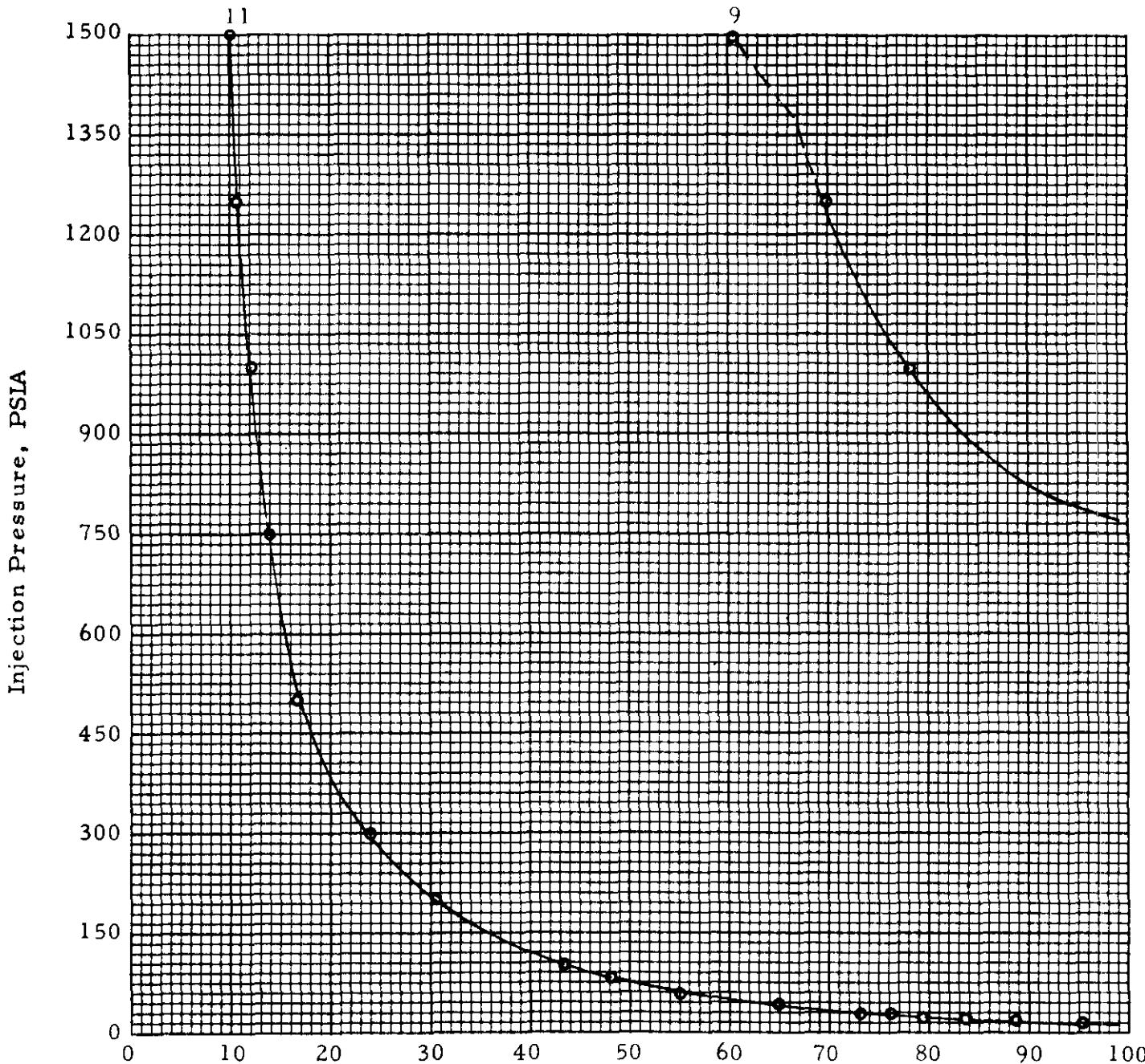
Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada
Sample Number: 98A 50
Permeability, Md.: 5.5 0.28

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada


Sample Number: 89 103A
Permeability, Md.: 233 6.0
89 103A

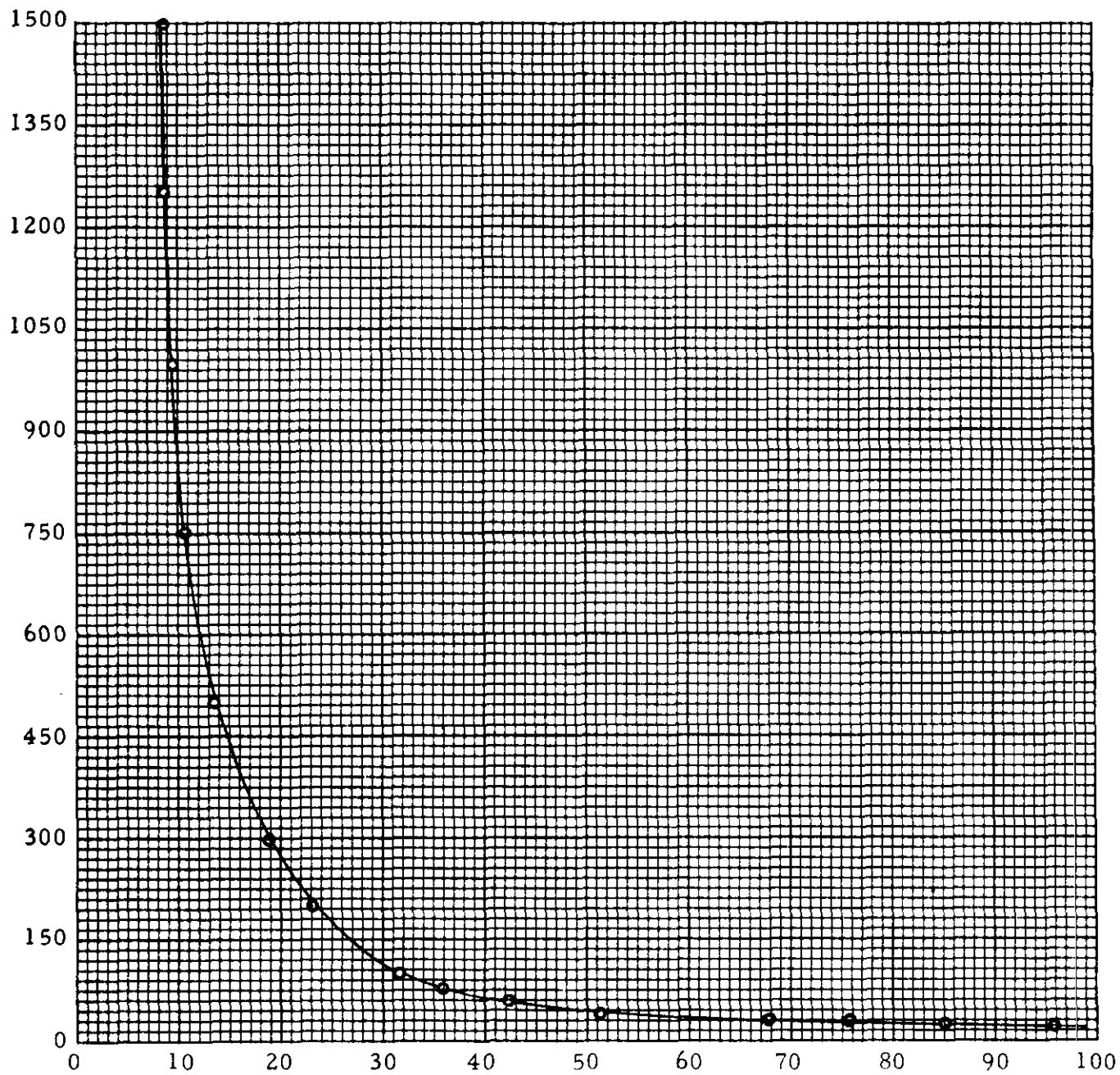
Wetting Phase Saturation, Per Cent Pore Space

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada


Sample Number: 12 4
Permeability, Md.: 8.2 0.56

Wetting Phase Saturation, Per Cent Pore Space

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada


Sample Number: 11 9
Permeability, Md.: 18 0.035

Wetting Phase Saturation, Per Cent Pore Space

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada

Sample Number: 18
Permeability, Md.: 25

Wetting Phase Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Special Core Analysis Study
for
UNION OIL COMPANY OF CANADA LIMITED
Stopover K-44 and Colville D-45 Wells
Northwest Territories Canada

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

May 18, 1976

Union Oil Company of Canada Limited
P. O. Box 999
Calgary, Alberta T2P 2K6
Canada

Attention: Mr. Lorne D. McCluskey

Subject: Special Core Analysis Study
Stopover K-44 and Colville D-45 Wells
Northwest Territories
Canada
File Number: SCAL-75150

Gentlemen:

In letters dated April 25, 1975, June 2, 1975, and June 16, 1975, from Lorne D. McCluskey, Core Laboratories, Inc., was requested to perform: (1) Water-Oil Relative Permeability Tests, (2) Mercury Injection Tests, (3) Capillary Pressure Tests, (4) Formation Resistivity Factor Measurements, and (5) Formation Resistivity Index Measurements on sandstone core plugs from the subject wells. The results of the water-oil relative permeability tests were submitted in final form on March 25, 1976. The remaining tests are presented herein. The core plugs used in this study are identified as to well, sample number, and depth interval on Page 1 and are lithologically described on Page 2.

Fifteen core plugs and nine slabbed well cores were submitted for use in this study. Core plugs 1 inch in diameter were drilled from the nine slabbed cores with a diamond core bit using water as the bit coolant and lubricant. All core plugs were extracted of hydrocarbons with toluene, leached of salt with methyl alcohol, and then dried. Air permeabilities and porosities were determined on the cleaned and dried core plugs. The results of the permeability and porosity determinations were submitted to a representative of Union Oil Company of Canada Limited. Based on

the permeability and porosity determinations, core plugs were selected for further testing.

Eight core plugs, five from the Stopover well and three from the Colville well, were evacuated and saturated with appropriate simulated formation water. Six-point capillary pressure tests were performed using a porous-plate cell and an air-brine system. The results of the capillary pressure tests are presented by well in tabular form on Page 3 and in graphical form on Pages 4 through 8. The measured capillary pressure-saturation relationships correlate with both permeability and porosity for the Stopover and Colville wells.

Prior to performing the air-brine capillary pressure tests, the electrical resistivities of the brines and the brine saturated core plugs were measured. These measurements were repeated over a period of several days until the electrical resistivities stabilized indicating that ionic equilibrium within the core plugs had been attained. Formation resistivity factors were calculated from the electrical resistivity measurements and their relationships with porosity are presented in tabular form on Page 9 and in graphical form on Pages 10 and 11. Using Archie's equation, a cementation exponent "m" of 1.71 was calculated for the Stopover well. Using Archie's generalized equation, a cementation exponent "m" of 1.83 at an "a" intercept of 1.10 was calculated for the Colville well.

Electrical resistivities were measured at one equilibrium desaturation point on three core plugs from each the Stopover and the Colville wells. The formation resistivity-saturation relationships yield calculated saturation exponents "n" of 1.47 and 1.68 for the Stopover and Colville wells respectively.

Multi-point mercury injection tests were performed on eleven core plugs, six from the Stopover well and five from the Colville well, using injection pressures ranging from 3 psia to 1500 psia. The multi-point mercury injection tests are presented by well in tabular form on Pages 14 and 15, and in graphical form on Pages 16 through 21. The results of the wetting phase saturation injection pressure relationships correlate

Union Oil Company of Canada Limited
Stopover K-44 and Colville D-45 Wells

Page Three

with permeability and porosity for both wells. The inflections exhibited by the test results for Samples 89, 103A, 12, and 9 (Pages 18, 19 and 20) indicate the presence of multi-modal pore size distribution. The heterogeneous porosity systems present in the core plugs tested is not unusual for poorly sorted sandstone core material.

Should you have any questions pertaining to these test results or if we can be of any assistance, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc.

Duane L. Archer, Manager
Special Core Analysis

DLA:JWW:gb
10 cc. - Addressee

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 1 of 21

File SCAL-75150

Company Union Oil Co. of Canada Limited

Formation Old Fort Sand

Number of Wells Two

County Northwest Territories

Field Stopover and Colville

State Canada

Identification of Samples

Sample Number	Company	Well	Depth, Feet
<u>Stopover Field</u>			
45	Union Oil Company of Canada Ltd.	Union Oil Stopover K-44	2780.0-80.7
50			2784.1-85.0
50A			2784.1-85.0
70			2798.2-99.0
88			2813.2-13.5
89			2813.5-14.3
98			2820.8-21.9
98A			2820.8-21.9
103			2825.6-26.2
103A			2825.6-26.2
113			2832.4-33.1
115			2834.3-34.9

Colville Field

1	Union Oil Company of Canada Ltd.	Union Mobile Colville D-45	3183.2-83.7
4			3185.6-86.0
9			3190.8-91.8
10			3190.8-91.8
11			3218.0-18.7
12			3218.0-18.7
15			3223.0-23.4
18			3225.9-26.4

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

Page 2 of 21

File SCAL-75150

Lithological Description

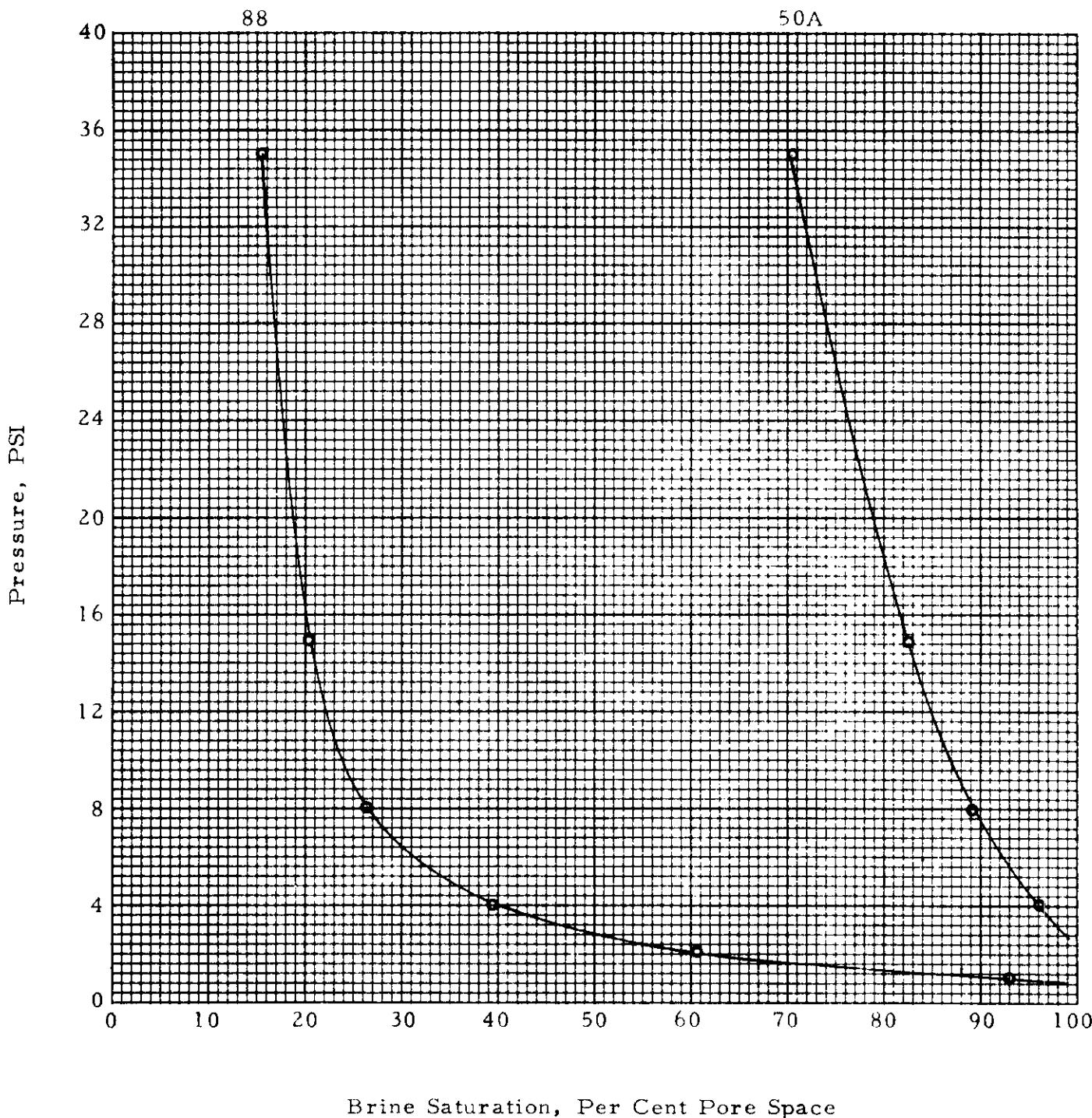
Sample Number

Description

Stopover Field

45 Ss, reddish brn, v/fn grn, well indurated, w/sh inclusions
50 Ss, gry-red, fn-v/fn grn, well indurated, w/sh
50A Ss, red-brn, cse-v/fn grn, apparent SiO_2 cement, well indurated, cse grn concentrations
70 Ss, red & gry, fn grn, v/sl/calc, mod indurated, w/clay pockets
88 Ss, buff-white, med-fn grn, apparent SiO_2 cement, mod indurated, red-brn staining an upper portion
89 Ss, gry, med-fn grn, v/sl/calc, mod indurated, w/fn grn lams, red stks
98 Ss, red-brn-buff white, med-fn grn, apparent SiO_2 cement, well indurated, blotchy color staining, grns uniform
98A Ss, red & gry, fn-med grn, well indurated, w/clay pockets
103 Ss, red-brn, cse-fn grn, apparent SiO_2 cement, mod-poor indurated, blotchy color appearance
103A Ss, red, fn-med grn, v/sl/calc, mod indurated
113 Ss, red, fn grn, well indurated, w/sh stks
115 Ss, red-brn-buff white, med-fn grn, apparent SiO_2 cement, well indurated, blotchy color appearance

Colville Field

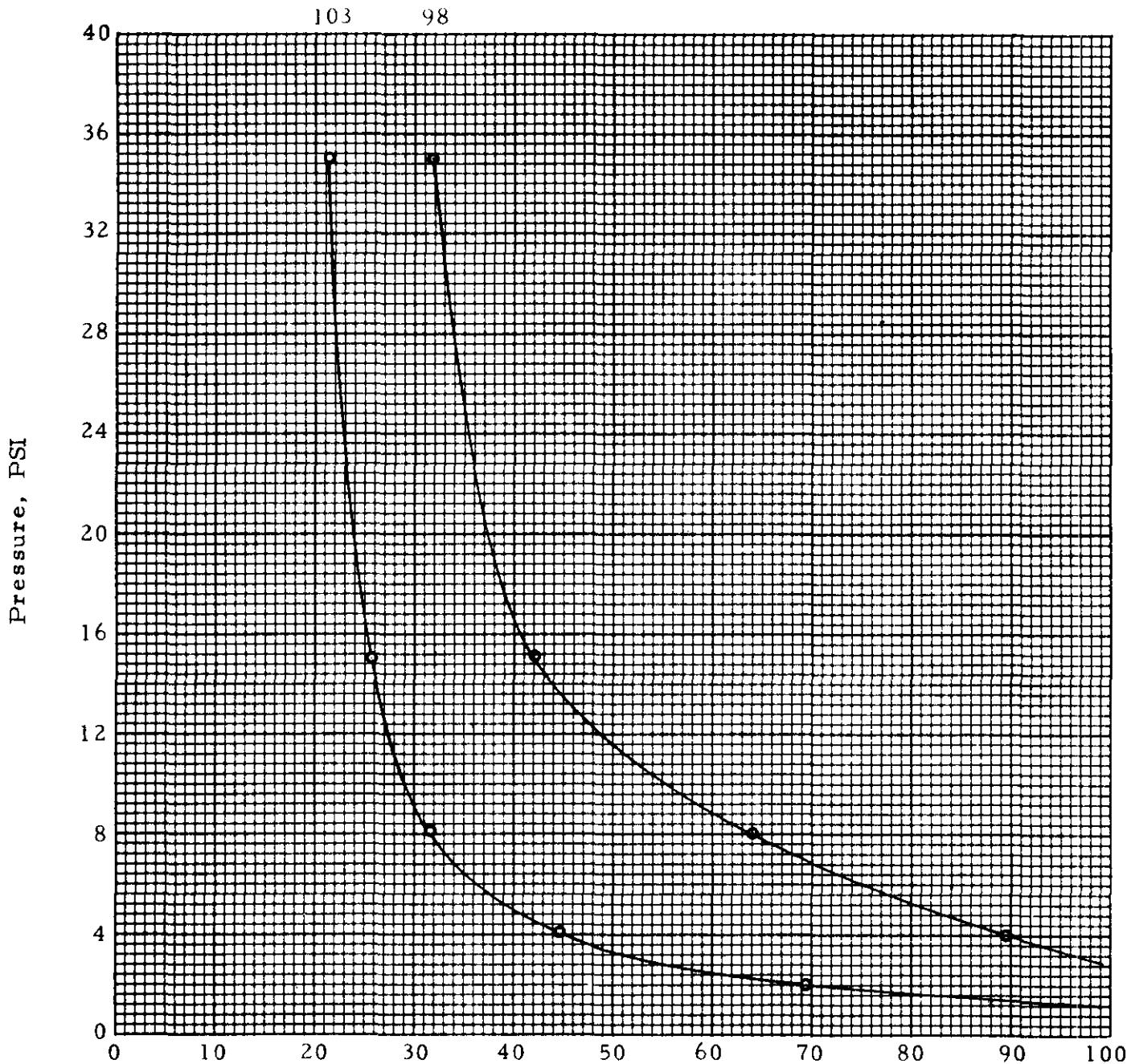

1 Ss, lt gry, v/fn-silt grn, apparent SiO_2 cement, well indurated, tr musc, pyrite
4 Ss, gry, v/fn grn, sl/calc, well indurated
9 Ss, gry, v/fn grn, sl/calc, well indurated
10 Ss, tan, v/fn grn, sl/calc, mod indurated
11 Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminar, tr musc
12 Ss, gry, fn grn, mod indurated
15 Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminae, tr musc
18 Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminae

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering***DALLAS, TEXAS**Page 3 of 21File SCAL-75150Air-Brine Capillary Pressure DataPressure, PSI: 1 2 4 8 15 35

<u>Sample Number</u>	<u>Permeability, Millidarcys</u>	<u>Porosity, Per Cent</u>	<u>Brine Saturation, Per Cent Pore Space</u>					
<u>Stopover Field</u>								
50A	1.2	8.3	100.0	100.0	96.0	89.0	82.6	70.3
88	130	12.8	92.9	60.8	39.5	26.3	20.3	15.6
98	12	10.1	100.0	100.0	89.4	64.0	42.0	31.9
103	118	14.4	100.0	69.4	44.8	31.5	25.6	21.3
115	1.7	10.8	100.0	100.0	91.6	63.9	41.7	31.9
<u>Colville Field</u>								
11	12	14.0	100.0	95.4	75.3	50.6	31.2	16.9
15	7.3	13.2	100.0	100.0	93.2	63.2	34.6	18.0
18	20	15.1	100.0	100.0	83.0	39.6	26.4	15.9

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Sample Number: 88 50A
Permeability, Md.: 130 1.2

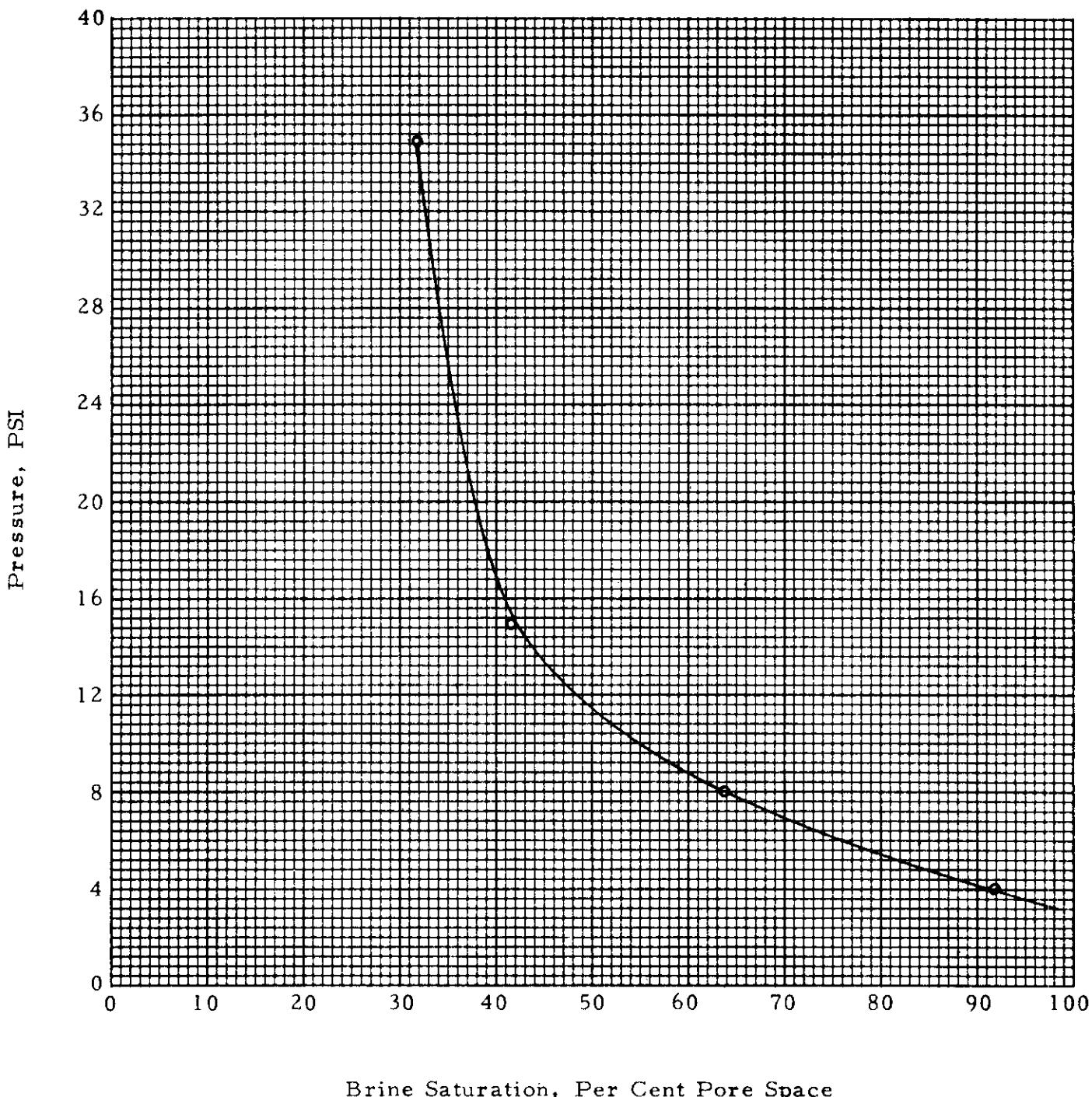

Brine Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 5 of 21
File SCAL-75150

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Sample Number: 103 98
Permeability, Md.: 118 12



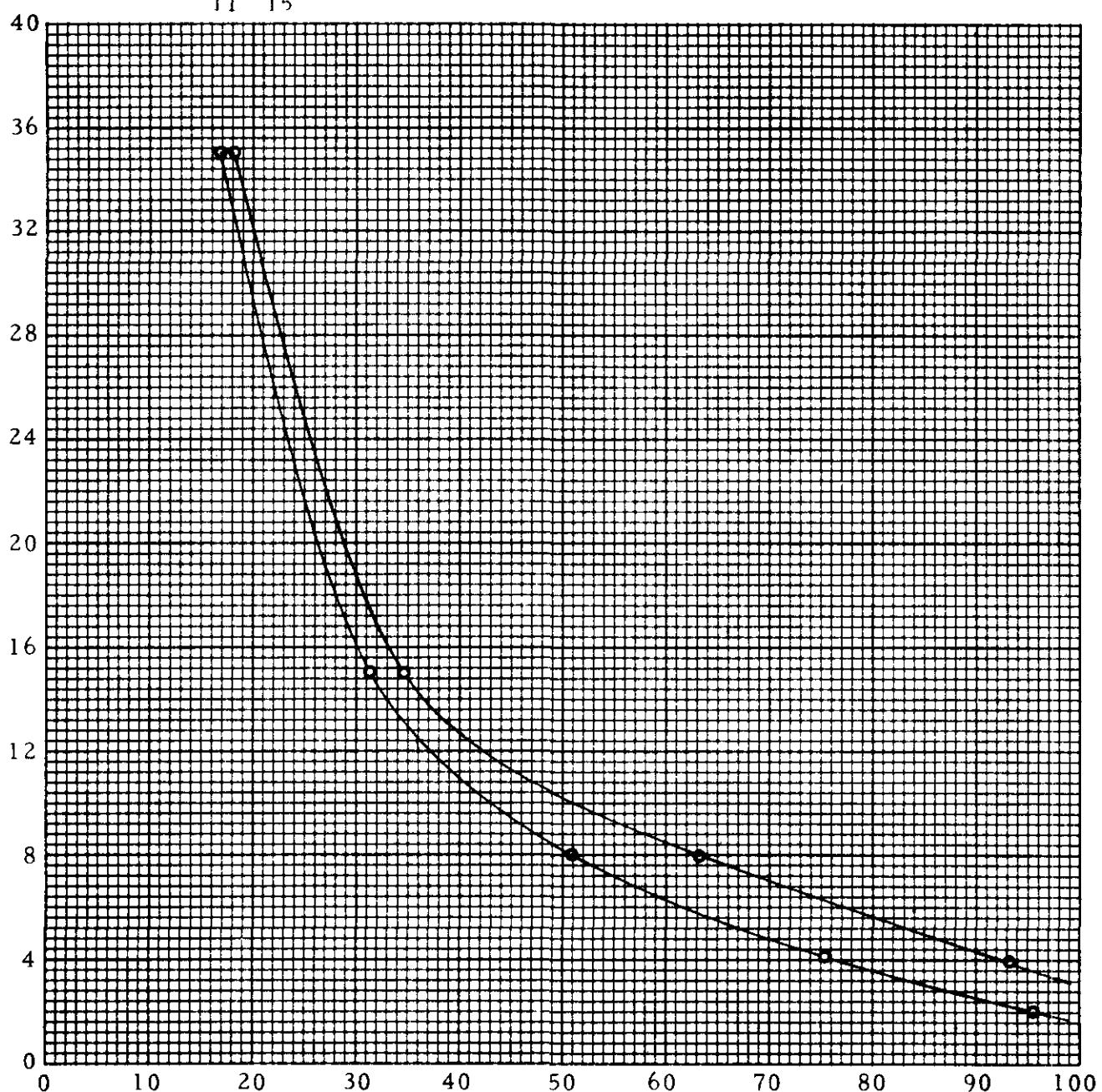
Brine Saturation, Per Cent Pore Space

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Sample Number: 115

Permeability, Md.: 1.7

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS


Page 7 of 21
File SCAL-75150

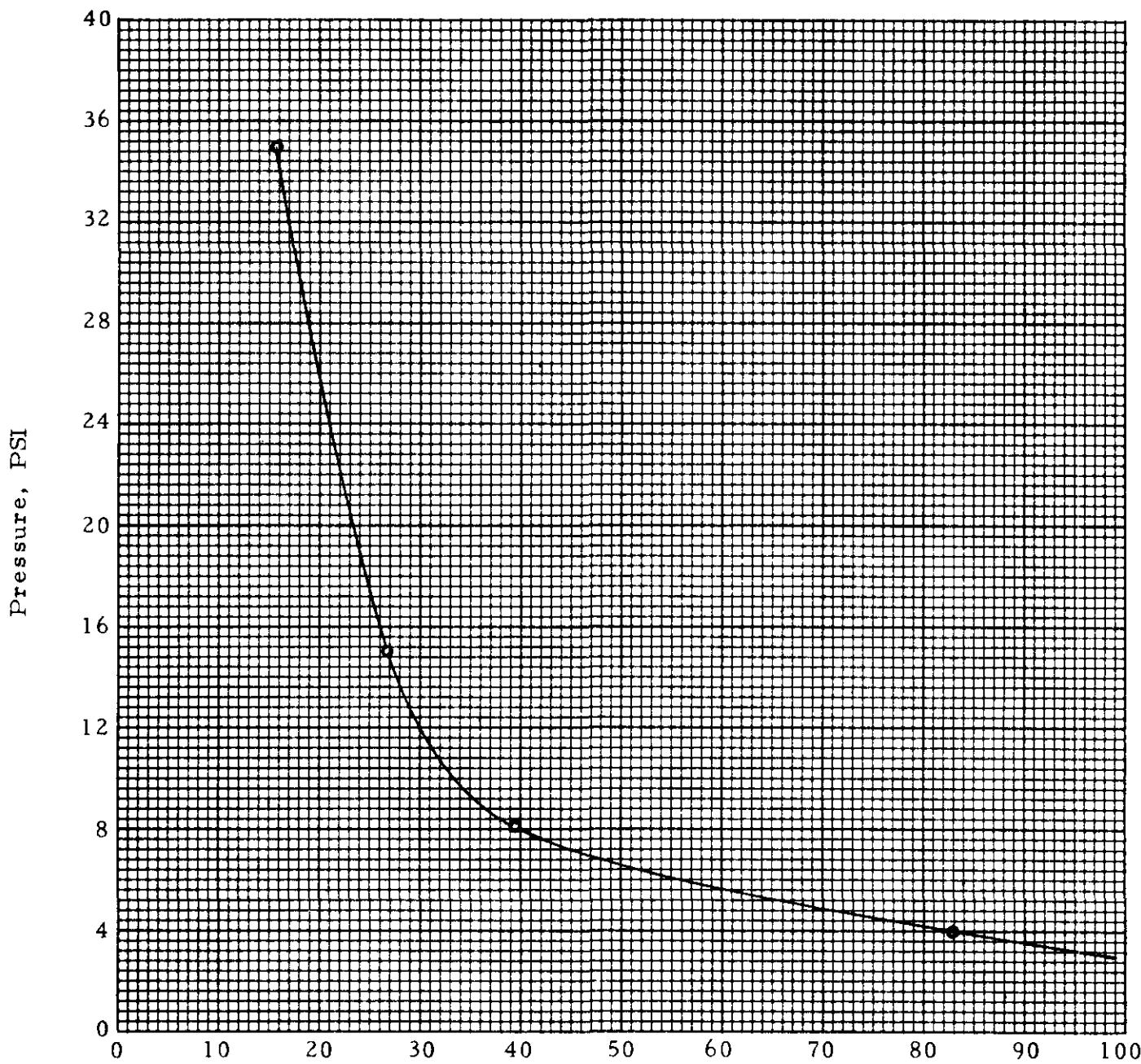
Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D45 County Northwest Territories
Field Colville State Canada

Sample Number: 11 15
Permeability, Md.: 12 7.3

11 15

Pressure, PSI

Brine Saturation, Per Cent Pore Space


CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

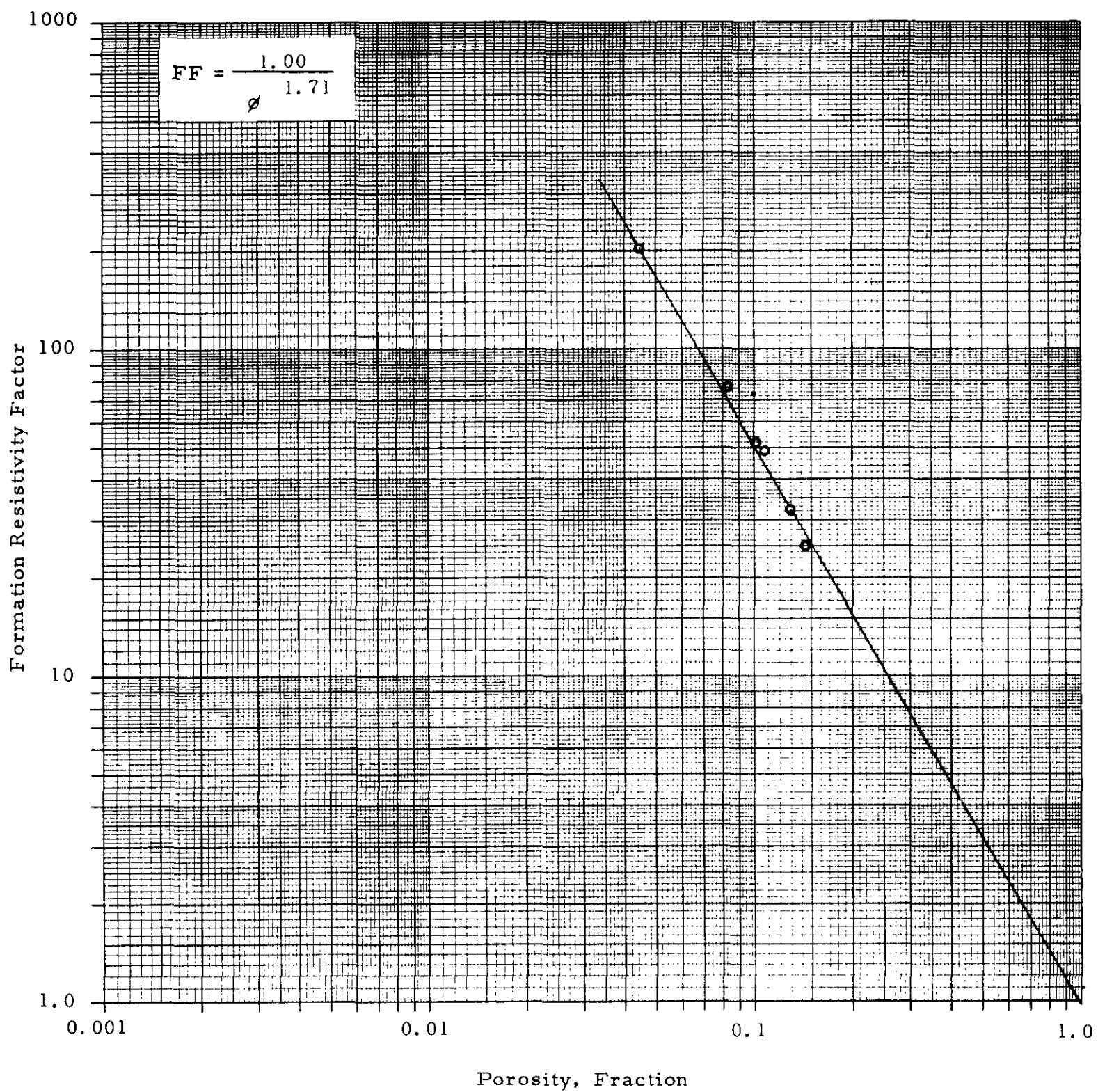
Page 8 of 21
File SCAL-75150

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada

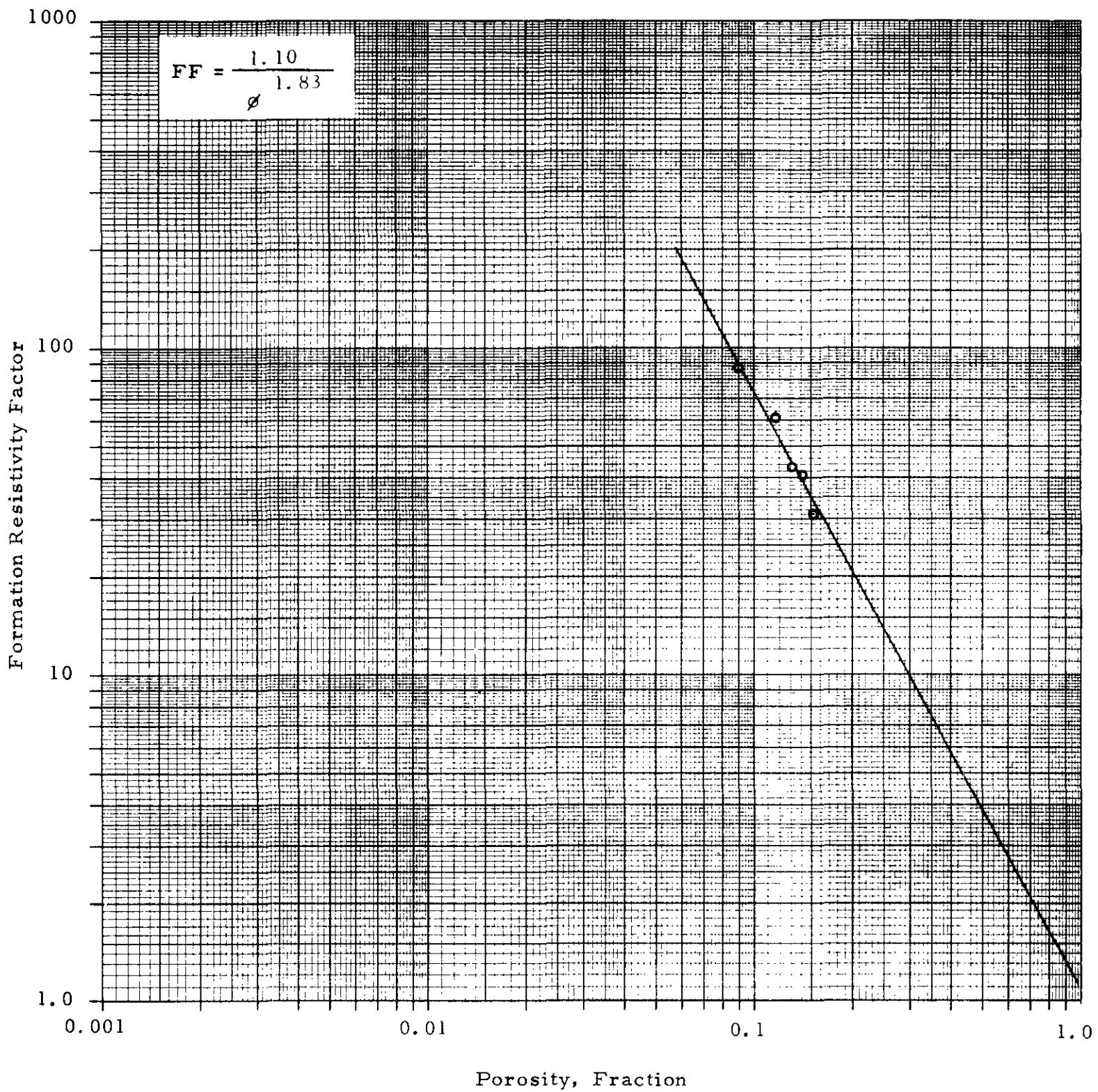
Sample Number: 18

Permeability, Md.: 20

Brine Saturation, Per Cent Pore Space

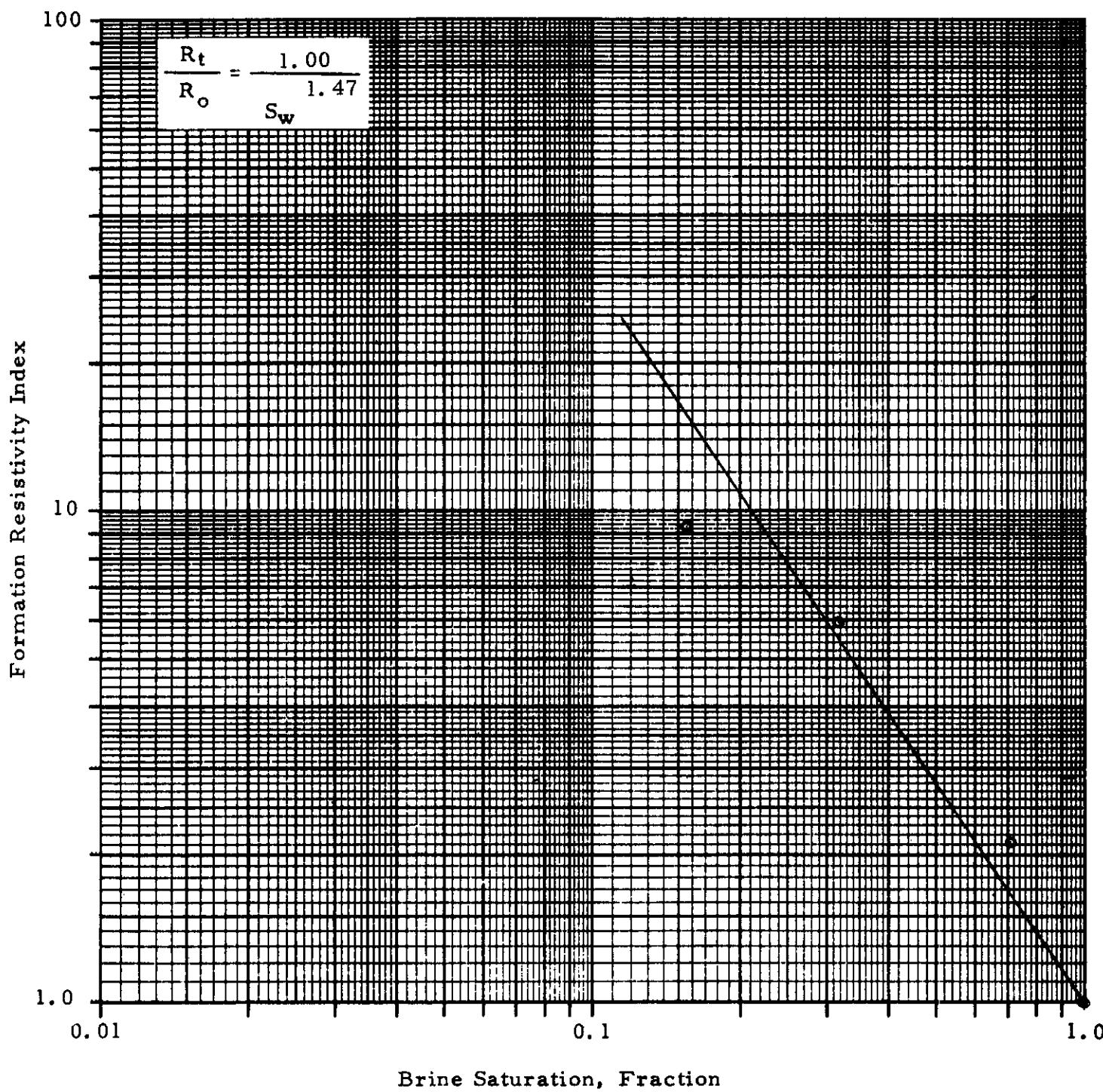

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering***DALLAS, TEXAS**Page 9 of 21File SCAL-75150**Formation Factor and Resistivity Index Data**Stopover FieldResistivity of Saturating Brine, Ohm-Meters: 0.253 @ 71° F.

<u>Sample Number</u>	<u>Porosity, Per Cent</u>	<u>Formation Factor</u>	<u>Brine Saturation, Per Cent Pore Space</u>	<u>Resistivity Index</u>
50A	8.3	76.1	100.0	1.00
			70.3	2.13
88	12.8	32.1	100.0	1.00
			15.6	9.29
98	10.1	51.8	100.0	1.00
			31.9	5.98
103	14.4	24.8	100.0	1.00
113	4.5	201	100.0	1.00
115	10.8	49.7	100.0	1.00

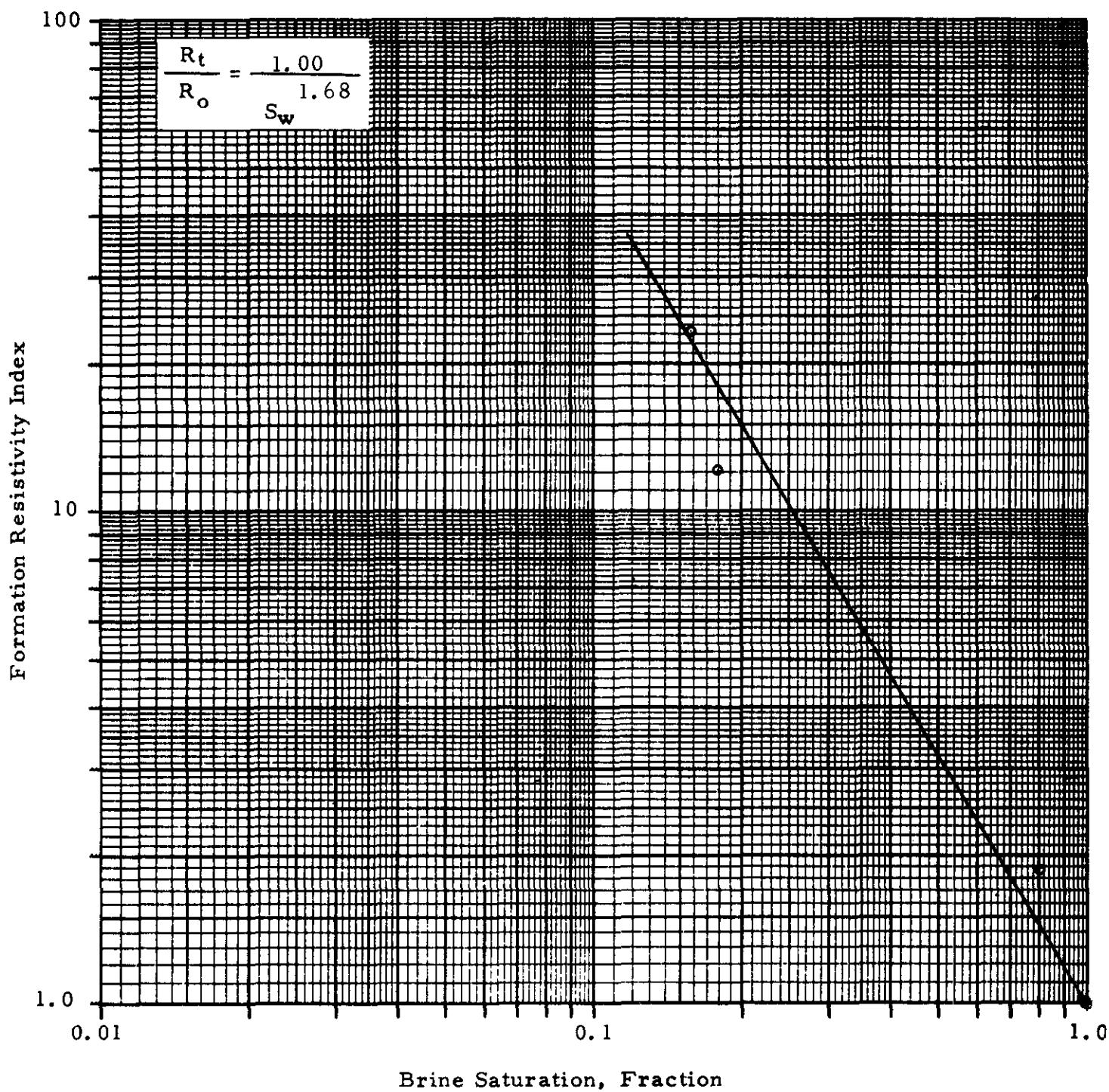

Colville FieldResistivity of Saturating Brine, Ohm-Meters: 0.120 @ 74° F.

1	11.7	60.8	100.0	1.00
			80.5	1.89
10	9.0	87.0	100.0	1.00
11	14.0	41.2	100.0	1.00
15	13.2	43.2	100.0	1.00
			18.0	12.0
18	15.1	31.1	100.0	1.00
			15.9	23.3

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada



Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada


Company Union Oil Co. of Canada Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Composite

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada

Composite

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 14 of 21
File SCAL-75150

Stopover Field

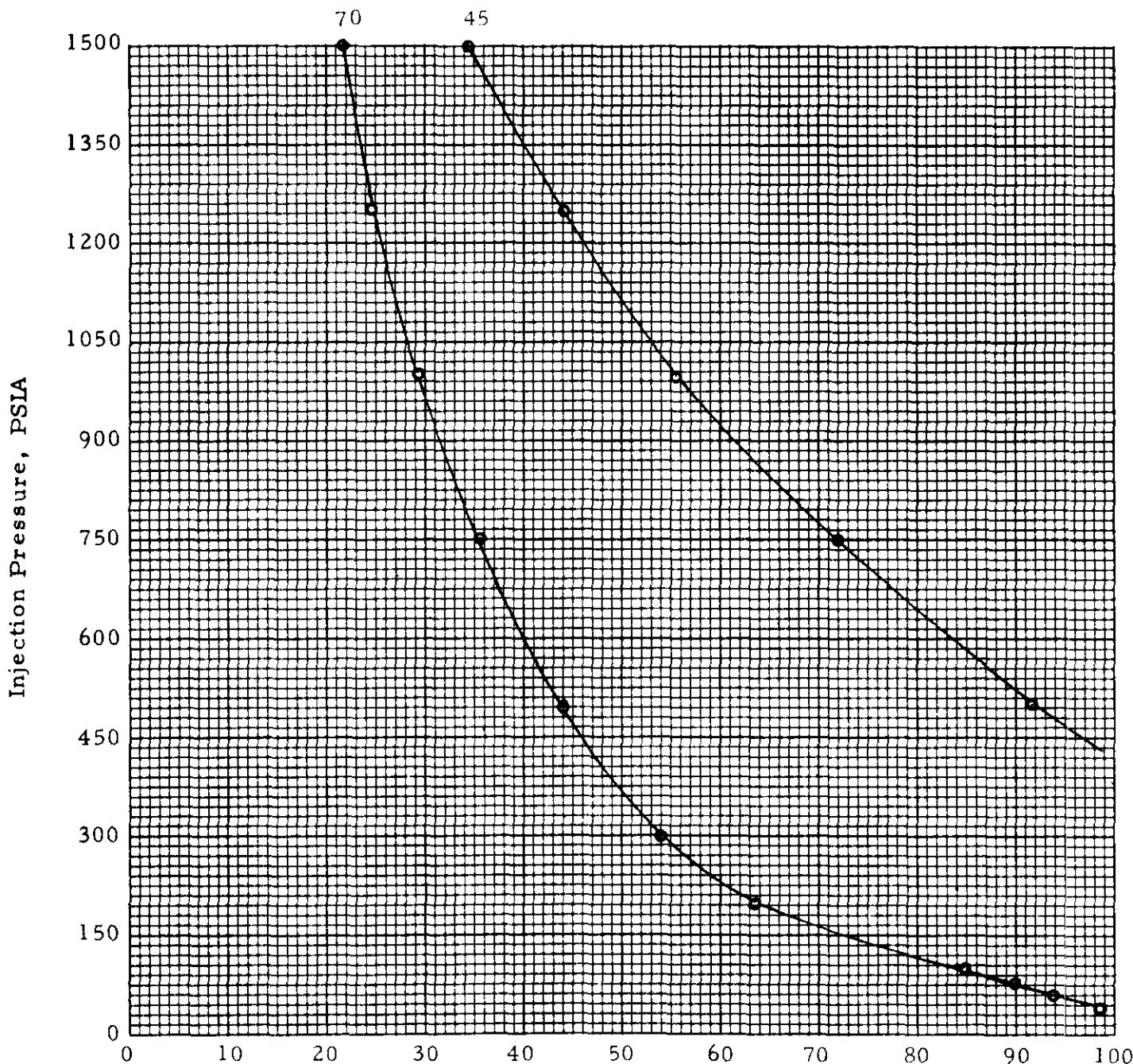
Mercury Injection Capillary Pressure Data

Sample Number:	45	50	70	89	98A	103A
Permeability, Md.:	0.033	0.28	1.3	233	5.5	60
Porosity, Per Cent:	5.6	6.6	13.7	13.2	9.7	14.6
Injection Pressure, PSIA	Wetting Phase Saturation, Per Cent Pore Space					
3	100.0	100.0	100.0	93.0	100.0	100.0
6	100.0	100.0	100.0	71.9	100.0	100.0
9	100.0	100.0	100.0	55.8	100.0	96.9
12	100.0	100.0	100.0	44.1	100.0	85.6
15	100.0	100.0	100.0	38.3	100.0	74.4
18	100.0	100.0	100.0	32.8	100.0	62.9
21	100.0	100.0	100.0	30.1	100.0	57.2
24	100.0	100.0	100.0	27.6	100.0	52.4
27	100.0	100.0	100.0	25.7	100.0	48.9
30	100.0	100.0	100.0	24.5	98.2	46.4
40	100.0	100.0	98.6	21.4	88.0	39.5
60	100.0	100.0	94.0	17.8	67.7	32.7
80	100.0	100.0	89.9	15.8	57.4	30.0
100	100.0	96.6	84.9	14.4	51.0	28.2
200	100.0	73.2	63.5	10.7	39.8	24.2
300	100.0	62.6	54.0	8.7	34.1	22.4
500	91.7	45.5	44.0	6.3	27.7	19.6
750	72.0	34.2	35.6	4.5	23.2	17.2
1000	55.6	28.3	29.3	4.2	20.8	15.0
1250	44.5	23.5	24.9	2.8	19.1	14.5
1500	34.5	21.4	21.9	2.7	18.1	12.2

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

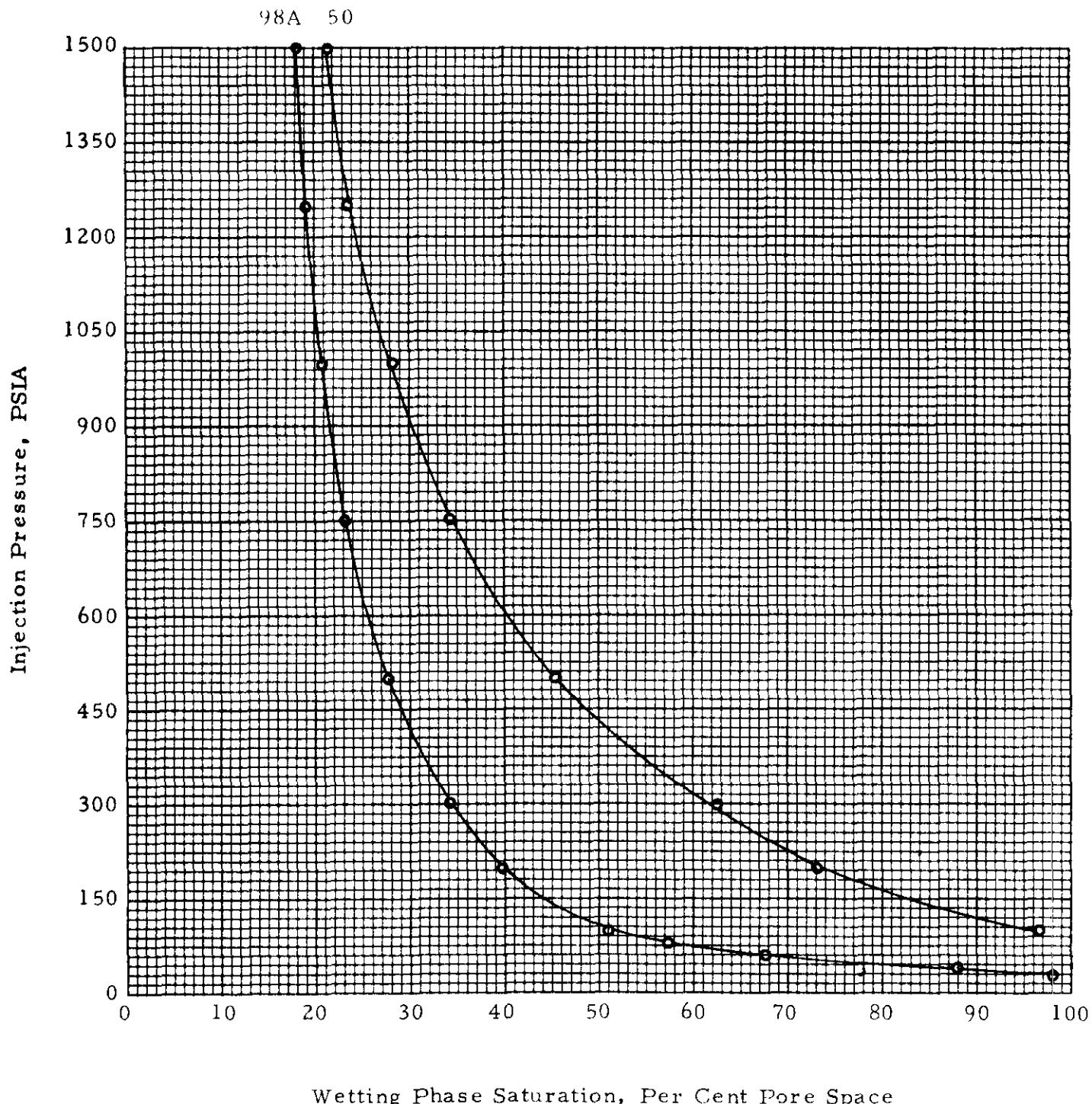
DALLAS, TEXAS

Page 15 of 21File SCAL-75150Colville FieldMercury Injection Capillary Pressure Data

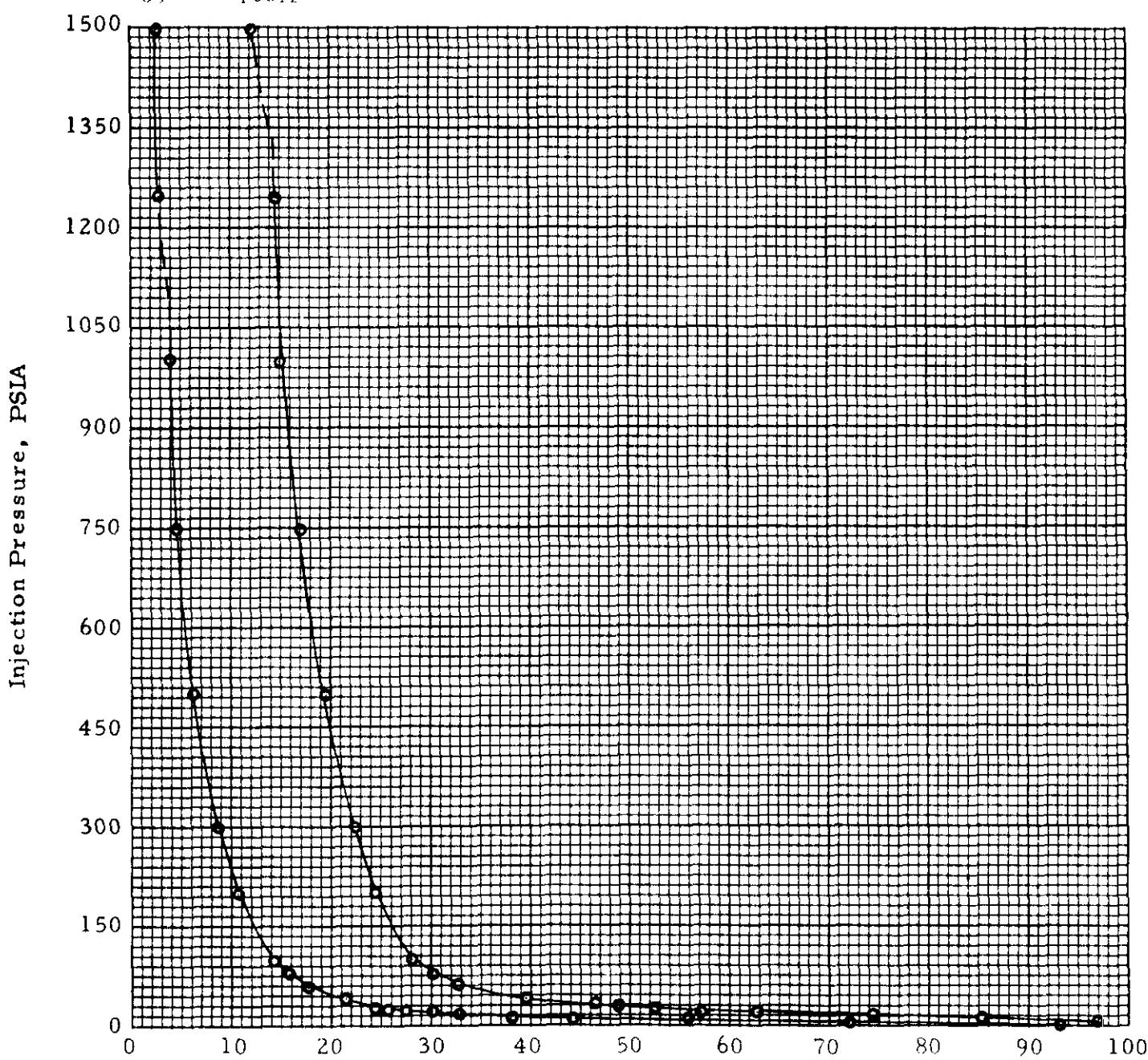

Sample Number:	4	9	11	12	18
Permeability, Md.:	0.56	0.035	18	82	25
Porosity, Per Cent:	11.8	7.9	13.9	12.6	14.6
Injection Pressure, PSIA					
		Wetting Phase Saturation, Per Cent Pore Space			
3	100.0	100.0	100.0	100.0	100.0
6	100.0	100.0	100.0	100.0	100.0
9	100.0	100.0	100.0	100.0	100.0
12	100.0	100.0	100.0	100.0	100.0
15	100.0	100.0	95.4	100.0	100.0
18	100.0	100.0	89.0	98.5	100.0
21	100.0	100.0	83.9	96.1	95.8
24	100.0	100.0	79.9	92.1	85.1
27	100.0	100.0	76.1	90.4	75.9
30	100.0	100.0	73.5	87.6	67.8
40	100.0	100.0	64.7	77.7	51.3
60	100.0	100.0	55.1	65.6	42.0
80	100.0	100.0	48.1	57.3	36.0
100	100.0	100.0	43.2	51.8	31.8
200	73.7	100.0	30.3	38.6	23.2
300	63.7	100.0	24.0	31.3	18.8
500	54.3	100.0	16.8	24.1	13.5
750	46.6	100.0	14.1	20.3	10.9
1000	40.7	78.2	12.2	17.5	9.8
1250	35.5	69.9	10.6	14.5	8.8
1500	31.4	60.5	10.2	13.8	8.7

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 16 of 21
File SCAL-75150

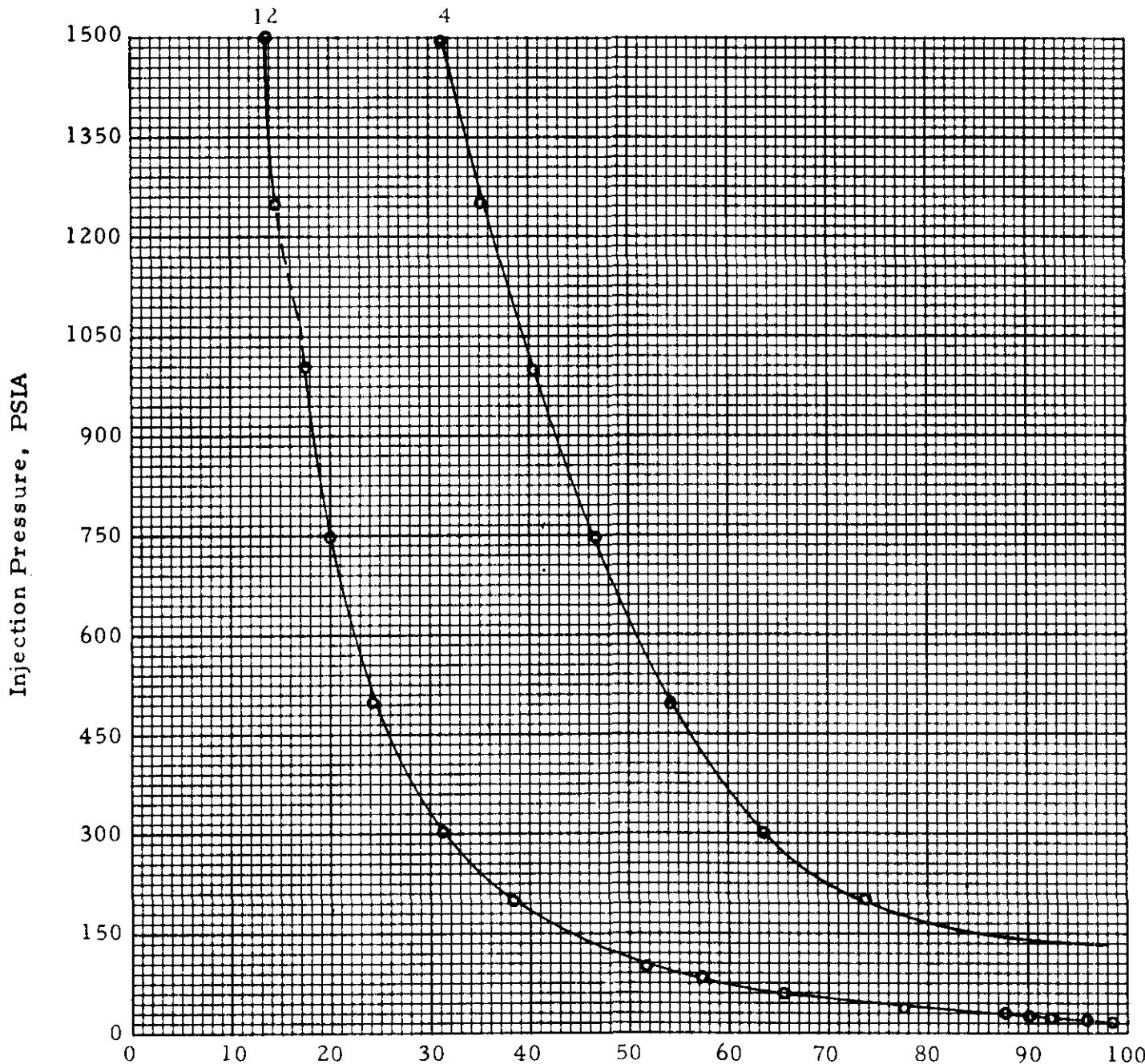

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada

Sample Number: 70 70 45
Permeability, Md. : 1.3 1.3 0.033


Wetting Phase Saturation, Per Cent Pore Space

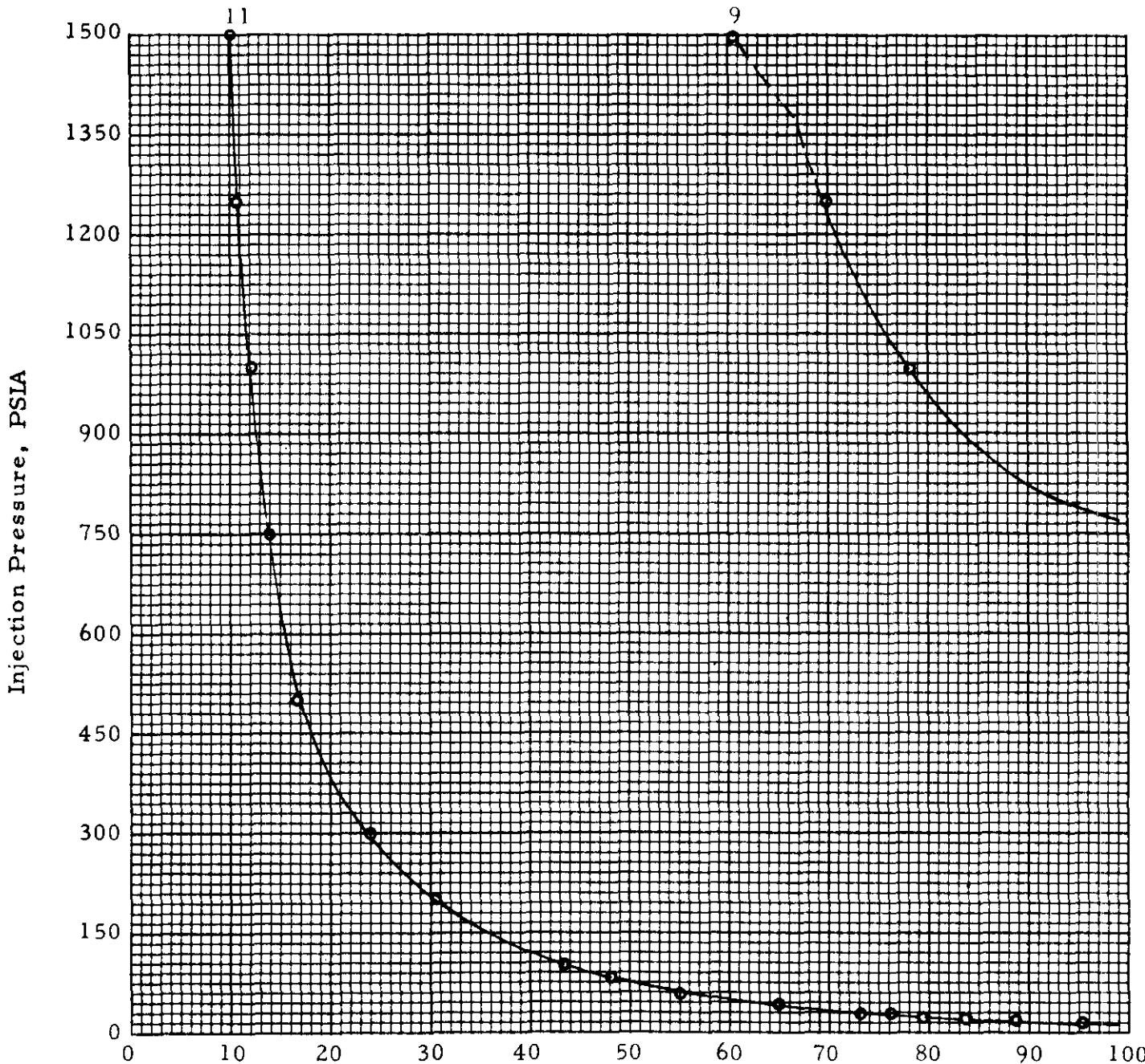
Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada
Sample Number: 98A 50
Permeability, Md.: 5.5 0.28

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Stopover State Canada


Sample Number: 89 103A
Permeability, Md.: 233 6.0
89 103A

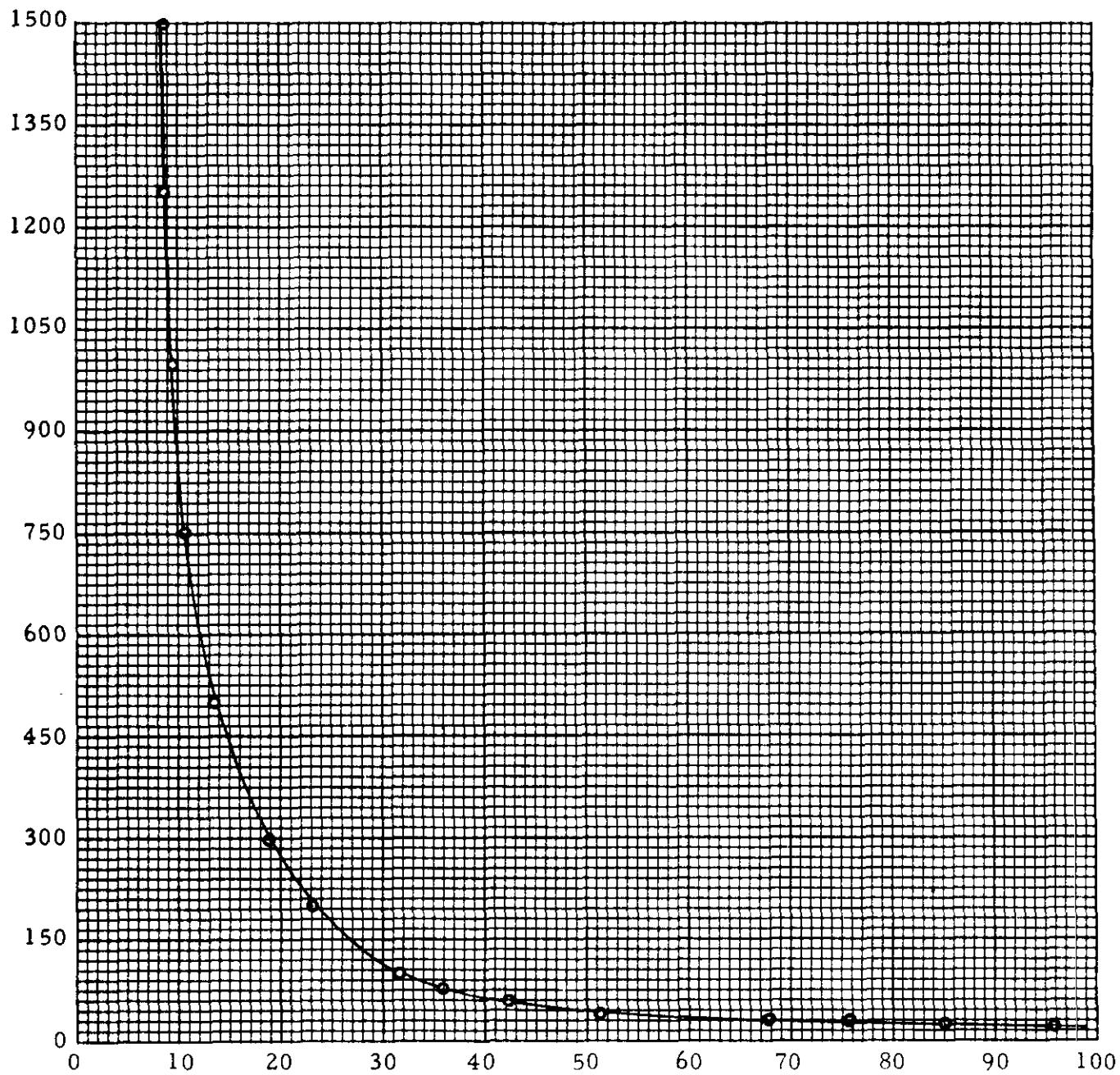
Wetting Phase Saturation, Per Cent Pore Space

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada


Sample Number: 12 4
Permeability, Md.: 8.2 0.56

Wetting Phase Saturation, Per Cent Pore Space

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada


Sample Number: 11 9
Permeability, Md.: 18 0.035

Wetting Phase Saturation, Per Cent Pore Space

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 & Colville D-45 County Northwest Territories
Field Colville State Canada

Sample Number: 18
Permeability, Md.: 25

Wetting Phase Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Special Core Analysis Study
for
UNION OIL COMPANY OF CANADA LIMITED
Stopover K-44 and Colville D-45 Wells
Northwest Territories, Canada

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

March 25, 1976

Union Oil Company of Canada Limited
P. O. Box 999
Calgary, Alberta T2P 2K6
Canada

Attention: Mr. Lorne D. McCluskey

Subject: Special Core Analysis Study
Stopover K-44 and Colville D-45 Wells
Northwest Territories, Canada
File Number: SCAL-75150

Gentlemen:

In letters dated April 25, 1975, June 2, 1975, and June 16, 1975 from Lorne D. McClusky, Core Laboratories, Inc., was requested to perform: (1) Water-Oil Relative Permeability Tests, (2) Mercury Injection Tests, (3) Capillary Pressure Tests, (4) Formation Resistivity Factor Measurements, and (5) Formation Resistivity Index Measurements on sandstone core plugs from the subject wells. The results of the water-oil relative permeability tests are presented herein. The remaining tests are in progress and test results will be submitted as the data becomes available. The core plugs used in this study are identified as to well, sample number, and depth interval on Page 1 and are lithologically described on Page 2.

Fifteen core plugs and nine slabbed well cores were submitted for use in this study. Core plugs, 1-inch in diameter, were drilled from the nine slabbed cores using a diamond core bit with water as the bit coolant and lubricant. All core plugs were extracted of hydrocarbons with toluene, leached of salt with methyl alcohol, and then dried. Air permeabilities and Boyle's law porosities were determined on the cleaned and dried core plugs. The results of the permeability and porosity determinations were submitted to a representative of Union Oil Company of

Canada Limited. Based on the permeability and porosity determinations, core plugs were selected for further testing.

Eleven core plugs, six from the Stopover well and five from the Colville well, were evacuated and saturated with either a simulated Stopover formation water or a simulated Colville formation water. Initial (pseudo-connate) water saturations which averaged 13.0 per cent pore space for the Colville D-45 well and 21.5 per cent pore space for the Stopover K-44 well were established using a centrifugal technique. Effective permeabilities to oil were measured in the presence of the initial water saturations. One core plug from each well contained insufficient permeability for further testing and was deleted from the testing program. Water-oil relative permeability tests were performed using the proper injection water. The results of the water-oil relative permeability tests are summarized by well on Page 3, presented in tabular form on Pages 4 through 11, and in graphical form on Pages 12 through 27.

Because of the limited oil production following water breakthrough for Sample 115, insufficient data was available to calculate the relative permeability characteristics. The results of this test are summarized on Page 3 with the water-oil relative permeability data; however, only end-point data is presented.

The properties of the fluids used in the water-oil relative permeability tests are listed below for your convenience.

Fluid	Temperature, °F.	Density, gm/cc.	Viscosity, Centipoises
Refined Mineral Oil	70	0.8348	20.6
	90	0.8272	12.9
	110	0.8196	8.61
Simulated Colville Water	70	1.038	1.067
	90	1.035	0.845
	110	1.032	0.687
Simulated Stopover Water	70	1.023	1.026
	90	1.019	0.810
	110	1.014	0.653

Union Oil Company of Canada Limited
Stopover K-44 and Colville D-45 Wells

Page Three

The results of the tests on Samples 50A and 98 from the Stopover K-44 well indicate both channeling and plugging. The channeling is indicated by the rapid increase in the relative permeability-to-water curves (Pages 21 and 25) at the low water saturations and the plugging is indicated by the suppressed relative permeability-to-water curves at the high water saturations.

Should you have any questions pertaining to these test results, or if we can be of any assistance, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc.

Duane L. Archer, Manager
Special Core Analysis

DLA:JWW:tl
10 cc. - Addressee

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 1 of 27

File SCAL-75150

Company Union Oil Company of Canada Limited
Number of Wells Two
Field As Noted

Formation Old Fort Sand

County Northwest Territories

State Canada

Identification of Samples

<u>Sample Number</u>	<u>Company</u>	<u>Well</u>	<u>Depth, Feet</u>
<u>Stopover Field</u>			
50A	Union Oil Co. of Canada Ltd.	Union Oil Stopover K-44	2784.1-85.0
88			2813.2-13.5
98			2820.8-21.9
103			2825.6-26.2
115			2834.3-34.9
<u>Colville Field</u>			
1	Union Oil Co. of Canada Ltd.	Union Mobile Colville D-45	3183.2-83.7
11			3218.0-18.7
15			3223.0-23.4
18			3225.9-26.4

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 2 of 27
File SCAL-75150

Lithological Description

<u>Sample Number</u>	<u>Description</u>
<u>Colville D-45</u>	
1	Ss, lt gry, v/fn-silt grn, apparent SiO_2 cement, well indurated, tr musc, pyrite
11	Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminar, tr musc
15	Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminae, tr musc
18	Ss, lt gry-white, fn-v/fn grn, apparent SiO_2 cement, mod-poor indurated, med grn laminae
<u>Stopover K-44</u>	
50A	Ss, red-brn, cse-v/fn grn, apparent SiO_2 cement, well indurated, cse grn concentrations
88	Ss, buff-white, med-fn grn, apparent SiO_2 cement, mod indurated, red-brn staining an upper portion
98	Ss, red-brn - buff white, med-fn grn, apparent SiO_2 cement, well indurated, blotchy color staining, grns uniform
103	Ss, red-brn, cse-fn grn, apparent SiO_2 cement, mod-poor indurated, blotchy color appearance
115	Ss, red-brn-buff white, med-fn grn, apparent SiO_2 cement, well indurated, blotchy color appearance

Summary of Waterflood Test Results

Sample Number	Depth, Feet	Permeability, Millidarcys	Air Porosity, Per Cent	Initial Conditions		Terminal Conditions	
				Water		Saturation, Per Cent Pore Space	Oil Permeability, Millidarcys
				Saturation, Per Cent Pore Space	Oil Permeability, Millidarcys		
<u>Colville D-45</u>							
1	3183.2-83.7	0.35	11.7	14.6	0.065	39.2	0.028
11	3218.0-18.7	12	14.0	13.8	8.5	49.3	6.4
15	3223.0-23.4	7.3	13.2	11.6	4.8	52.4	4.1
18	3225.9-26.4	20	15.1	11.9	10.5	38.8	8.8
<u>Stopover K-44</u>							
50A	2784.1-85.0	1.2	8.3	28.7	0.67	52.4	0.001
88	2813.2-13.5	130	12.8	12.6	117	48.6	27
98	2820.8-21.9	12	10.1	25.8	9.0	55.3	0.15
103	2825.6-26.2	118	14.7	18.1	100	42.0	7.5
115*	2834.3-34.9	1.7	10.8	22.2	8.7	49.0	0.29

* Insufficient data for relative permeability calculation.

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 4 of 27
 File SCAL-75150

Water-Oil Relative Permeability Data

Sample Number	1	Initial Water Saturation, Per Cent Pore Space	14.6
Air Permeability, Md.	0.35	Porosity, Per Cent	11.7
Oil Permeability at			
Initial Water Saturation, Md.	0.065		

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
14.6		.000	1.000
35.5	.070	.027	.388
43.2	.687	.103	.150
49.4	4.66	.205	.044
54.3	25.3	.304	.012
56.3	59.5	.345	.0058
58.6	216	.389	.0018
59.6	540	.405	.00075
60.8		.431	

* Relative to oil permeability.

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering***DALLAS, TEXAS**Page 5 of 27File SCAL-75150**Water-Oil Relative Permeability Data**

Sample Number 11
 Air Permeability, Md. 12
 Oil Permeability at
 Initial Water Saturation, Md. 8.5

Initial Water Saturation,
 Per Cent Pore Space 13.8
 Porosity, Per Cent 14.0

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
13.8		.000	1.000
19.7	.098	.035	.355
23.4	.973	.178	.183
25.0	1.74	.240	.138
29.1	5.72	.389	.068
35.2	22.4	.538	.024
39.8	57.3	.617	.011
43.5	124	.661	.0053
45.5	188	.690	.0037
50.7		.746	

* Relative to oil permeability.

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

Page 6 of 27File SCAL-75150**Water-Oil Relative Permeability Data**

Sample Number 15
 Air Permeability, Md. 7.3
 Oil Permeability at
 Initial Water Saturation, Md. 4.8

Initial Water Saturation,
 Per Cent Pore Space 11.6
 Porosity, Per Cent 13.2

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
11.6		.000	1.000
16.6	.511	.225	.440
20.7	2.07	.420	.203
22.1	2.93	.468	.160
23.5	4.12	.515	.125
27.8	10.4	.617	.059
31.7	22.7	.680	.030
39.0	97.5	.780	.0080
41.3	162	.805	.0050
47.6		.850	

* Relative to oil permeability.

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

DALLAS, TEXAS

Page 7 of 27File SCAL-75150**Water-Oil Relative Permeability Data**

Sample Number 18
 Air Permeability, Md. 20
 Oil Permeability at
 Initial Water Saturation, Md. 10.5

Initial Water Saturation,
 Per Cent Pore Space 11.9
 Porosity, Per Cent 15.1

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
11.9		.000	1.000
24.2	.108	.038	.350
29.4	.723	.141	.195
32.0	1.43	.209	.146
36.3	4.00	.332	.083
42.5	15.0	.540	.036
44.9	23.0	.621	.027
47.3	36.5	.693	.019
50.0	58.4	.759	.013
53.1	87.9	.800	.0091
55.0	120	.825	.0069
61.2		.839	

* Relative to oil permeability.

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 8 of 27

File SCAL-75150

Water-Oil Relative Permeability Data

Sample Number 50A
 Air Permeability, Md. 1.2
 Oil Permeability at
 Initial Water Saturation, Md. 0.67

Initial Water Saturation,
 Per Cent Pore Space 28.7
 Porosity, Per Cent 8.3

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
28.7		.000	1.000
30.4	.050	.0049	.098
32.5	1.00	.010	.010
34.5	4.33	.013	.0030
35.9	7.78	.014	.0018
38.4	17.2	.016	.00093
40.6	33.8	.017	.00051
43.0	59.8	.018	.00030
47.6		.019	

* Relative to oil permeability.

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

DALLAS, TEXAS

Page 9 of 27File SCAL-75150**Water-Oil Relative Permeability Data**

Sample Number 88
 Air Permeability, Md. 130
 Oil Permeability at
 Initial Water Saturation, Md. 117

Initial Water Saturation,
 Per Cent Pore Space 12.6
 Porosity, Per Cent 12.8

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
12.6		.000	1.000
19.1	.0080	.0049	.610
24.3	.068	.027	.399
28.5	.199	.055	.277
31.3	.369	.076	.206
35.5	.835	.106	.127
39.4	1.94	.132	.068
42.4	4.62	.157	.034
44.4	9.10	.173	.019
45.8	14.8	.183	.012
46.7	21.6	.190	.0088
48.5	53.9	.205	.0038
49.3	92.2	.211	.0023
51.4		.231	

* Relative to oil permeability.

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

DALLAS, TEXAS

Page 10 of 27File SCAL-75150**Water-Oil Relative Permeability Data**

Sample Number	98
Air Permeability, Md.	12
Oil Permeability at	
Initial Water Saturation, Md.	9.0

Initial Water Saturation, Per Cent Pore Space	25.8
Porosity, Per Cent	10.1

Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
25.8		.000	1.000
30.3	.040	.0078	.195
33.7	.214	.012	.056
38.3	1.52	.014	.0092
41.1	4.41	.015	.0034
43.1	16.7	.015	.0009
44.3	533	.016	.00003
44.7		.016	

* Relative to oil permeability.

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

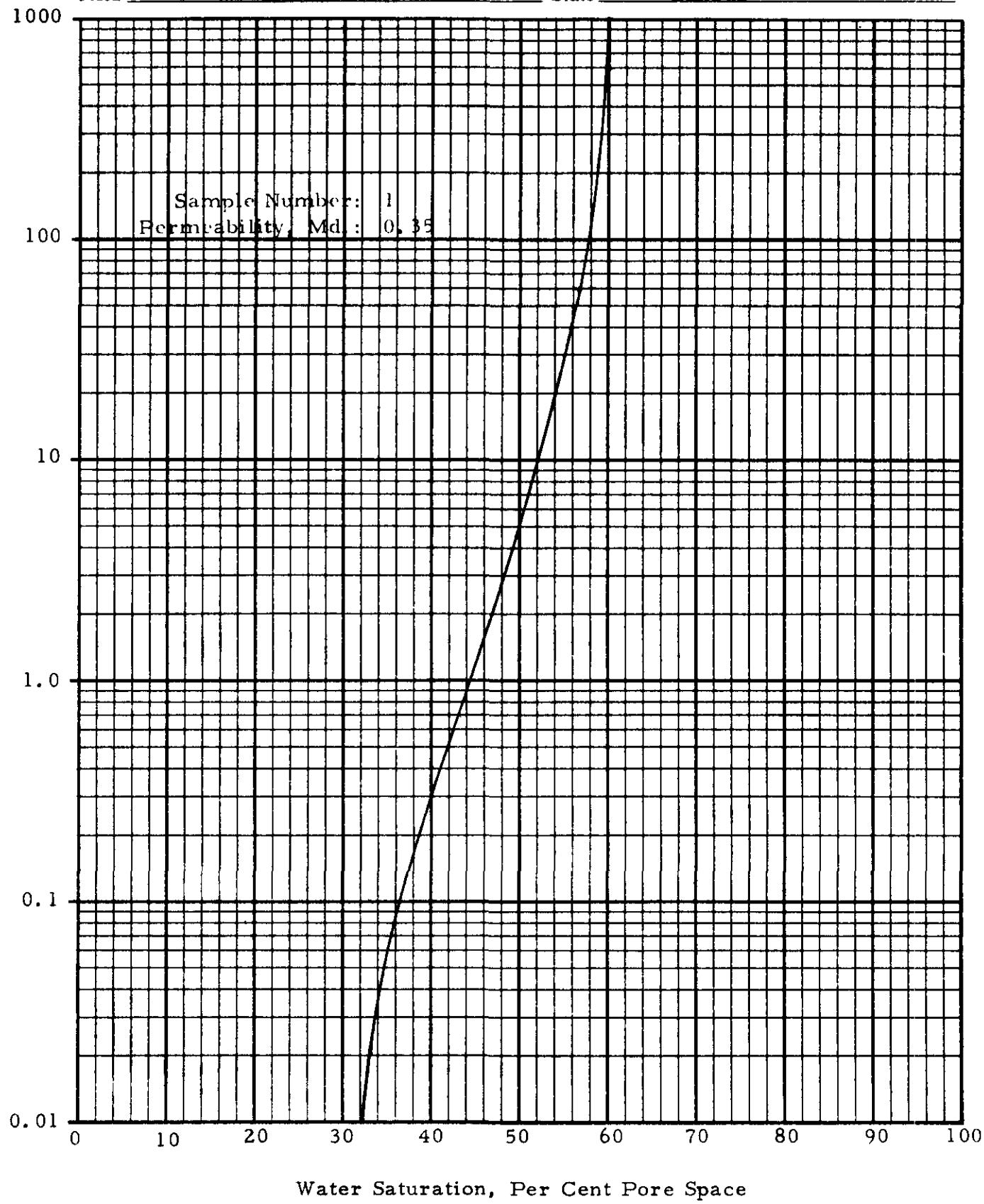
DALLAS, TEXAS

Page 11 of 27

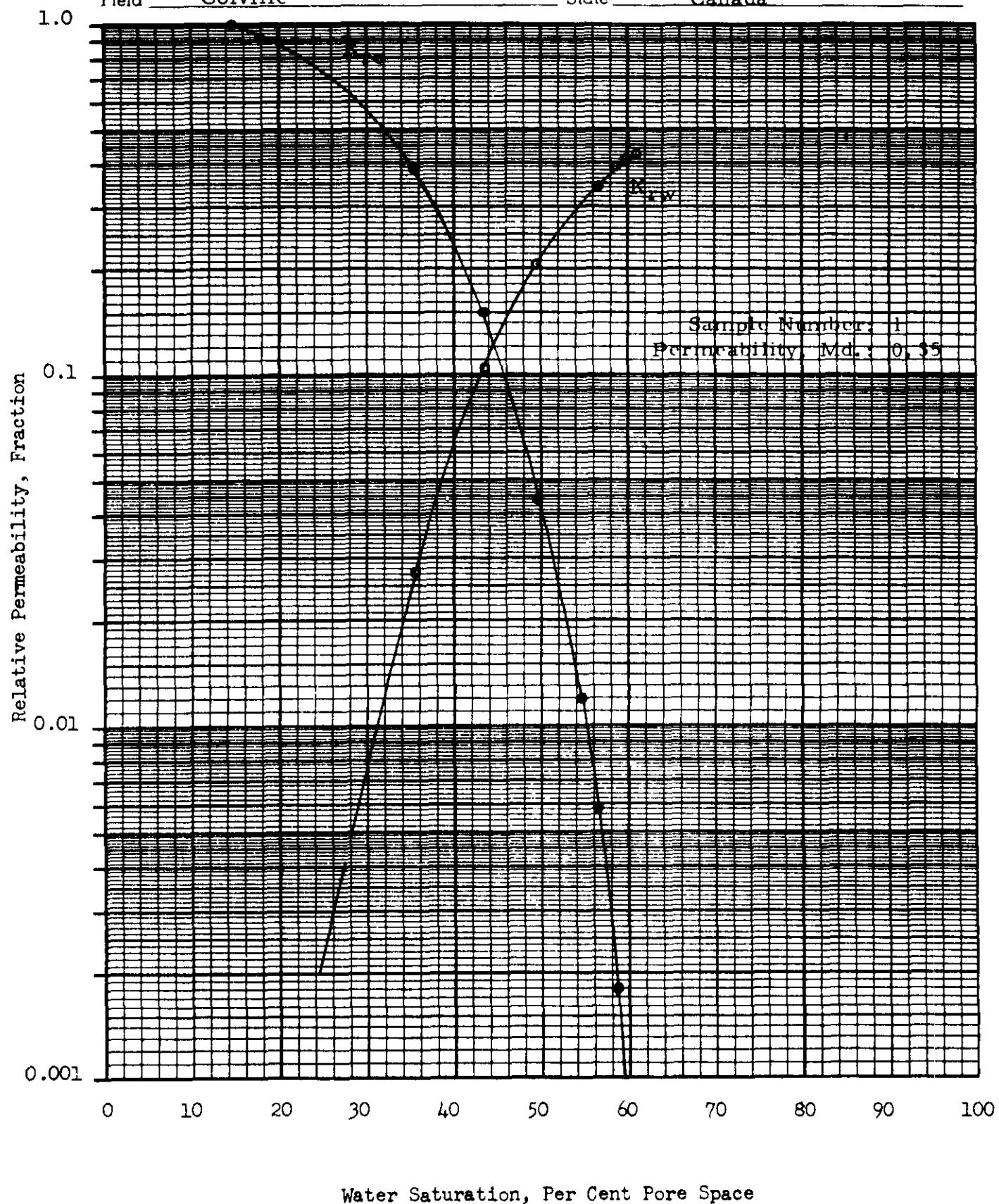
File SCAL-75150

Water-Oil Relative Permeability Data

Sample Number 103
 Air Permeability, Md. 118
 Oil Permeability at
 Initial Water Saturation, Md. 100

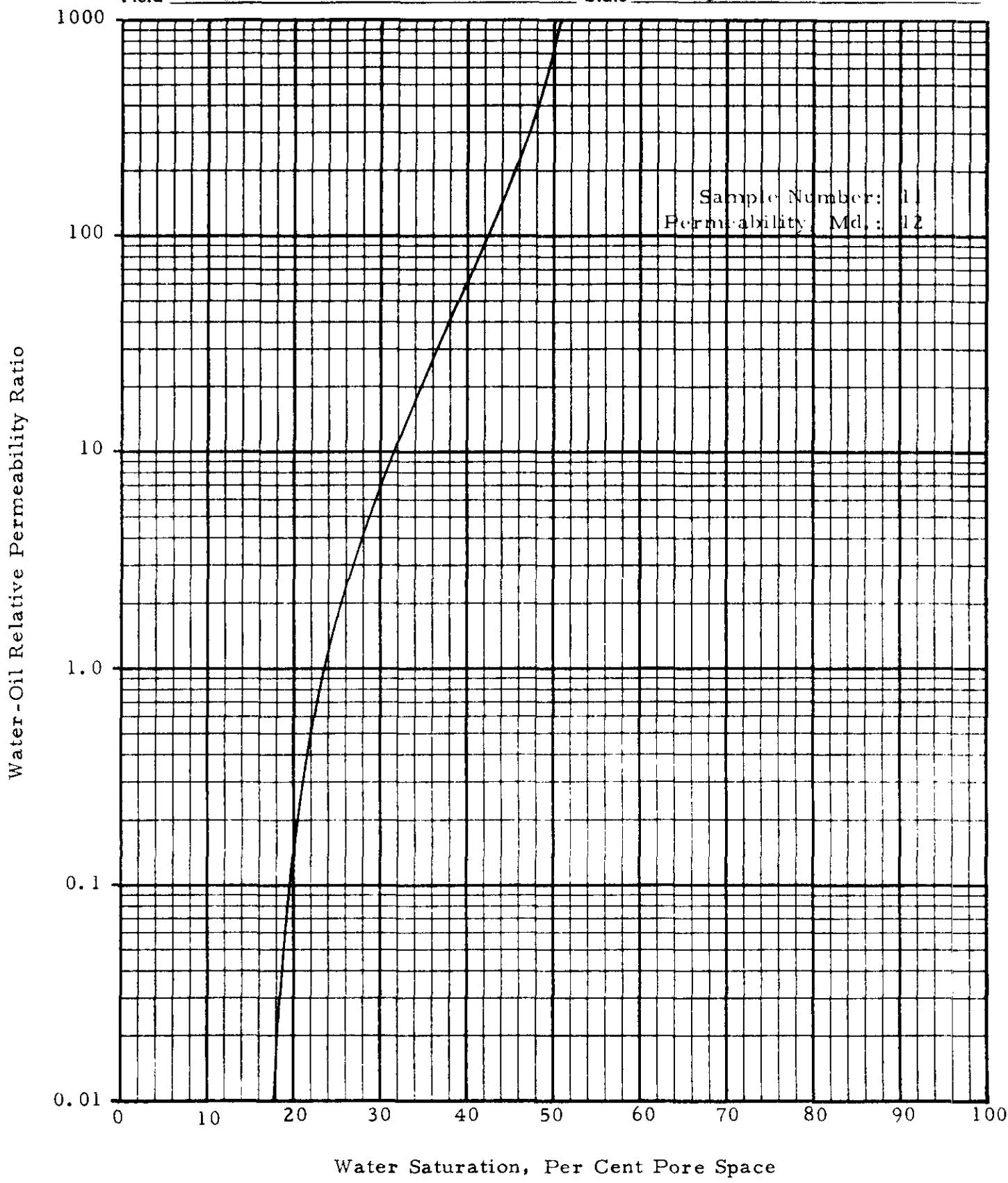

Initial Water Saturation,
 Per Cent Pore Space 18.1
 Porosity, Per Cent 14.7

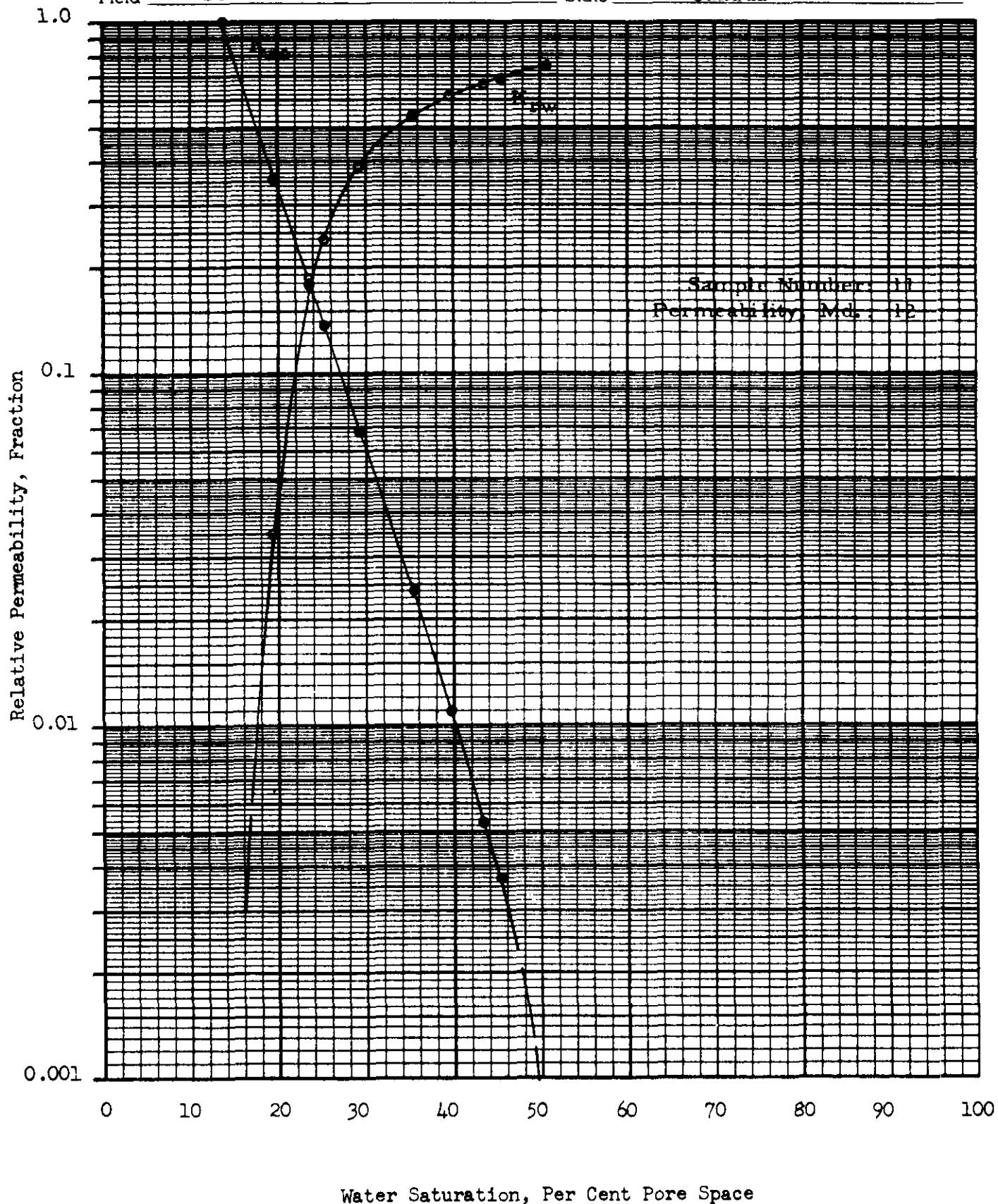
Water Saturation, Per Cent Pore Space	Water-Oil Relative Permeability Ratio	Relative Permeability To Water*, Fraction	Relative Permeability to Oil*, Fraction
18.1		.000	1.000
35.3	.0063	.0014	.221
41.2	.058	.0070	.121
47.3	.444	.024	.054
52.3	2.68	.045	.017
54.9	11.4	.057	.0050
55.9	35.8	.061	.0017
56.8	112	.067	.00060
57.3	260	.069	.00027
58.1		.075	


* Relative to oil permeability.

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

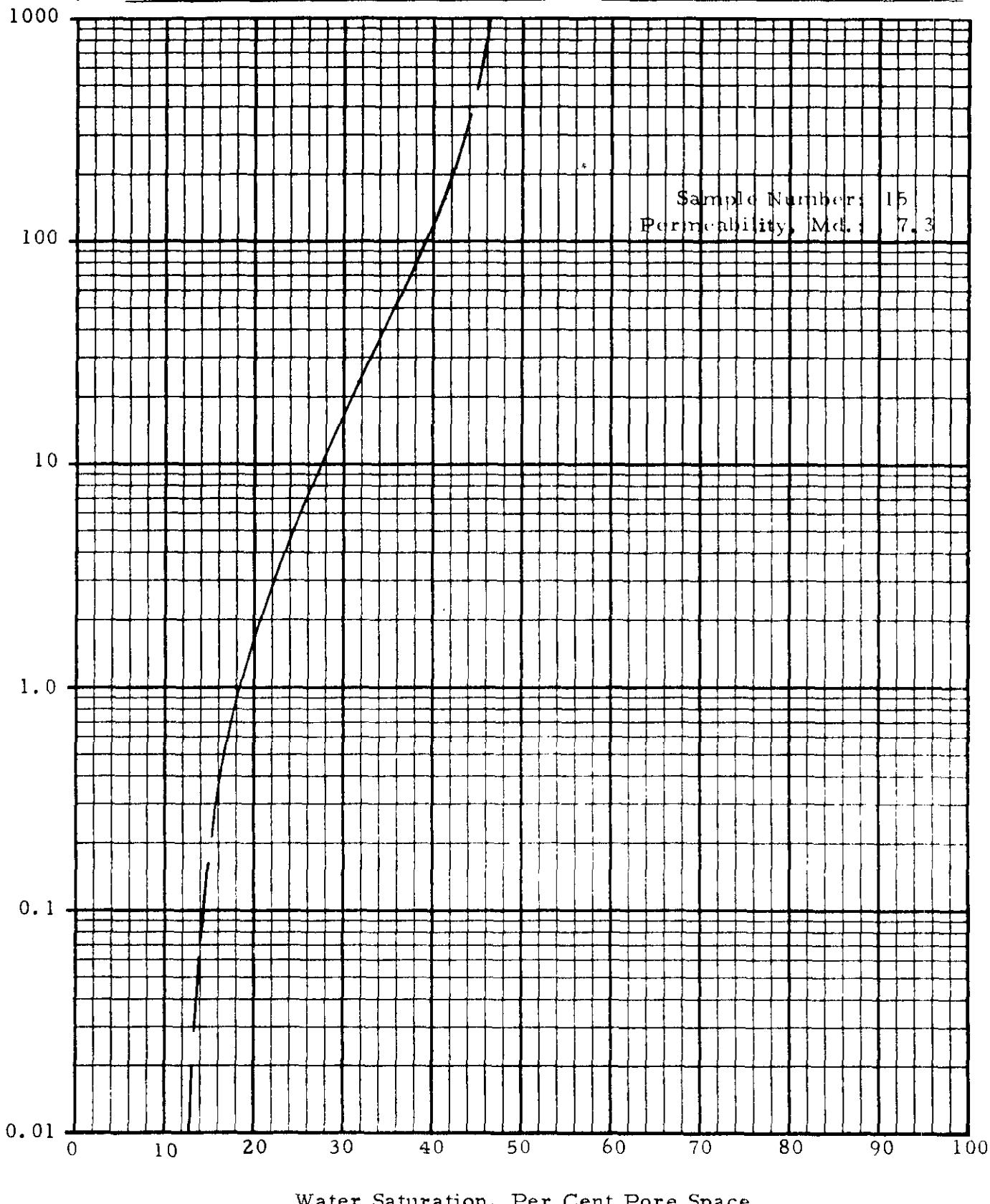
Water-Oil Relative Permeability Ratio


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada


CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

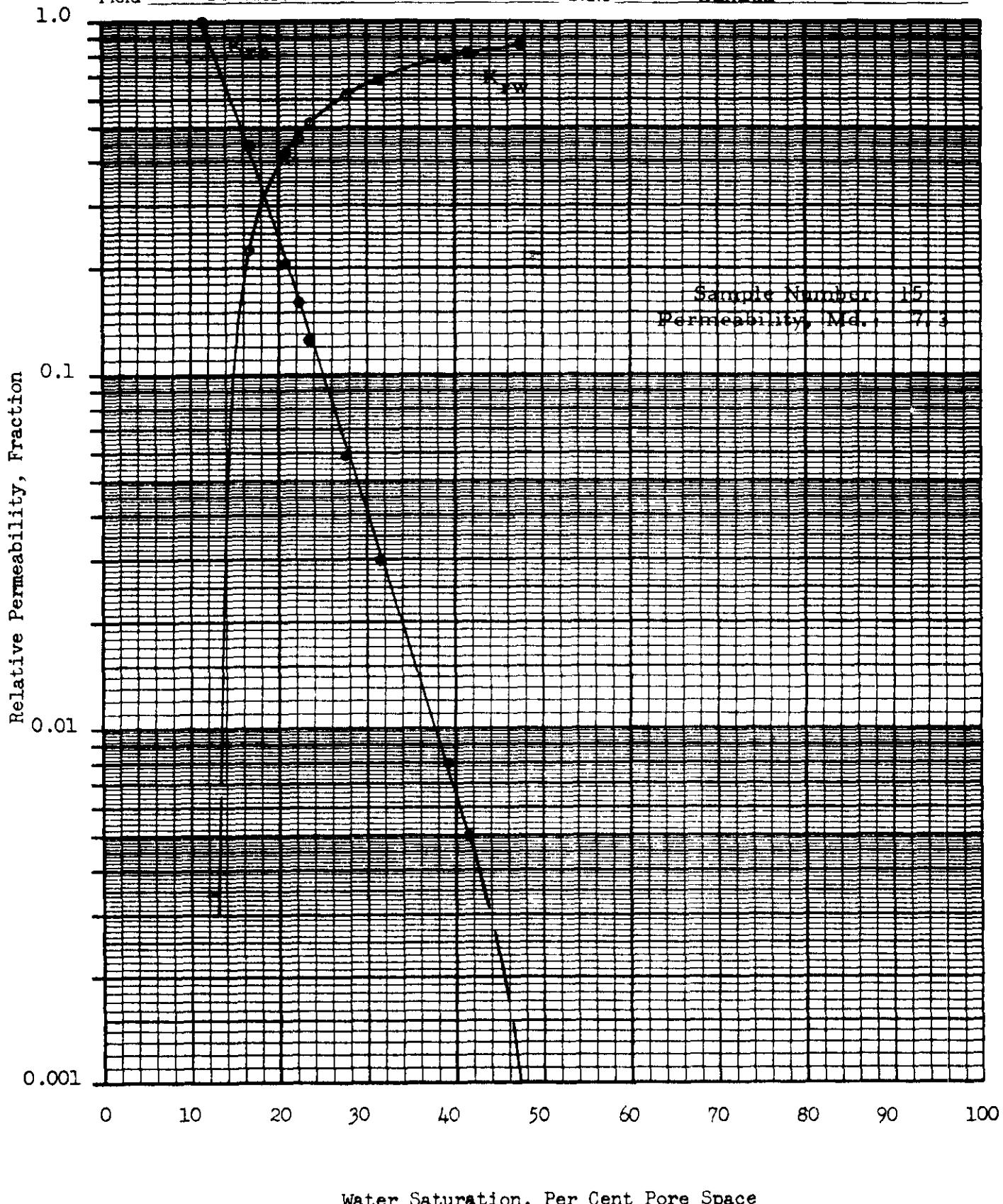
Page 14 of 27
File SCAL-75150

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

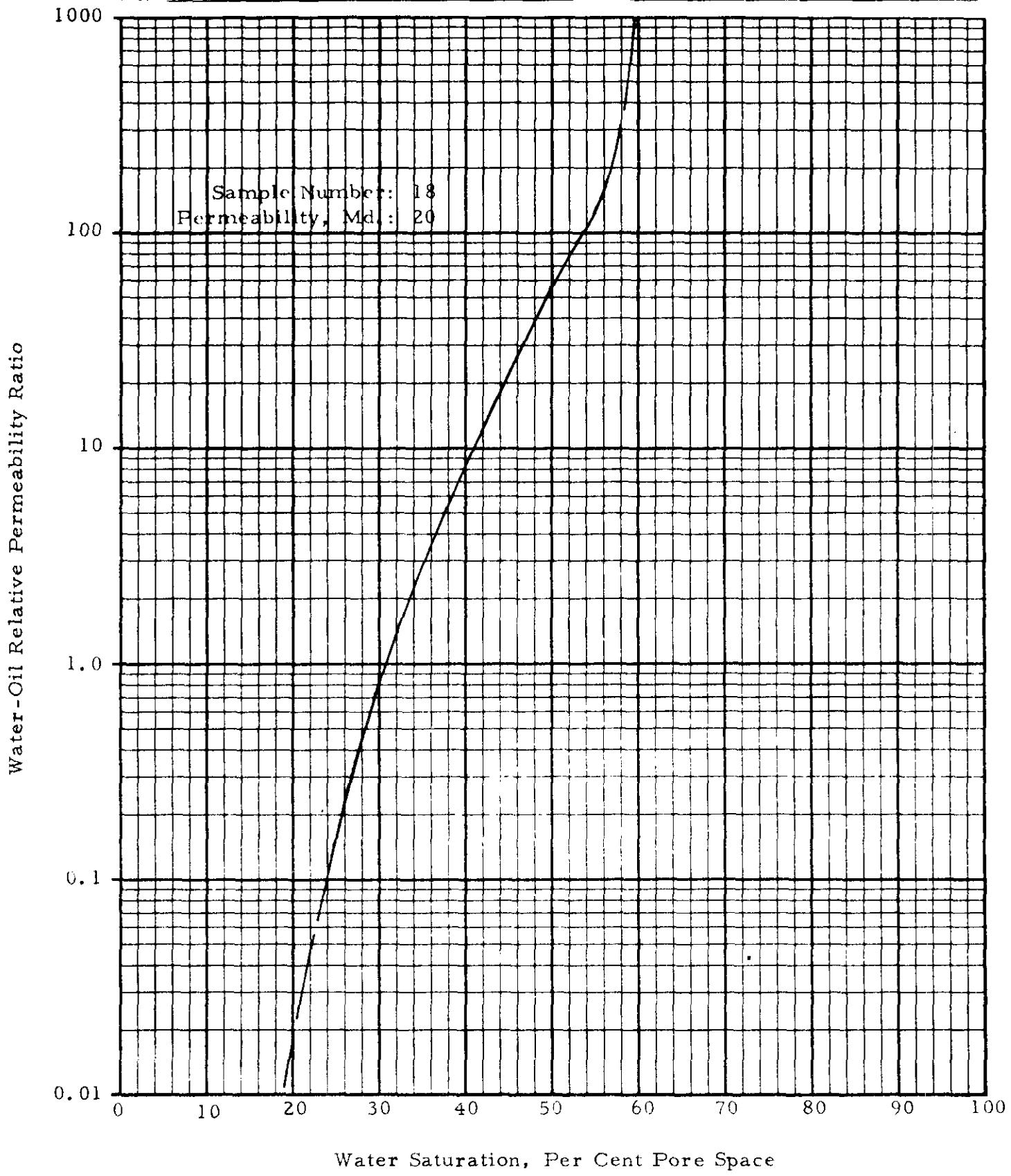
CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

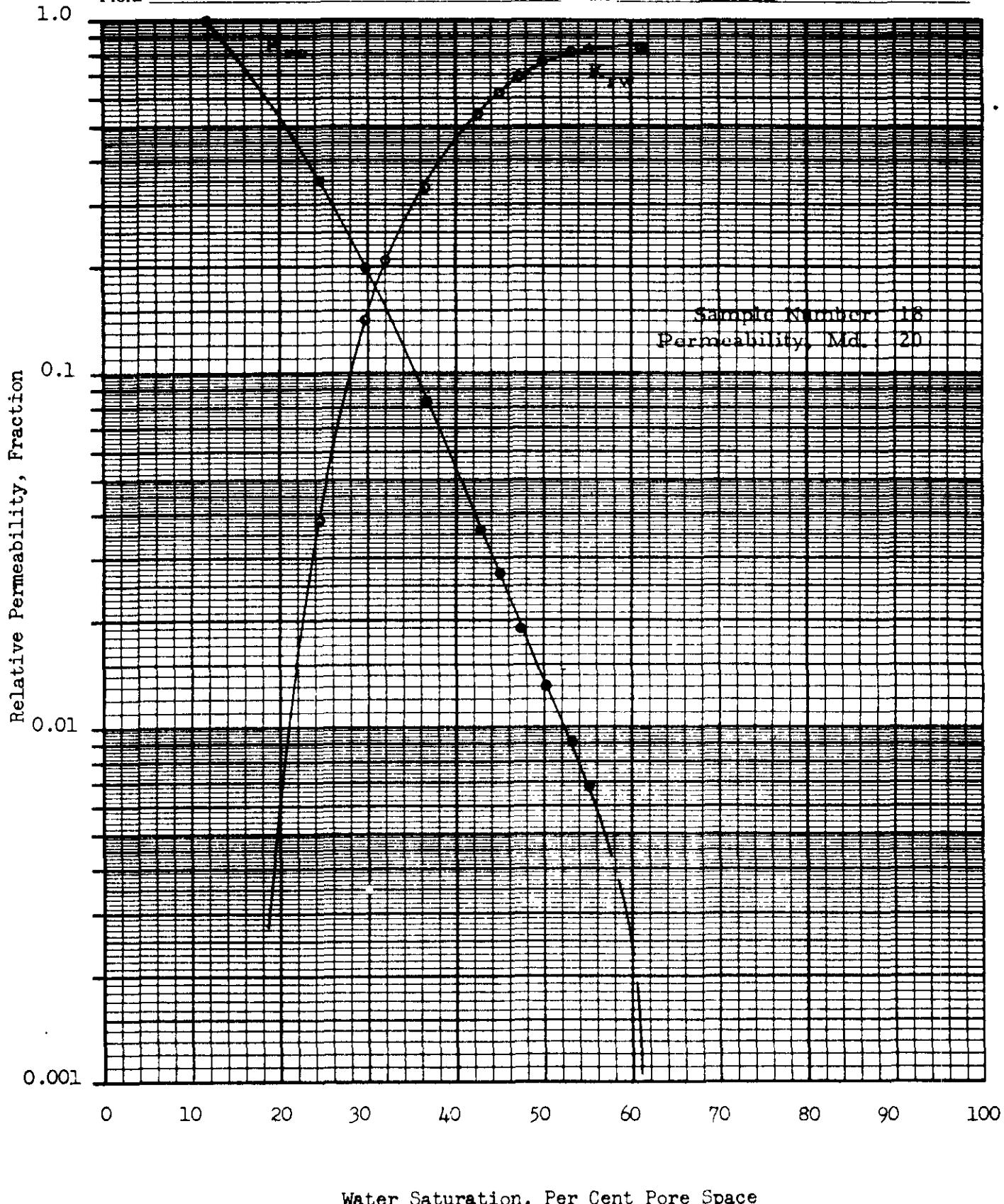
Page 16 of 27
File SCAL-75150


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

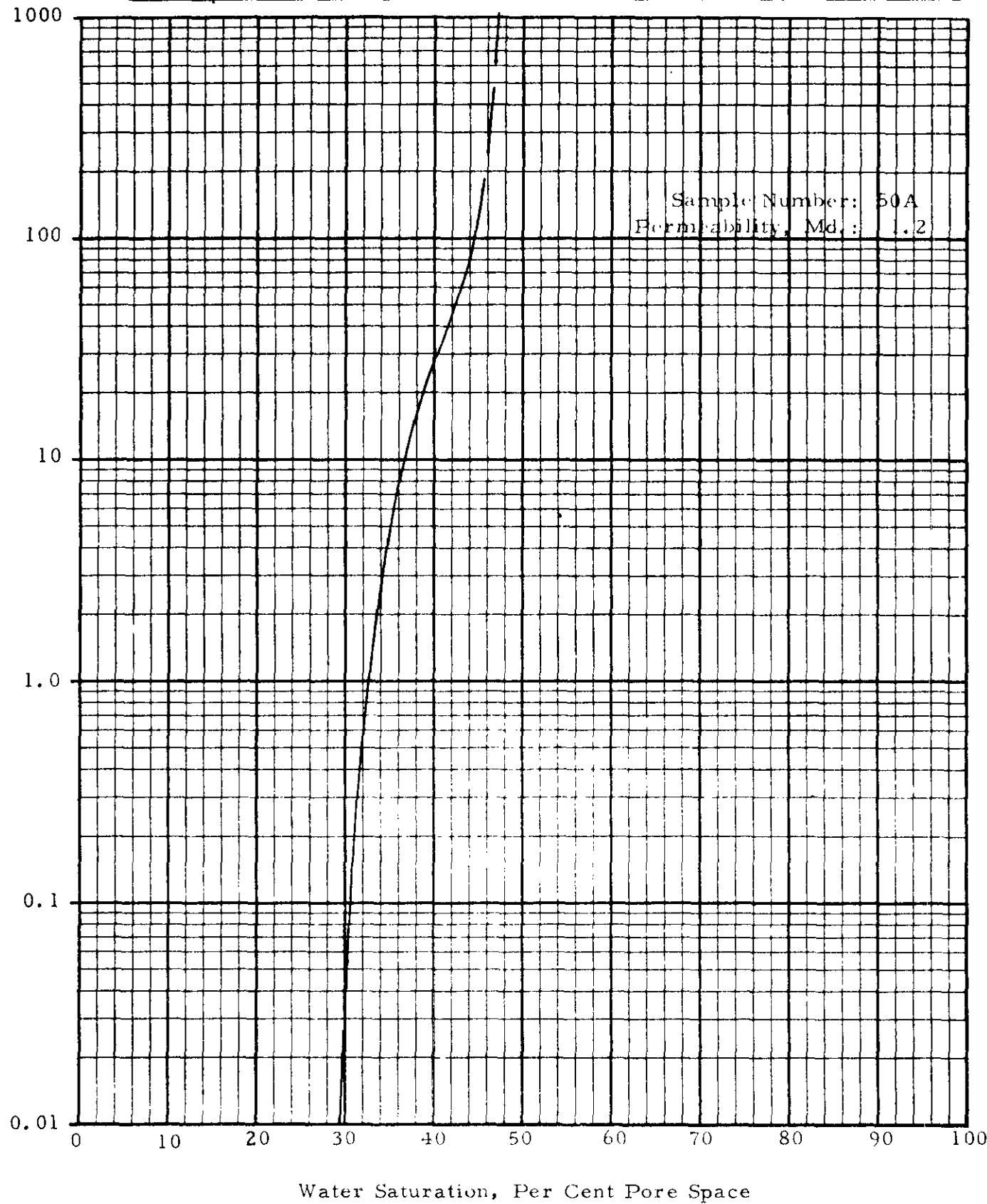
Page 17 of 27
File SCAL-75150


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada


CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

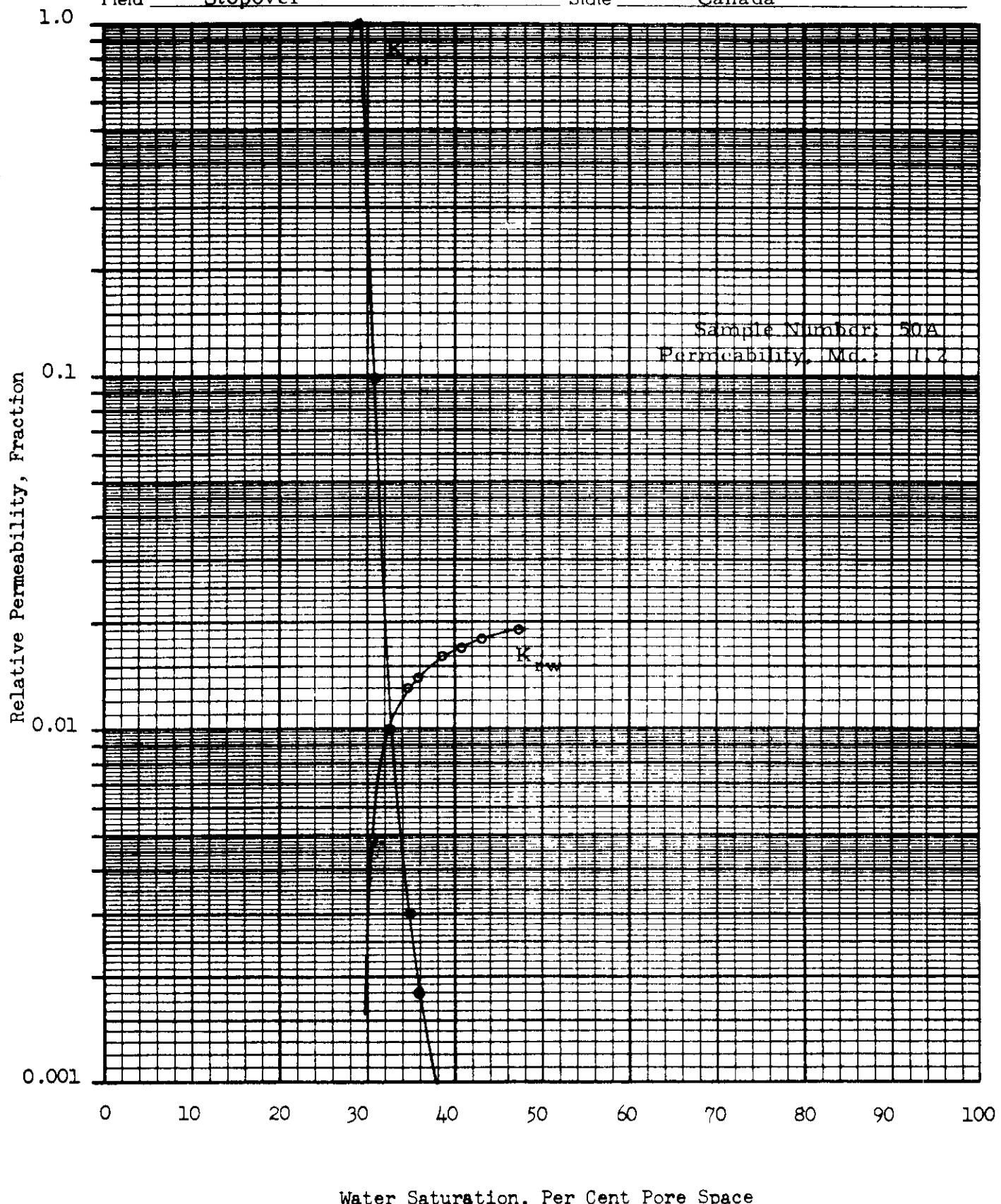
Page 18 of 27
File SCAL-75150

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Mobile Colville D-45 County Northwest Territories
Field Colville State Canada

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 20 of 27
File SCAL-75150


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada

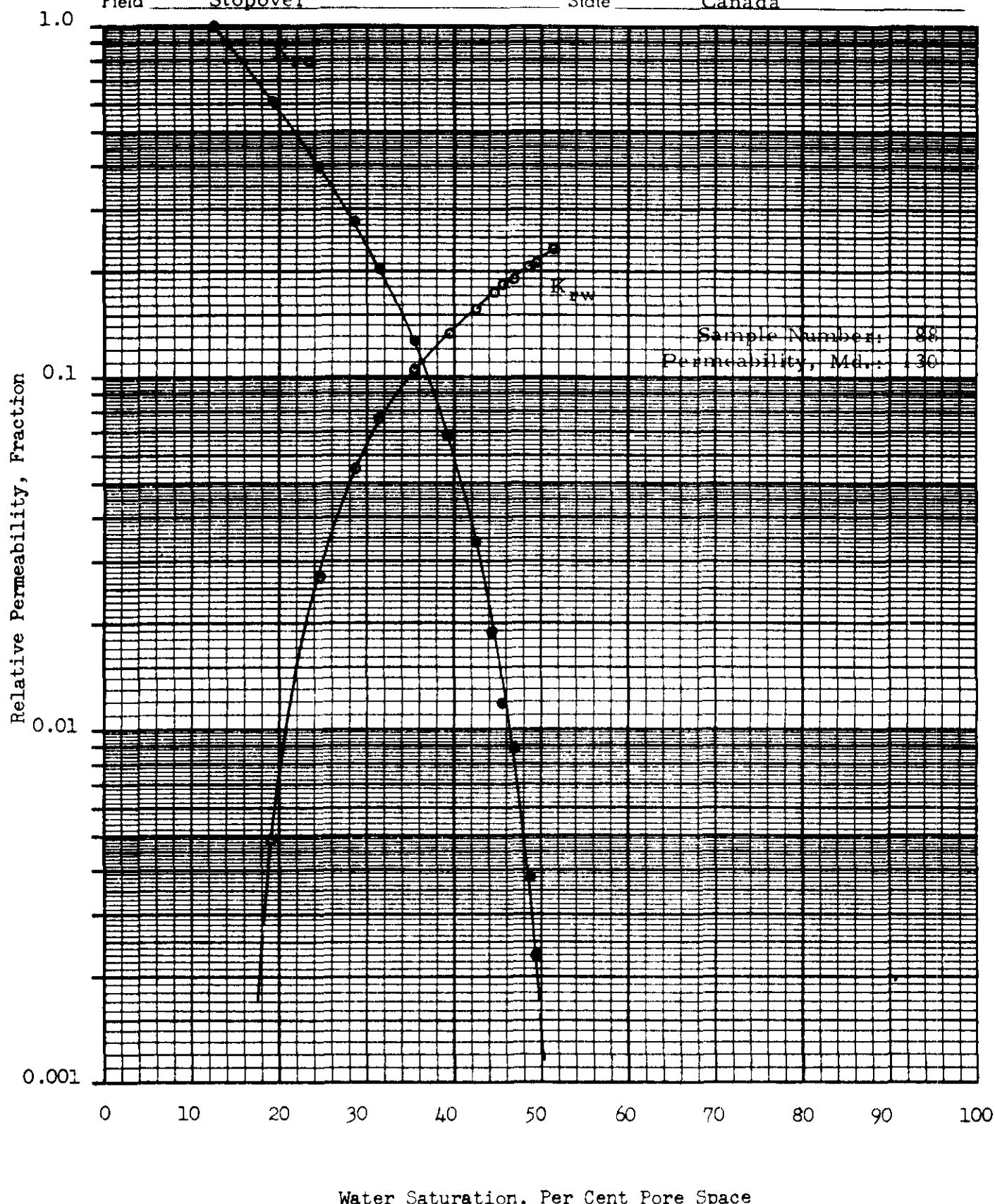
CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 21 of 27
File SCAL-75150

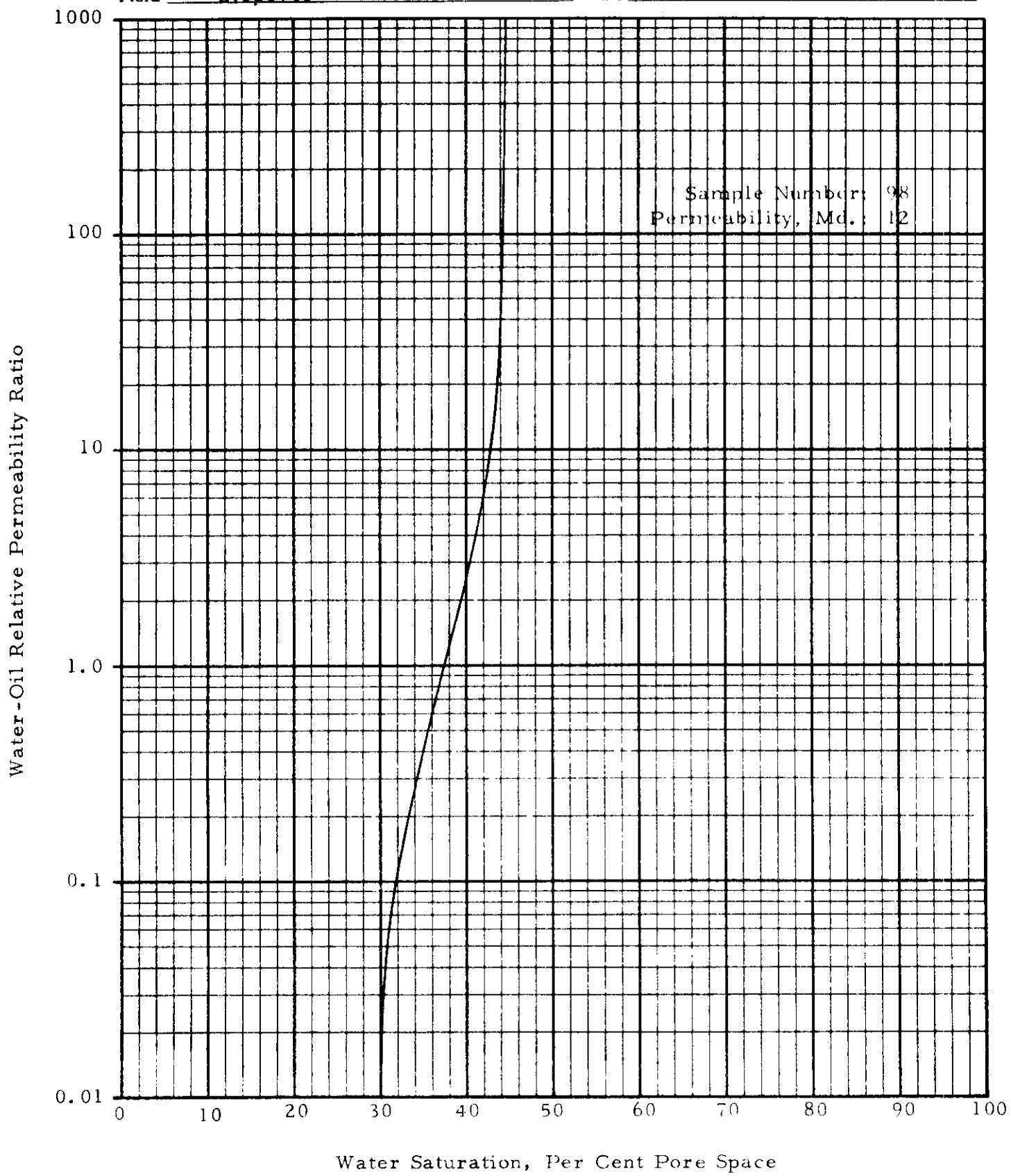
Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada



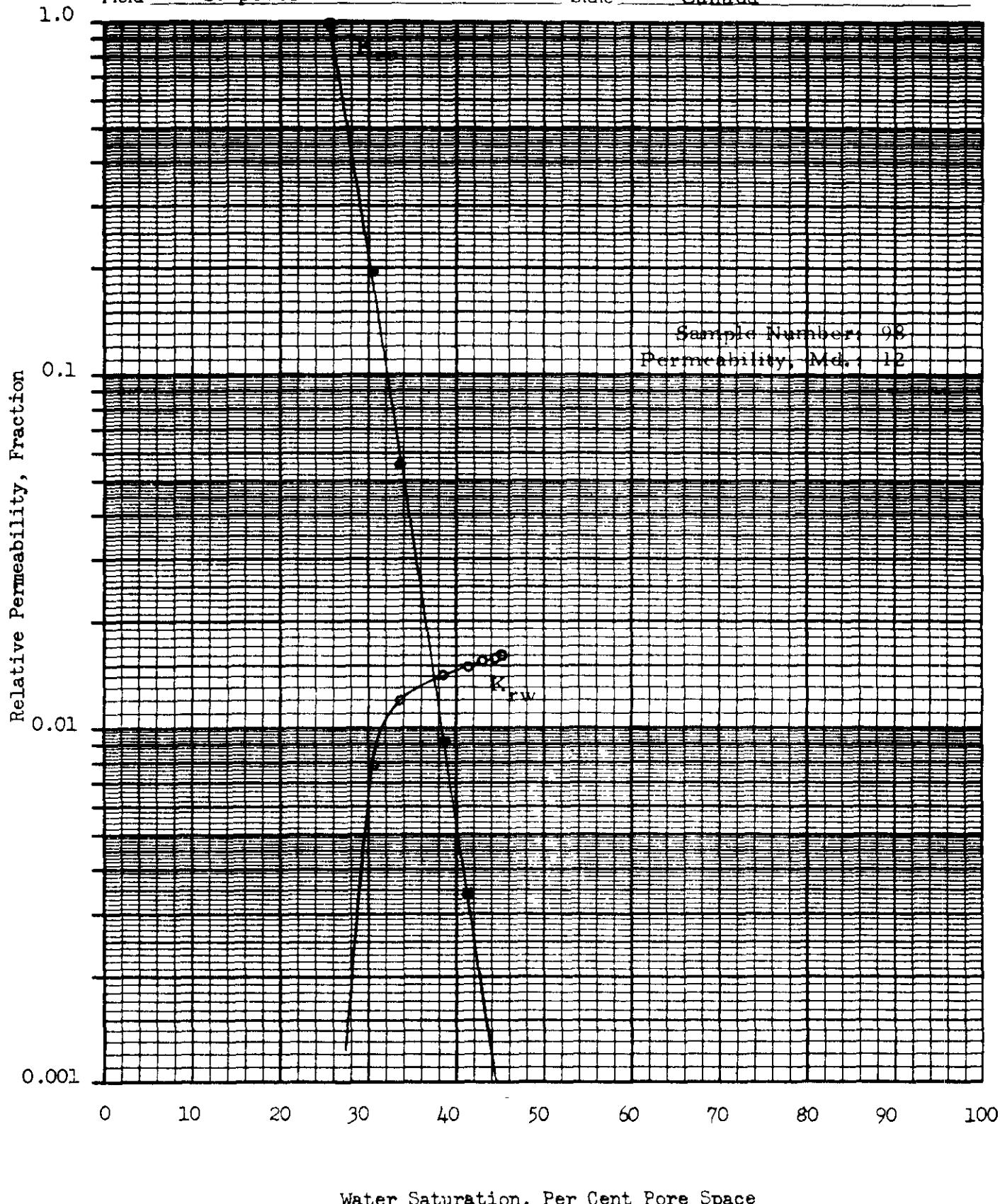
CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

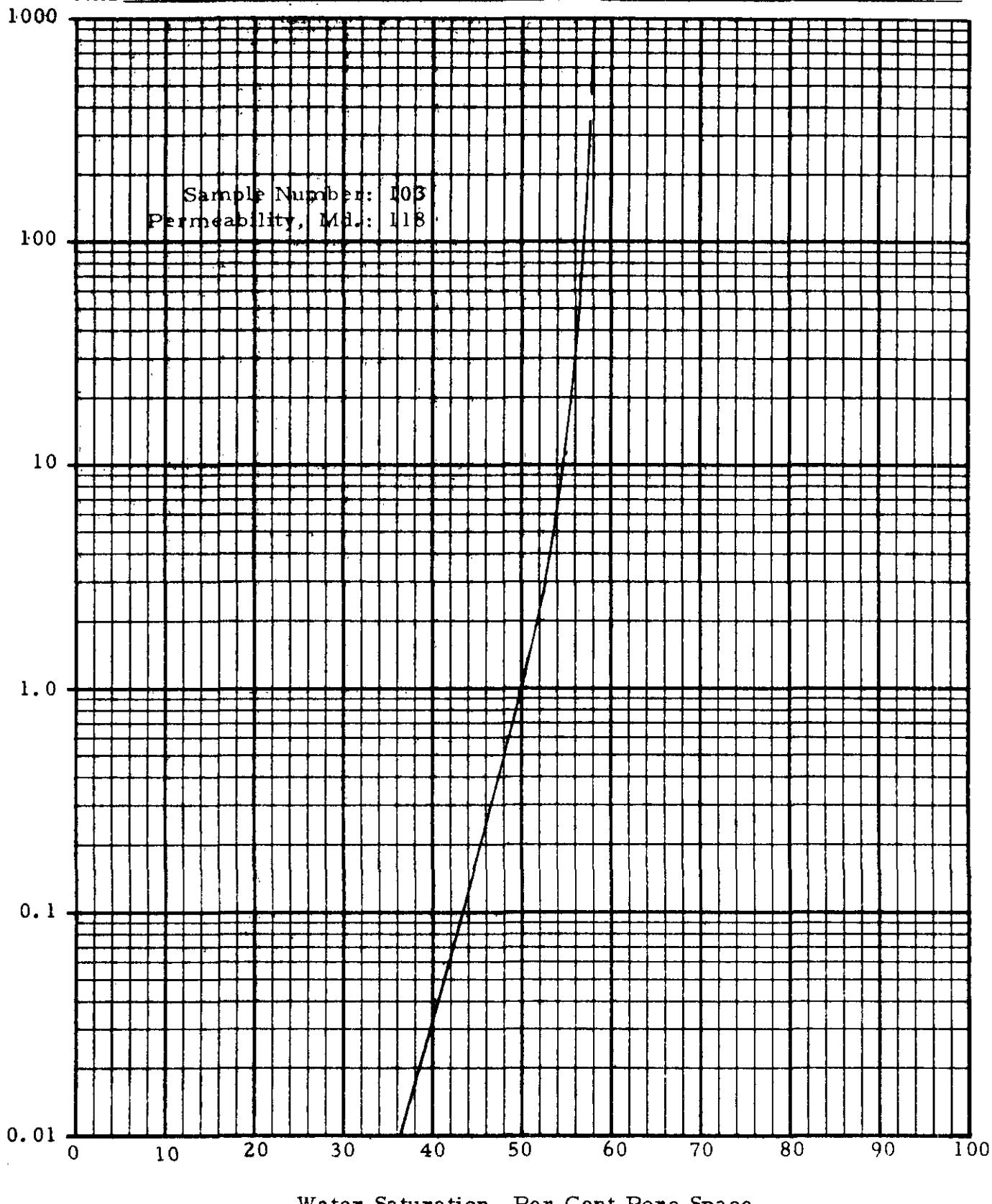

Page 22 of 27
File SCAL-75150

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada

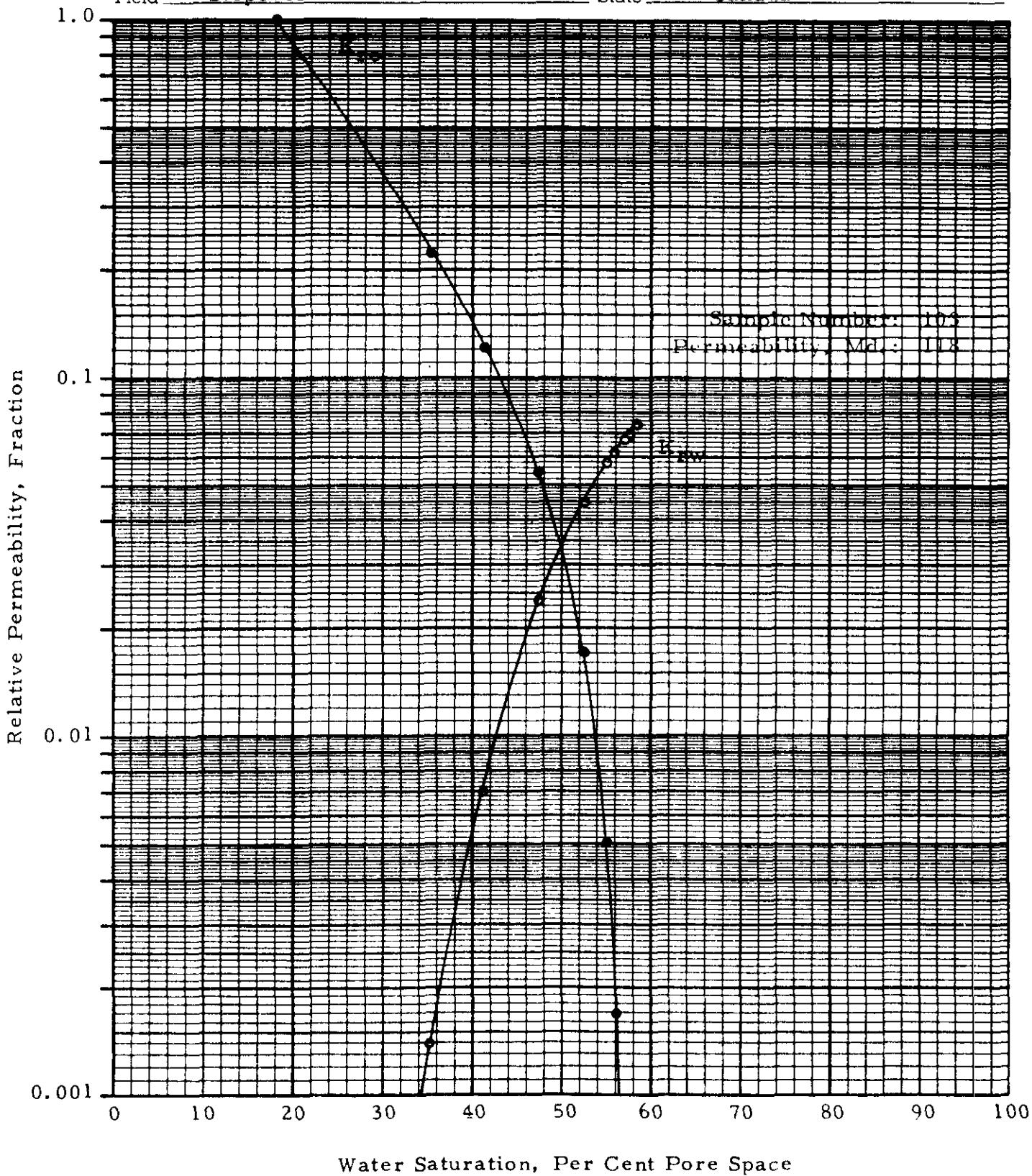

Water-Oil Relative Permeability Ratio

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada

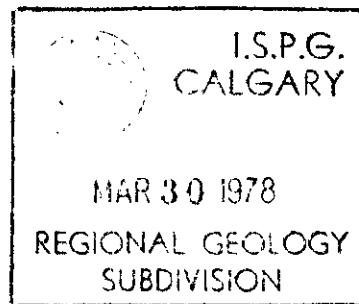

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada


CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 25 of 27
File SCAL-75150


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada

Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada


Company Union Oil Co. of Canada Ltd. Formation Old Fort Sand
Well Union Oil Stopover K-44 County Northwest Territories
Field Stopover State Canada

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Special Core Analysis Study
for
UNION OIL COMPANY OF CANADA LIMITED

Stopover No. K-44 and
Colville D-45 Wells
Canada

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

February 24, 1978

Union Oil Company of Canada Limited
P.O. Box 999
Calgary, Alberta T2P 2K6
Canada

Attention: Mr. Lorne D. McCluskey

Subject: Special Core Analysis Study
Stopover No. K-44 and
Colville D-45 Wells
Northwest Territories
Canada
File Number: SCAL-75150A

Gentlemen:

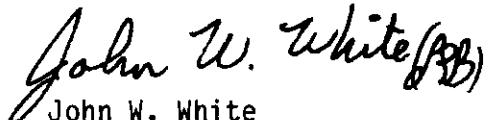
On May 18, 1976, a Special Core Analysis Study identified as SCAL-75150 was submitted in final form. In subsequent communications and conversations between representatives of Union Oil Company of Canada Limited and Core Laboratories, Inc., it was noted that there was a difference in the results of the multi-point mercury injection tests as compared to the porous-plate capillary pressure tests. It was decided that Core Laboratories, Inc., would attempt to resolve these differences by performing additional tests. Presented in this report are the results of the following: (1) Porous-Plate Capillary Pressure Tests with a final high-speed centrifugal point performed in an air-brine system, and (2) Multi-Point Mercury Injection Tests on sandstone core plugs from the subject wells. There will be no charges incurred by Union Oil Company of Canada Limited for this study. The core plugs used in this study are identified as to well, sample number, and depth interval on Page 1, and are lithologically described on Page 2.

The nine core plugs used in this study were previously prepared for use in the study identified as SCAL-75150. Each core plug was extracted of hydrocarbons with alternate injections of toluene and acetone, leached of salt with methyl alcohol, and then dried. Air permeabilities and Boyle's law porosities were determined on each cleaned and dried core plug.

Three core plugs (Numbers 65A, 88A, and 115A) from the Stopover K-44 Well, and two core plugs (Numbers 16 and 17) from the Colville D-45 Well were evacuated and saturated with the appropriate simulated formation water, synthesized from water analyses submitted for use in this study. With the exception of a final high-speed centrifuge point, a porous-plate cell and an air-brine system were used in performing these 7-point capillary pressure tests. The results of these data are presented by well in tabular form on Page 3, and in graphical form on Pages 4 through 7.

The five core plugs used for the capillary pressure tests were leached of salt with methyl alcohol, and dried. Air permeabilities and Boyle's law porosities were again determined on the cleaned and dried core plugs. Multi-point mercury injection tests were performed on six core plugs from the Stopover K-44 Well and three core plugs from the Colville D-45 Well using injection pressures ranging from 3 psia to 2000 psia. The results of these multi-point mercury injection test data are presented by well in tabular form on Pages 8 and 9, and in graphical form on Pages 10 through 18.

The air-brine capillary pressure data were converted to an air-mercury system by multiplying the air-brine capillary pressure by 5.11. A comparison was then made to the average mercury injection plot. These comparisons are valid only when comparing tests performed on the same core plug. The multi-point mercury injection data and the converted air-brine data for the three core plugs (Numbers 65A, 88A, and 115A) from the Stopover K-44 Well correlate extremely well. The two core plugs (Numbers 16 and 17) from the Colville D-45 Well exhibit differences in capillary pressure-saturation relationships that correlate generally at the low pressures (approximately 50 psi air-mercury) but deviate considerably beyond this point.


In the study which was submitted on May 18, 1976, and identified by our file number SCAL-75150, air-brine capillary pressure tests and multi-point mercury injection tests were performed on two core plugs (Numbers 11 and 18) from the Colville D-45 Well. The capillary pressure-saturation relationships for these two core plugs correlate generally at the low pressures (approximately 50 psi air-mercury) and deviate considerably beyond this point. There is no readily apparent reason to explain why the air-mercury and air-brine data do not correlate for the Colville Well.

In summary, it is believed that either the air-brine capillary pressure data or the multi-point mercury injection data would be applicable for reservoir calculations for the Stopover K-44 Well. It is extremely difficult to access the air-brine capillary pressure and multi-point mercury injection data from the Colville D-45 Well, but based on all of the test results it appears that the multi-point mercury injection data from the Colville D-45 Well would be the most applicable for reservoir calculations.

It has been a pleasure working for you on this study. Should you have any questions pertaining to these test results, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc.

John W. White
for Duane L. Archer, Manager
Special Core Analysis

JWW:fm

10 cc. - Addressee

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering*

DALLAS, TEXAS

Page 1 of 18File SCAL-75150A

Company Union Oil Company of Canada Limited Formation Old Fort Sand
Number of Wells Two County Northwest Territories
Field As Noted State Canada

Identification of Samples

<u>Sample Number</u>	<u>Company</u>	<u>Well</u>	<u>Depth, Feet</u>
----------------------	----------------	-------------	--------------------

Stopover Field

50B	Union Oil Co. of Canada Ltd.	Union Oil Stopover K-44	2784.1 - 85.0
65A			2794.9 - 95.4
88A			2813.2 - 13.5
98B			2820.8 - 21.9
103B			2825.6 - 26.2
115A			2834.3 - 34.9

Colville Field

15	Union Oil Co. of Canada Ltd.	Union Mobile Colville D-45	3223.0 - 23.4
16			3223.0 - 23.4
17			3225.9 - 26.4

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 2 of 18
File SCAL-75150A

Lithological Description

<u>Sample Number</u>	<u>Description</u>
<u>Stopover K-44</u>	
50B	Ss, red-brn, cse-v/fn grn, apparent SiO ₂ cement, well indurated, cse grn concentrations
65A	Ss, red-brn, med-fn grn, apparent SiO ₂ cement, well indurated
88A	Ss, lt gry-white, fn-v/fn grn, apparent SiO ₂ cement, well indurated
98B	Ss, red-brn-buff white, med-fn grn, apparent SiO ₂ cement, well indurated, blotchy color staining, grns uniform
103B	Ss, red-brn, cse-fn grn, apparent SiO ₂ cement, mod-poor indurated, blotchy color appearance
115A	Ss, red-brn, fn grn, apparent SiO ₂ cement, well indurated, blotchy color appearance

Colville D-45

15	Ss, lt gry-white, fn-v/fn grn, apparent SiO ₂ cement, mod-poor indurated, med grn laminae, tr mosc
16	Ss, lt gry-white, fn-med grn, apparent SiO ₂ cement, well indurated
17	Ss, lt gry, v/fn-fn grn, apparent SiO ₂ cement, well indurated

CORE LABORATORIES, INC.*Petroleum Reservoir Engineering
DALLAS, TEXAS*Page 3 of 18File SCAL-75150AAir-Brine Capillary Pressure DataPressure, PSI: 1 2 4 8 15 35 300*

Sample Number	Permeability, Millidarcys	Porosity, Per Cent	Brine Saturation, Per Cent Pore Space							
			Stopover K-44							
65A	22	10.8	100.0	100.0	92.6	50.3	30.7	22.7	12.9	
88A	172	13.0	80.9	50.0	27.9	20.6	15.2	11.8	5.9	
115A	20	11.1	100.0	100.0	86.0	53.6	36.3	28.5	18.4	
<u>Colville D-45</u>										
16	5.1	11.7	100.0	100.0	98.4	68.3	43.9	26.0	14.6	
17	7.2	16.8	100.0	100.0	100.0	78.1	39.9	21.8	13.7	

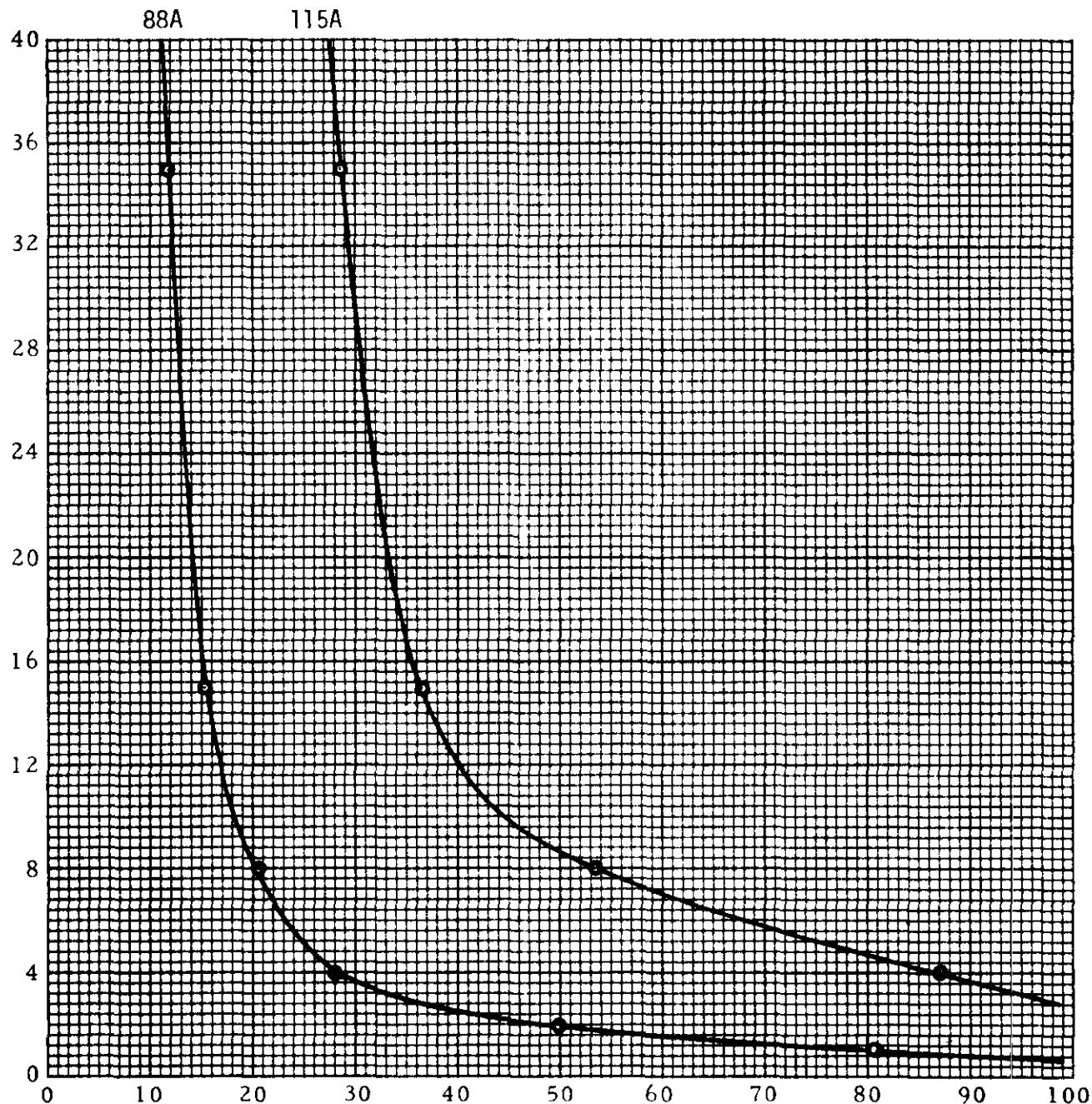
*Equivalent Pressure from Centrifuge (Air-Brine System)

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 4 of 18
File SCAL-75150A

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 County Northwest Territories
Field Stopover State Canada

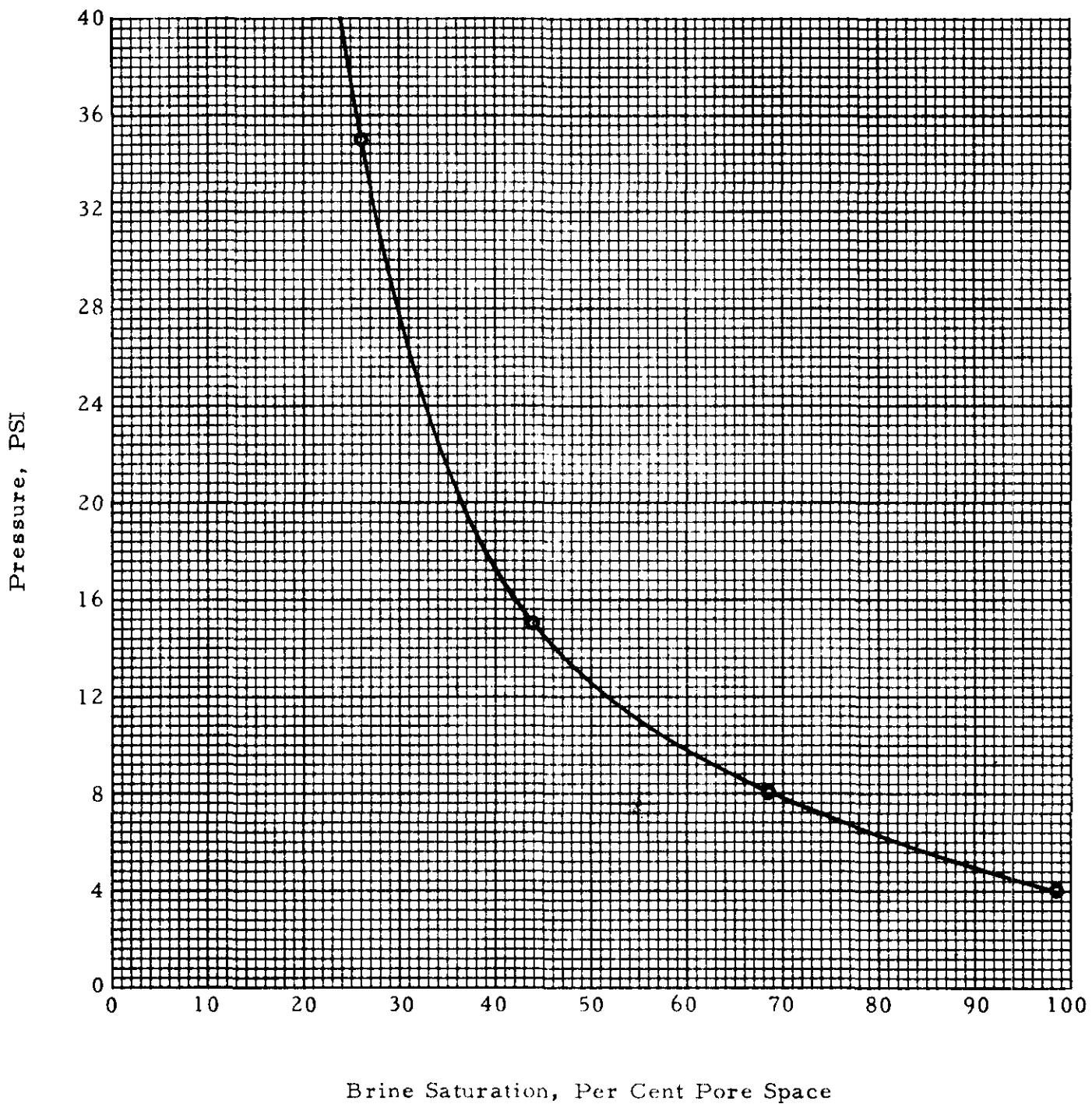
Sample Number: 65A
Permeability, Md.: 22



CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 5 of 18
File SCAL-75150A

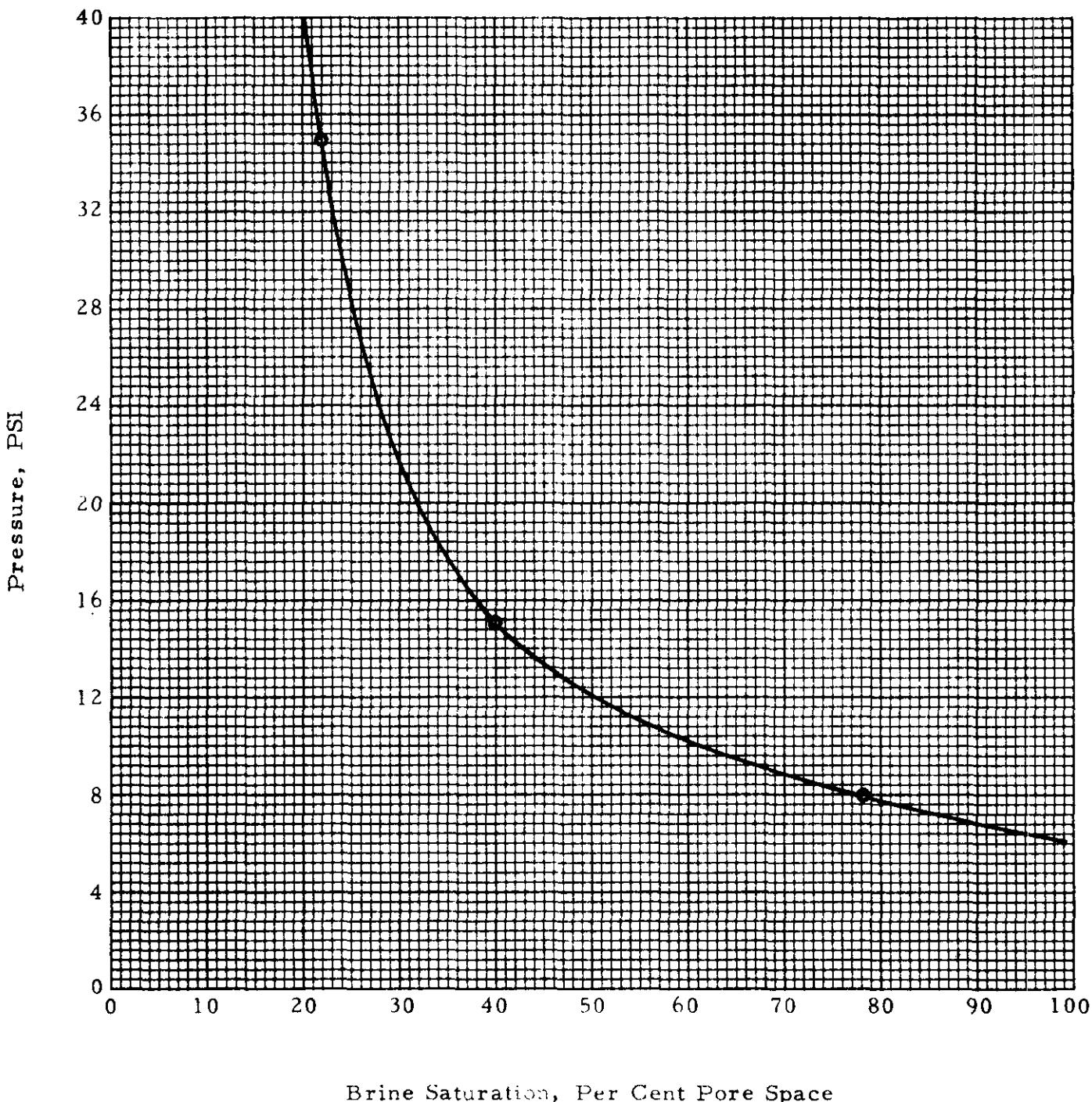
Company Union Oil Company of Canada Formation Old Fort Sand
Well Stopover K-44 County Northwest Territories
Field Stopover State Canada


Sample Number: 88A 115A
Permeability, Md.: 172 20

Brine Saturation, Per Cent Pore Space

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Colville D-45 County Northwest Territories
Field Colville State Canada

Sample Number: 16
Permeability, Md.: 5.1


Brine Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 7 of 18
File SCAL-75150A

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Colville D-45 County Northwest Territories
Field Colville State Canada

Sample Number: 17
Permeability, Md.: 7.2

Brine Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
 DALLAS, TEXAS

Page 8 of 18
 File SCAL-75150A

Mercury Injection Capillary Pressure Data

Stopover K-44

Sample Number:	<u>50B</u>	<u>65A</u>	<u>88A</u>	<u>98B</u>	<u>103B</u>	<u>115B</u>
Permeability, Md.:	0.86	28	218	122	9.9	22
Porosity, Per Cent:	8.3	11.0	13.0	14.8	10.4	13.0
Injection Pressure, PSIA						
3	100.0	100.0	100.0	100.0	100.0	100.0
6	100.0	100.0	85.0	100.0	100.0	100.0
9	100.0	100.0	55.7	94.6	100.0	100.0
12	100.0	100.0	42.5	75.1	100.0	93.3
15	100.0	100.0	37.2	60.8	98.0	85.0
18	100.0	94.3	32.2	52.0	93.3	77.7
21	100.0	80.4	27.5	46.0	89.1	71.2
24	100.0	72.7	25.7	42.7	85.1	64.8
27	100.0	61.9	23.7	38.4	81.3	60.1
30	100.0	55.7	23.7	37.3	77.8	56.0
40	98.6	40.9	19.7	32.3	67.8	45.9
60	95.4	31.2	16.2	28.6	50.4	37.8
80	92.3	27.8	15.2	27.0	43.2	34.2
100	88.7	25.6	13.7	25.3	39.6	33.2
200	75.2	22.2	10.7	23.3	30.6	29.5
300	66.2	21.0	10.2	22.4	25.4	27.5
500	52.4	18.7	9.2	21.0	21.0	24.4
750	41.8	16.8	7.7	19.2	18.2	22.3
1000	33.2	14.8	6.7	17.5	18.0	19.7
1250	27.6	14.5	5.7	16.8	16.4	18.1
1500	24.3	13.9	5.7	16.8	15.0	16.8
1750	21.9	13.4	5.7	16.7	14.9	16.6
2000	21.4	13.1	5.7	16.4	13.8	16.1

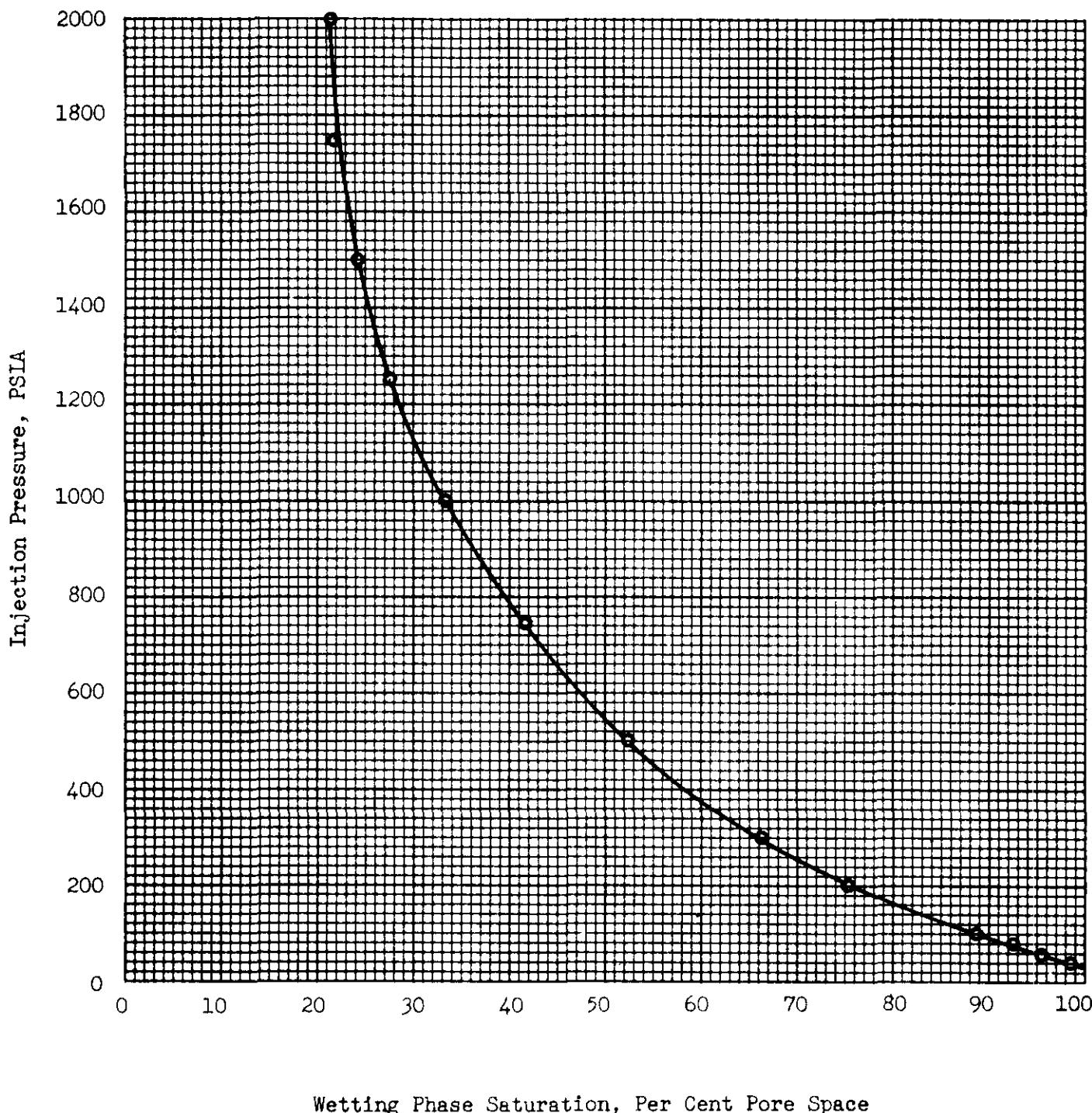
CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

Page 9 of 18
File SCAL-75150AMercury Injection Capillary Pressure DataColville D-45Sample Number: 15 15 17

Permeability, Md.: 10 5.1 7.2

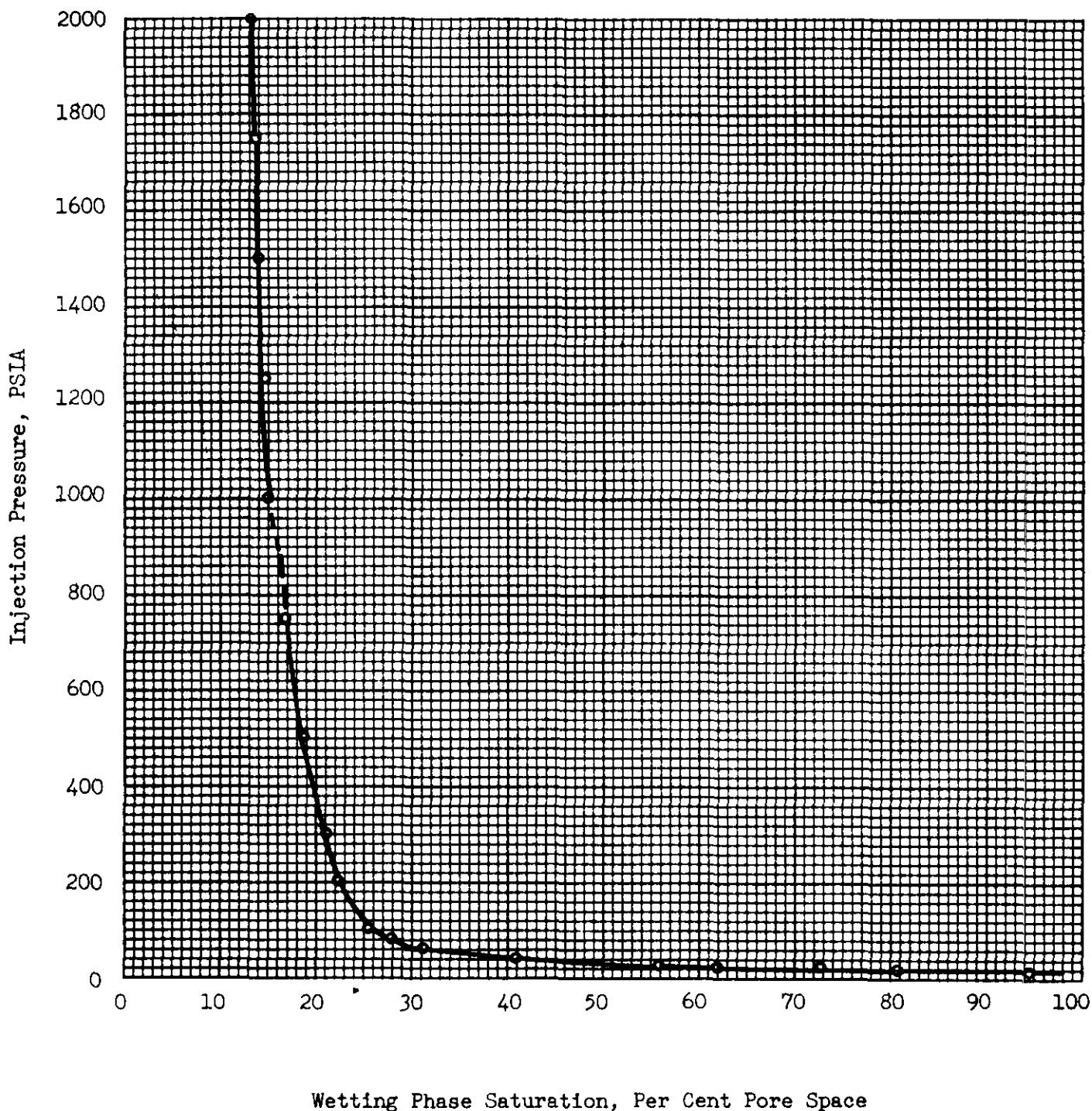

Porosity, Per Cent: 13.1 10.9 16.2

Injection Pressure,
PSIA Wetting Phase Saturation, Per Cent Pore Space

3	100.0	100.0	100.0
6	100.0	100.0	100.0
9	100.0	100.0	100.0
12	100.0	100.0	100.0
15	100.0	100.0	100.0
18	100.0	100.0	100.0
21	100.0	100.0	100.0
24	99.1	100.0	100.0
27	90.6	100.0	100.0
30	86.7	96.7	100.0
40	77.4	84.0	91.3
60	65.4	61.5	60.7
80	57.3	50.8	49.7
100	47.8	48.4	43.2
200	35.1	35.2	28.4
300	27.6	27.9	22.4
500	20.8	21.3	16.4
750	17.1	17.2	12.6
1000	15.1	15.6	10.4
1250	13.7	13.9	8.7
1500	12.8	13.9	8.5
1750	11.6	13.9	7.1
2000	11.3	13.9	7.1

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 County Northwest Territories
Field Stopover State Canada

Sample Number: 50B
Permeability, Md.: 0.86

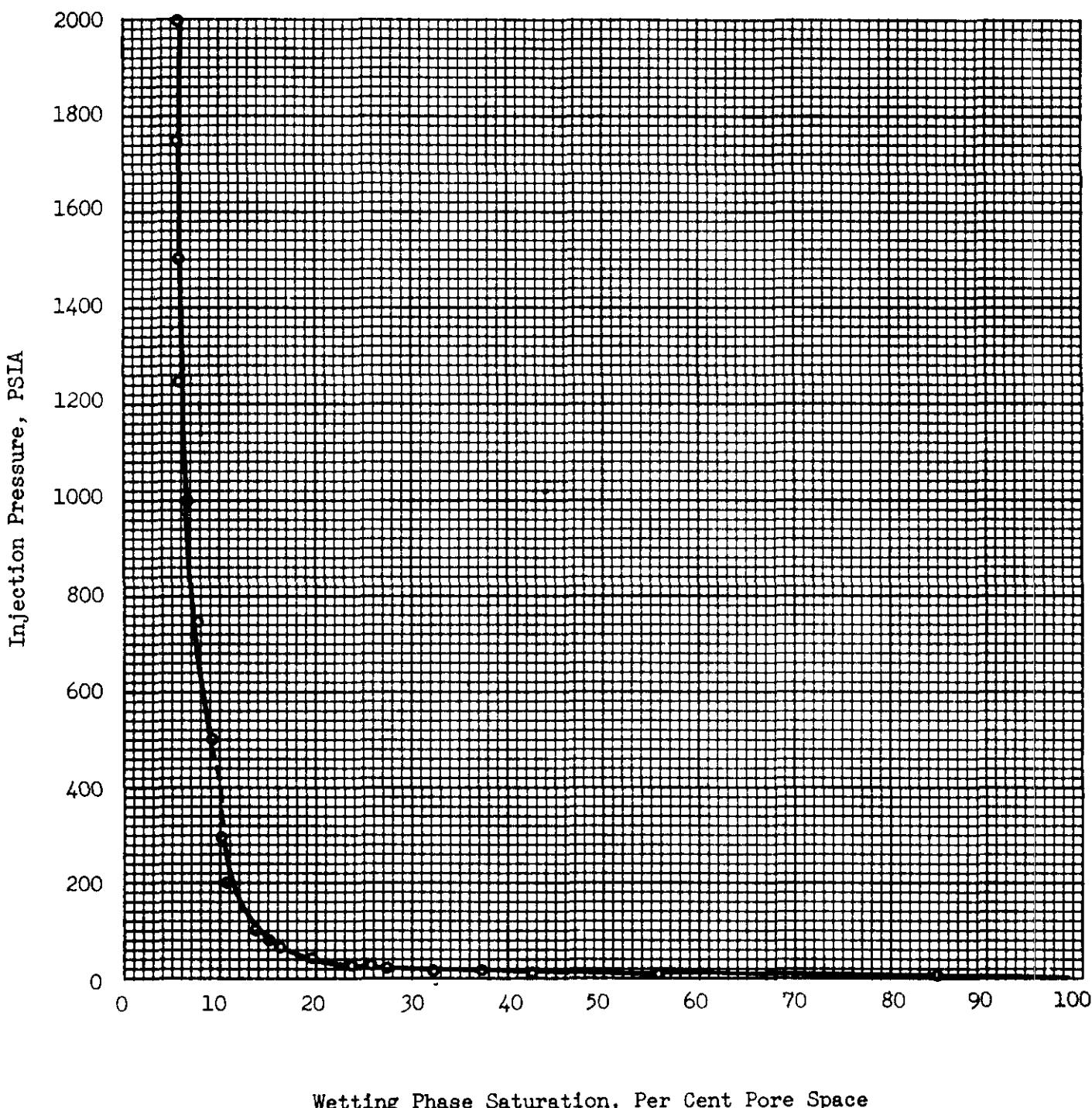

Wetting Phase Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 11 of 18
File SCAL-75150A

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 County Northwest Territories
Field Stopover State Canada

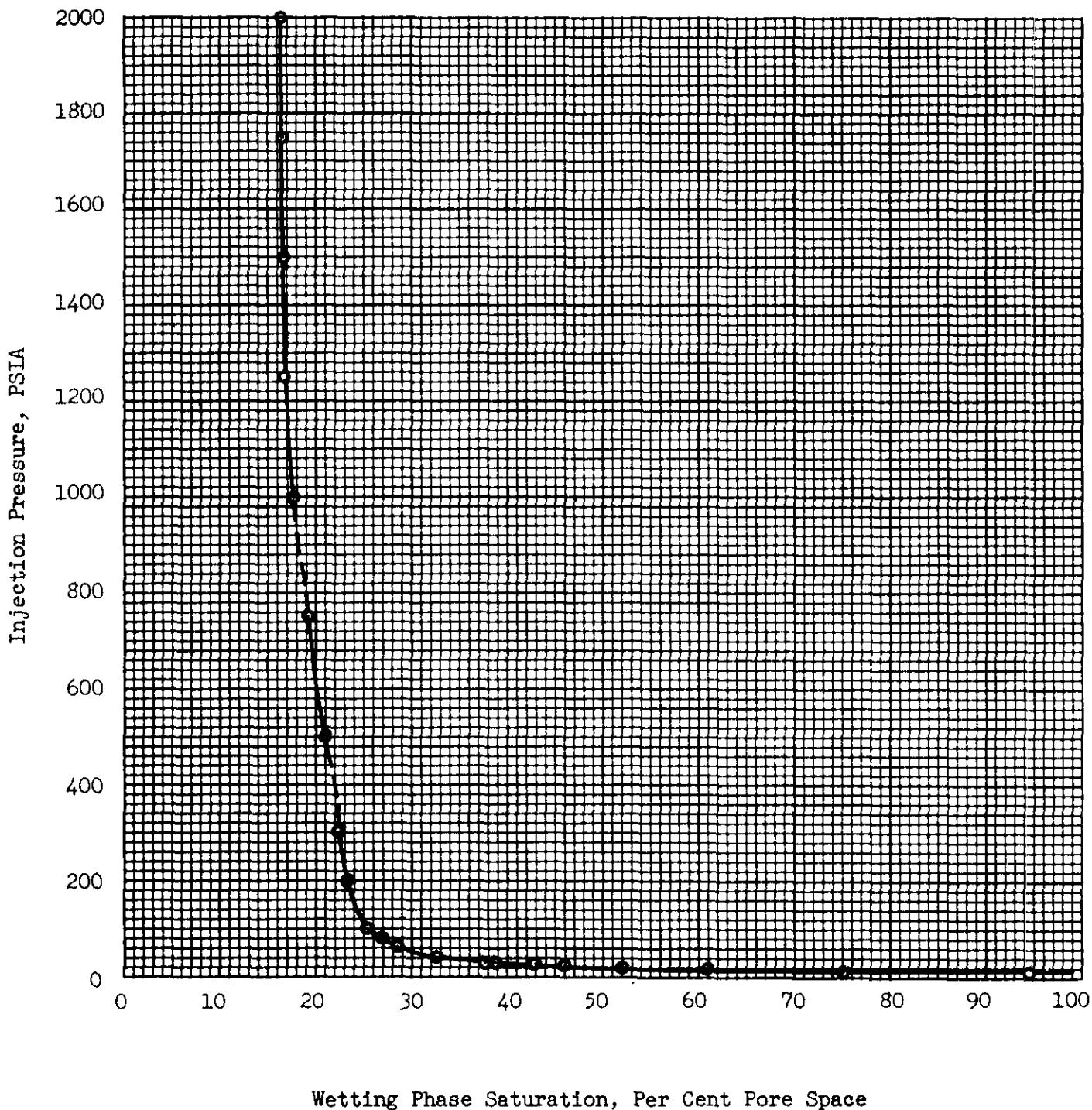
Sample Number: 65A
Permeability, Md.: 28


Wetting Phase Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 12 of 18
File SCAL-75150A

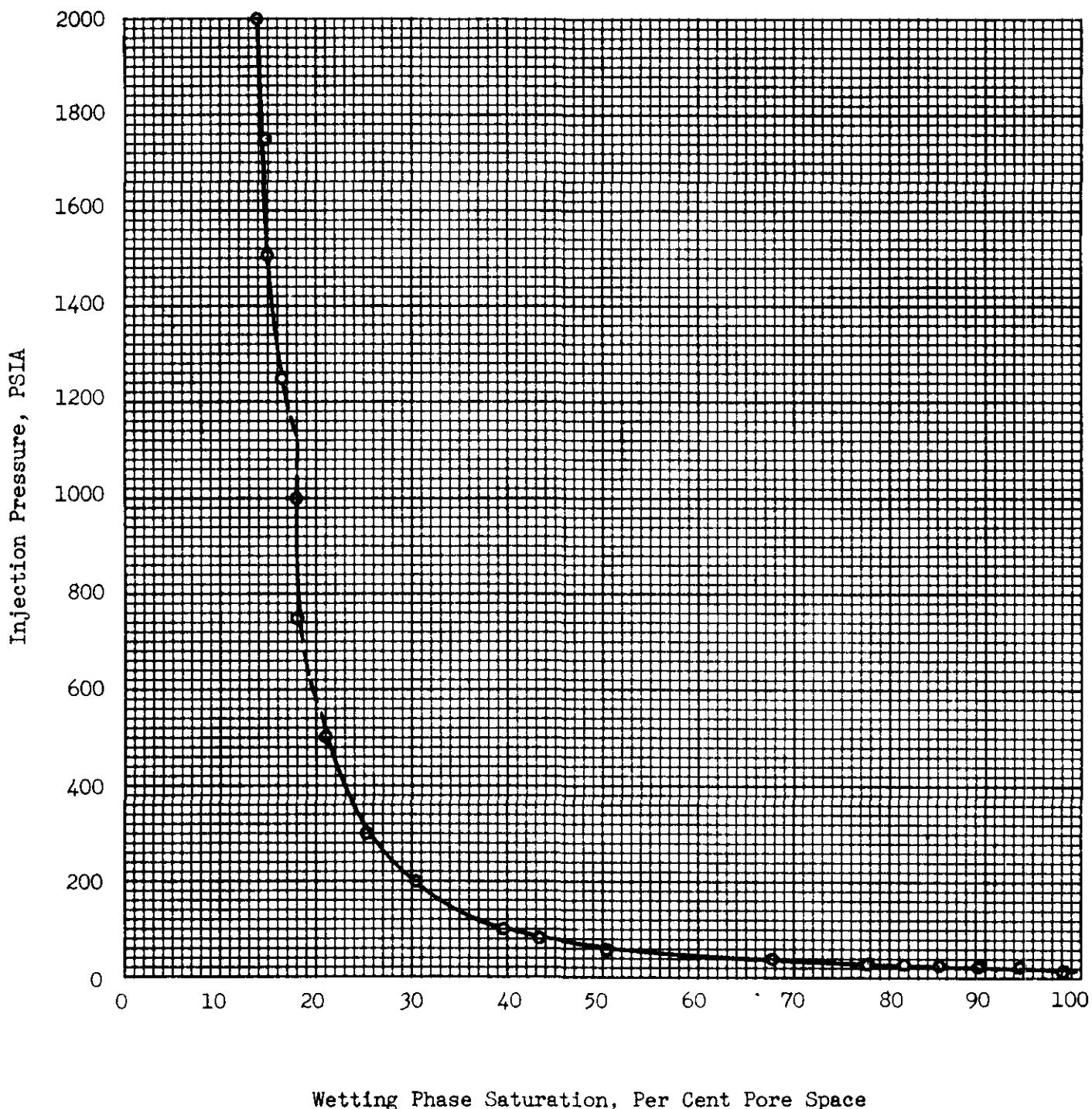
Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 County Northwest Territories
Field Stopover State Canada


Sample Number: 88A
Permeability, Md.: 218

Wetting Phase Saturation, Per Cent Pore Space

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 County Northwest Territories
Field Stopover State Canada

Sample Number: 98B
Permeability, Md.: 122

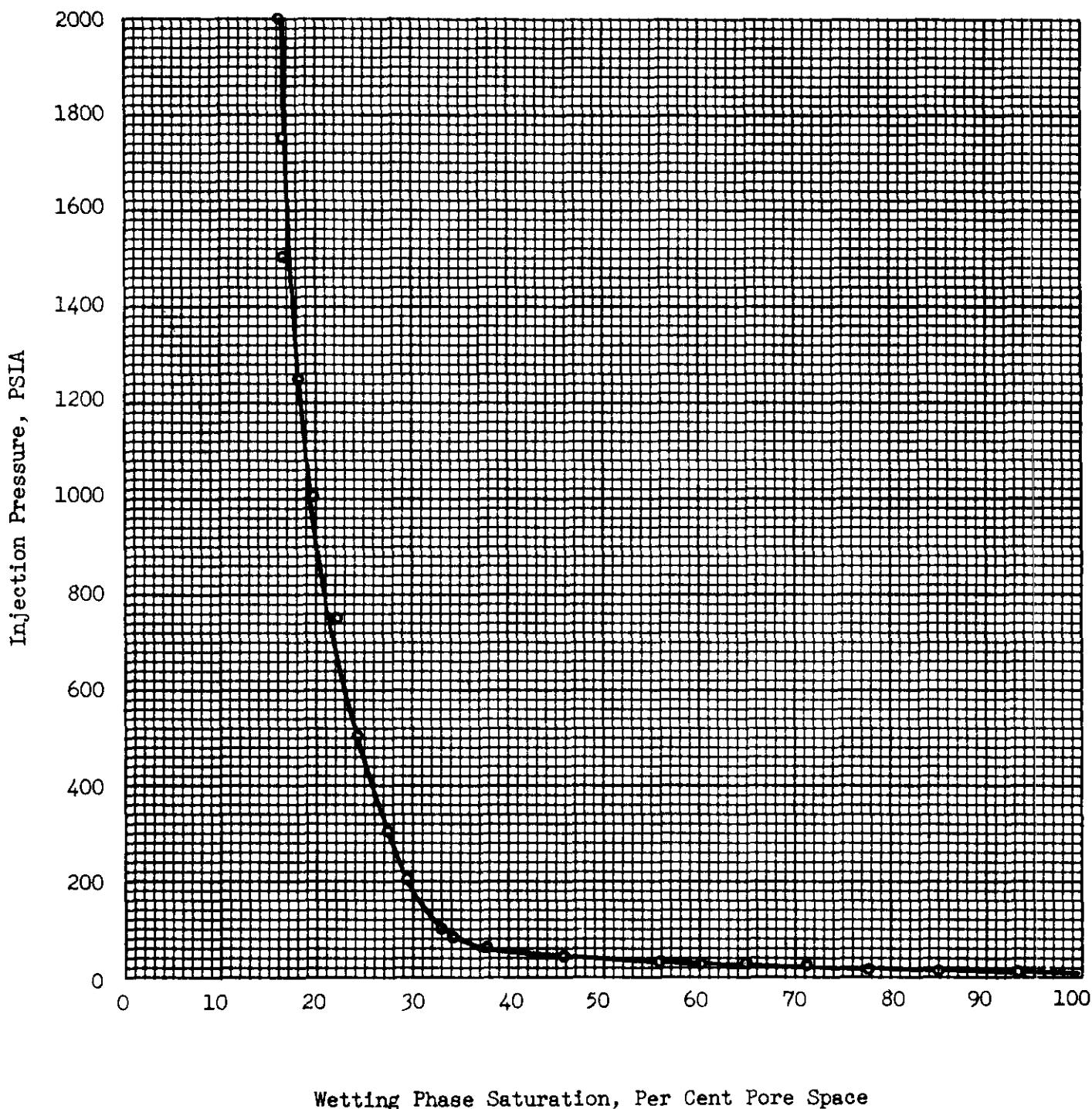

Wetting Phase Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 14 of 18
File SCAL-75150A

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 County Northwest Territories
Field Stopover State Canada

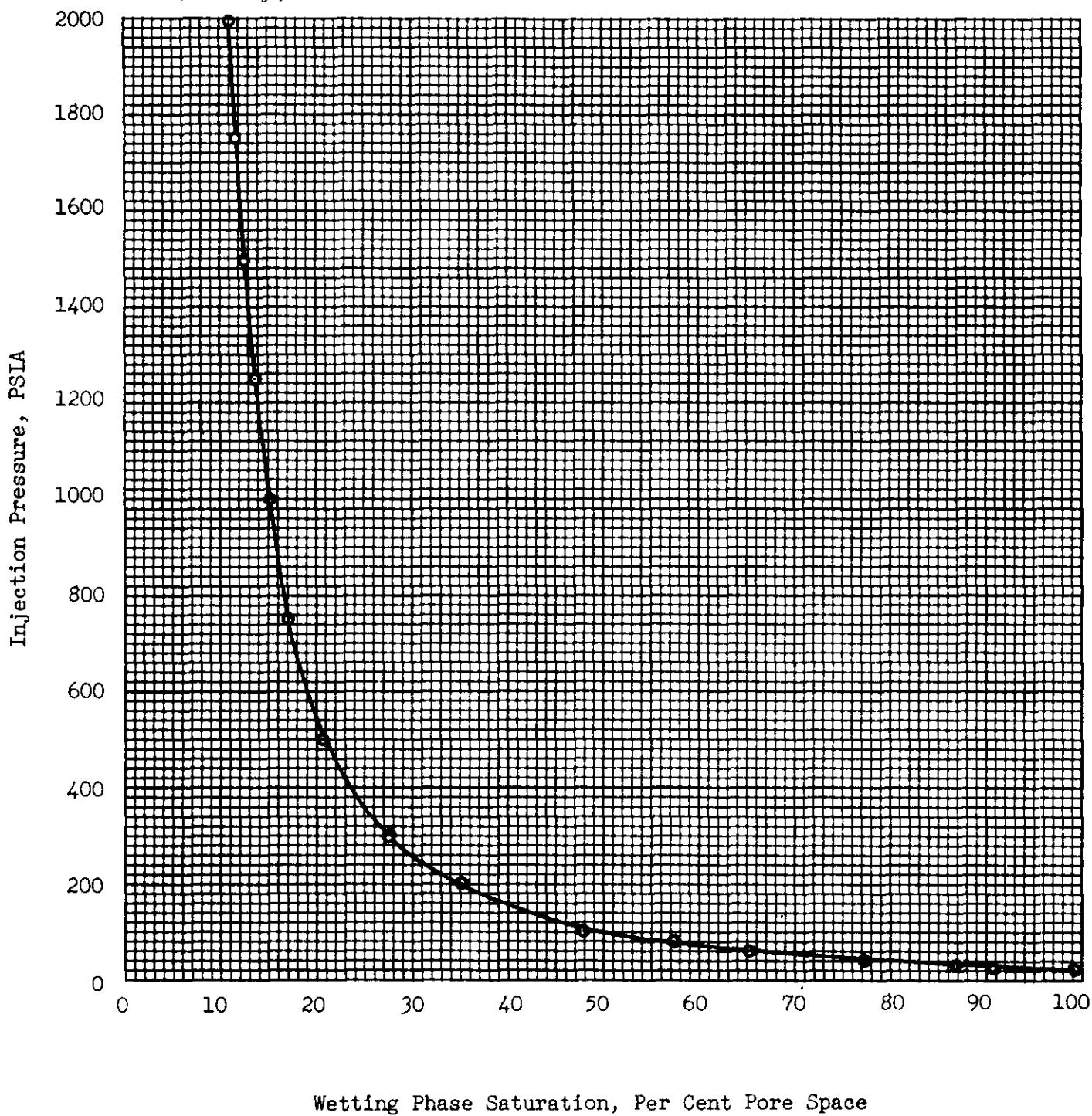
Sample Number: 103B
Permeability, Md.: 9.9



CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 15 of 18
File SCAL-75150A

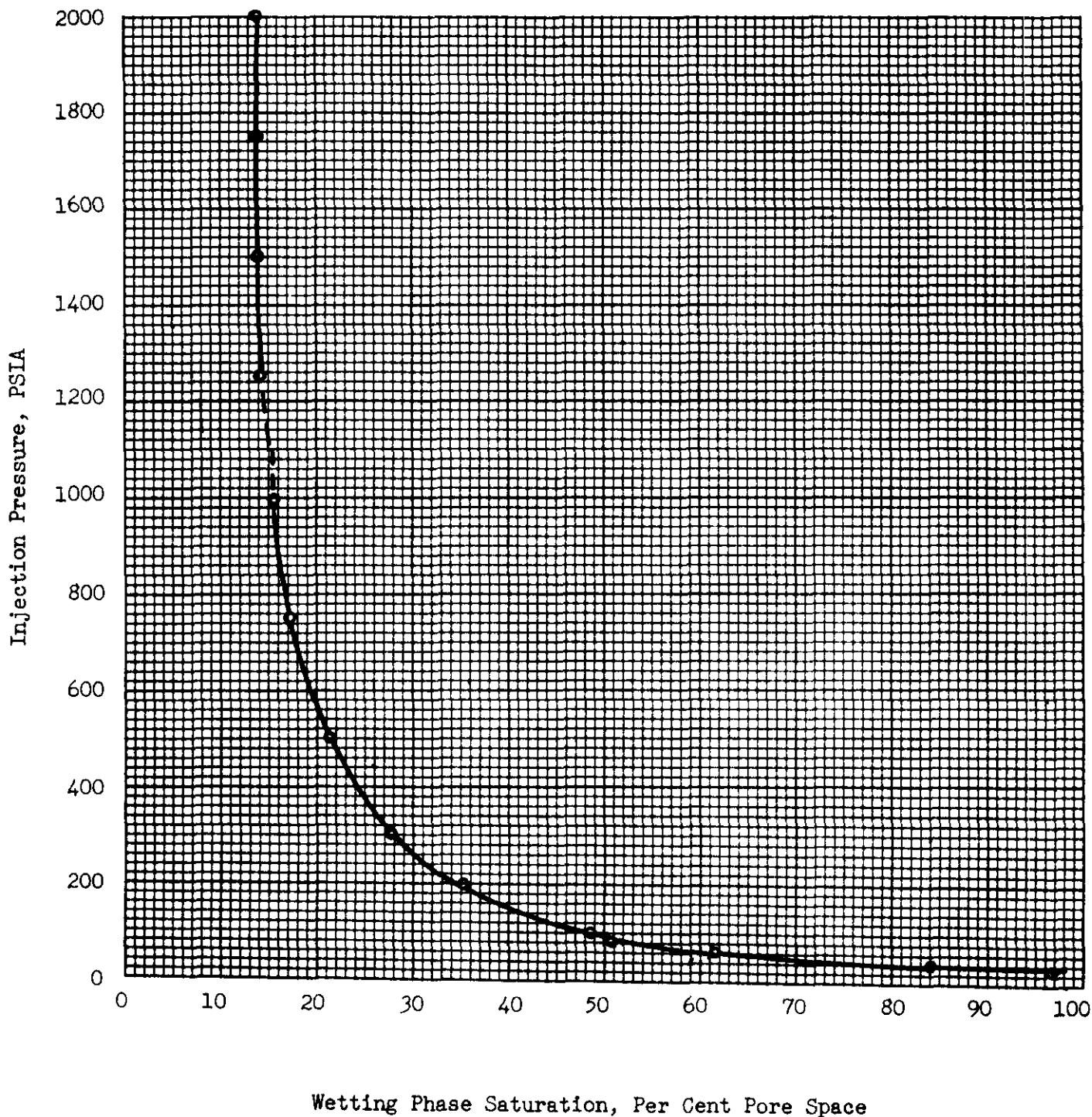
Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Stopover K-44 County Northwest Territories
Field Stopover State Canada


Sample Number: 115A
Permeability, Md.: 22

Wetting Phase Saturation, Per Cent Pore Space

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Colville D-45 County Northwest Territories
Field Colville State Canada

Sample Number: 15
Permeability, Md.: 10

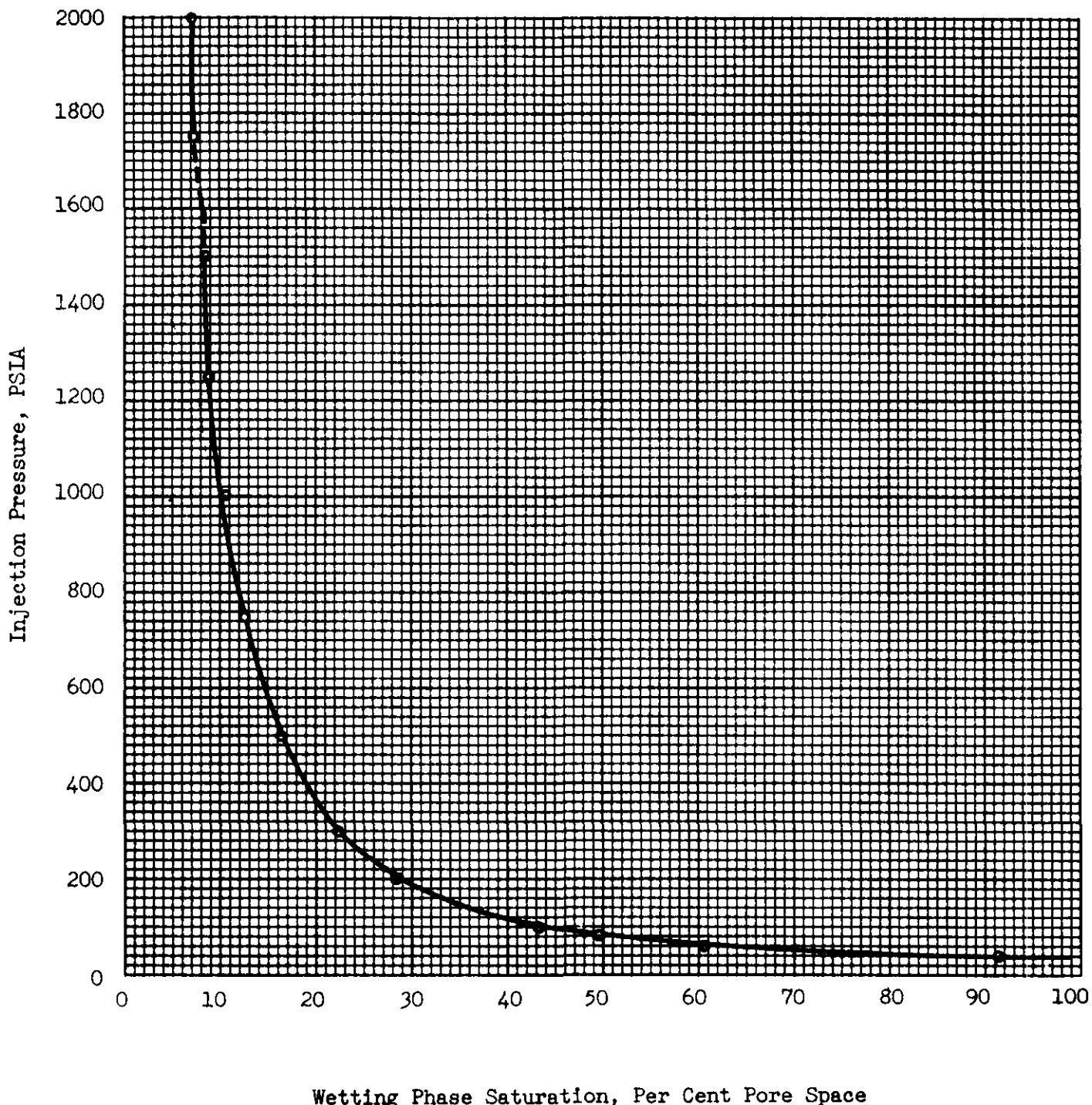

Wetting Phase Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 17 of 18
File SCAL-75150A

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Colville D-45 County Northwest Territories
Field Colville State Canada

Sample Number: 16
Permeability, Md.: 5.1


Wetting Phase Saturation, Per Cent Pore Space

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

Page 18 of 18
File SCAL-75150A

Company Union Oil Company of Canada Ltd. Formation Old Fort Sand
Well Colville D-45 County Northwest Territories
Field Colville State Canada

Sample Number: 17
Permeability, Md.: 7.2

Wetting Phase Saturation, Per Cent Pore Space

WATER ANALYSES
FOR
UNION OIL COMPANY OF CANADA LIMITED
UNION MOBIL COLVILLE D-45
COLVILLE LAKE

CORE LABORATORIES - CANADA LTD.
Petroleum Reservoir Engineering
CALGARY - EDMONTON - REGINA

CORE LABORATORIES - CANADA LTD.
PETROLEUM RESERVOIR ENGINEERING
WATER ANALYSIS

File 7021-3645 PAGE 1 of 4

Company Union Oil Company of Canada Limited

Well Union Mobil Colville D-45 K.B. 2080' Grd.

Location 67° 14'08.57 N.L.
125° 09'20.87 W.L. Field Colville Lake Province

Formation Interval

Sampled from DST #1 (Make up Water) by

Date sampled Date analysed May 4/3m Analyst L. Kinsella

Recovery

Mud type Water cushion

Total Solids:

Resistivity 48.4 Ohm-meters @ 60 °F Calculated 68 mg/liter

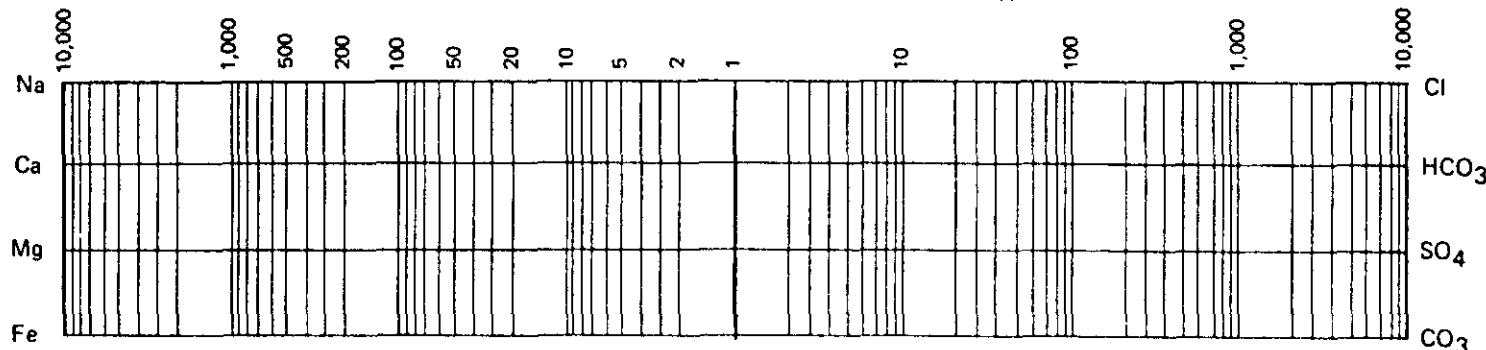
Specific gravity 1.0001 @ 60°F By evaporation @ 110°C mg/liter

pH 6.5 H₂S Absent By evaporation @ 180°C mg/liter

Refractive Index 1.3318 @ 74°F At ignition mg/liter

MILLIGRAMS PER LITER

Na + K	Ca	Mg	Fe	Ba	Br	I	Cl	HCO ₃	SO ₄	CO ₃	OH
2	9	5	Pres.	-	-	-	8	44	0	0	0


PER CENT CALCULATED SOLIDS

2.9	13.2	7.4	Pres.	-	-	-	11.8	64.7	.0	.0	.0
-----	------	-----	-------	---	---	---	------	------	----	----	----

MEQ PER LITER

.1	.4	.4	Pres.	-	-	-	.2	.7	.0	.0	.0
----	----	----	-------	---	---	---	----	----	----	----	----

LOGARITHMIC PATTERN MEQ PER LITER

41. 2.0

CORE LABORATORIES - CANADA LTD.
PETROLEUM RESERVOIR ENGINEERING
WATER ANALYSIS

File 7021-3645 PAGE 2 of 4

Company Union Oil Company of Canada Limited

Well Union Mobil Colville D-45 K.B. 2080' Grd.
67° 14' 08.57 N.L.

Location 125° 09' 20.87 W.L. Field Colville Lake Province

Formation Cambrian Interval 3186' - 3233'

Sampled from DST #3 (Top of Tool) by

Date sampled April 29/73 Date analysed May 4/73 Analyst L. Kinsella

Recovery 2300' Liquid

Mud type Water cushion

Total Solids:

Resistivity 0.134 Ohm-meters @ 70 °F Calculated 58,986 mg/liter

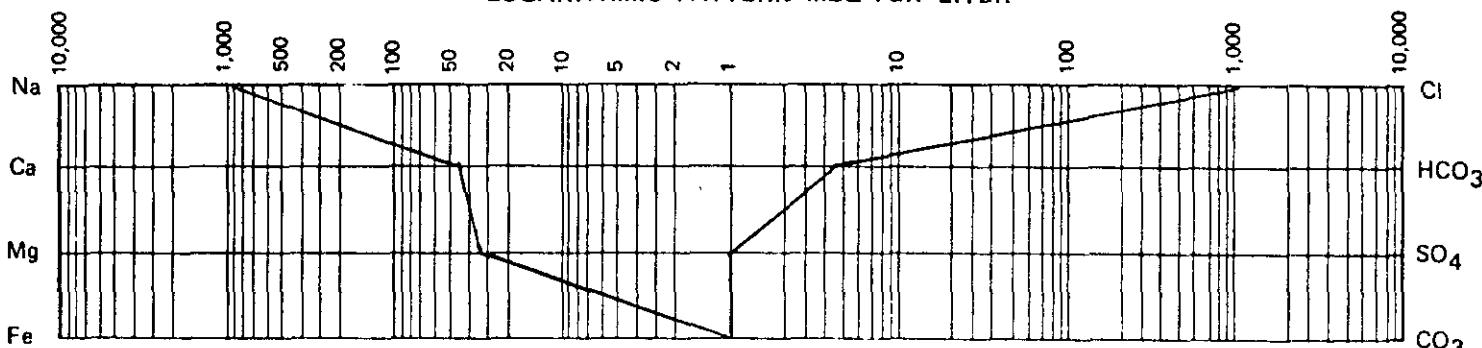
Specific gravity 1.0401 @ 60°F By evaporation @ 110°C mg/liter

pH 7.0 H₂S Absent By evaporation @ 180°C mg/liter

Refractive Index 1.3420 @ 74°F At ignition mg/liter

MILLIGRAMS PER LITER

Na + K	Ca	Mg	Fe	Ba	Br	I	Cl	HCO ₃	SO ₄	CO ₃	OH
21551	903	405	Trace	-	-	-	35844	283	0	0	0


PER CENT CALCULATED SOLIDS

36.5	1.5	.7	Trace	-	-	-	60.8	.5	.0	.0	.0
------	-----	----	-------	---	---	---	------	----	----	----	----

MEQ PER LITER

937.0	45.1	33.3	Trace	-	-	-	1010.8	4.6	.0	.0	.0
-------	------	------	-------	---	---	---	--------	-----	----	----	----

LOGARITHMIC PATTERN MEQ PER LITER

56335 21551.0

CORE LABORATORIES-CANADA LTD.

SAMPLE TYPEFORMATION WATER GROUP SAMPLE TEST SAMPLE

— SAMPLE ANALYSIS —

OPERATOR NAME AND ADDRESS

Union Oil Company of Canada Limited

CODE

PAGE	1
SAMPLE CONTAINER ID	
CONTAINER OWNER	
CONTAINER MATERIAL	Plastic
CONTAINER NUMBER	

UNIQUE ID OR SAMPLE LOCATION

WELL OR SAMPLE LOCATION NAME

ELEVATIONS
KFT GRODATE
SAMPLED
DAY MO YR

LE	LSD	SEC	TWP	RGE	W	E
----	-----	-----	-----	-----	---	---

Colville Lake D-45

2080'

FIELD OR AREA

CODE

POOL OR ZONE

CODE

NAME OF SAMPLER

Colville Lake

DST NO

FT OF
H2O CUSH

MUD TYPE

MUD RESISTIVITY

DST RECOVERY

SAMPLE

INTERVAL

SAMPLE DEPTH
ABOVE TOOL

OR

PRODUCTION SAMPLE
POINT

PRODUCTION TYPE

PUMP

FLOW

GL

SWAB

WATER BBL/D

PRODUCTION RATE
OIL BBL/D

GAS MCF/D

Flowline
(Drilling Mud)

PRESSURES - PSIG

CONTAINER

TEMPERATURES (°F)

SEPARATOR

TREATER

LINE

RESERVOIR

WHEN
SAMPLEDWHEN
RECEIVED

SEPARATOR

TREATER

LINE

LABORATORY NAME

LABORATORY NO.

NAME OF ANALYZER

RECEIVED

DATES

DAY

DAY

MO

MO

YR

YR

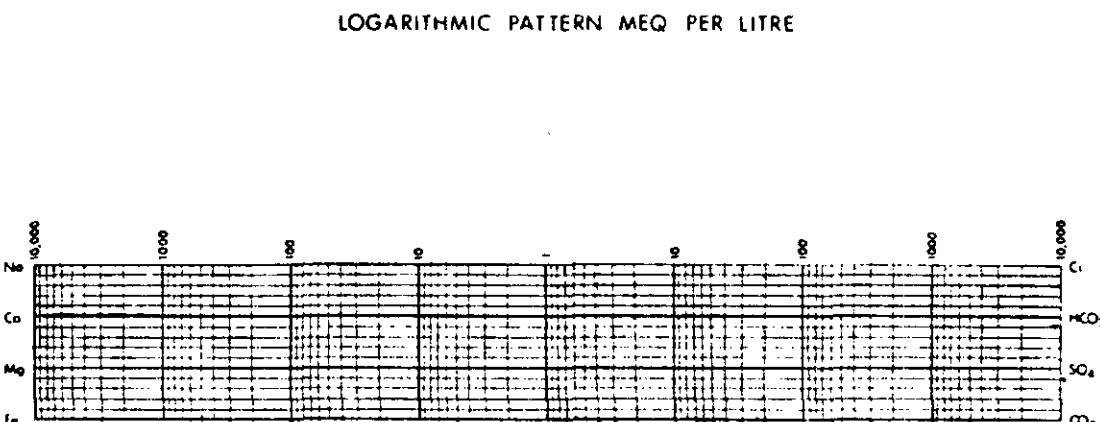
Core Laboratories-Canada Ltd.

7021-3645

L. Kinsella

2

4


5

5

73

73

ION	MG/L	MG %
No		
K		
Ca		
Mg		
Ba		
Sr		
Fe		
SO ₄		.
Cl	1,814	
Br		
I		
HCO ₃		
CO ₃		
OH		
H ₂ S		
TOTAL CALC		
TOTAL BY EVAP		
TOTAL CONCEN		
TOTAL FROM RES		

CORE LABORATORIES - CANADA LTD.

PETROLEUM RESERVOIR ENGINEERING

WATER ANALYSIS

File 7021-3674 PAGE 1 of 2

Company Union Oil Company of Canada LimitedWell Union Mobil Colville D-45 K.B. 2099' Grd. 2080'

67° 14'08.57 N.L.

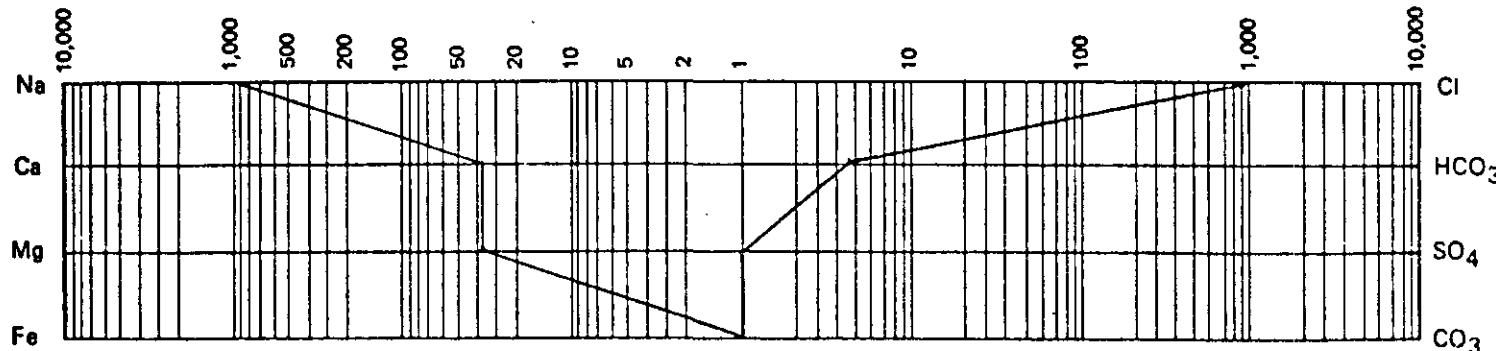
Location 125° 09'20.87 W.L. Field Colville Lake Province Formation Interval 3207' - 3224'Sampled from DST #4 (Top of Tool) by B.J. ServiceDate sampled May 5/73 Date analysed May 10/73 Analyst L. KinsellaRecovery 2200' Salt water Mud type Water cushion

Total Solids:

Resistivity 0.124 Ohm-meters @ 73 °F Calculated 57,371 mg/literSpecific gravity 1.0383 @ 60°F By evaporation @ 110°C mg/literpH 6.9 H₂S Absent By evaporation @ 180°C mg/literRefractive Index 1.3415 @ 73°F At ignition mg/liter

MILLIGRAMS PER LITER

Na + K	Ca	Mg	Fe	Ba	Br	I	Cl	HCO ₃	SO ₄	CO ₃	OH
20971	778	457	Pres.	-	-	-	34875	288	2	0	0


PER CENT CALCULATED SOLIDS

36.6	1.4	.8	Pres.	-	-	-	60.8	.5	.0	.0	.0
------	-----	----	-------	---	---	---	------	----	----	----	----

MEQ PER LITER

911.8	38.8	37.6	Pres.	-	-	-	983.5	4.7	.0	.0	.0
-------	------	------	-------	---	---	---	-------	-----	----	----	----

LOGARITHMIC PATTERN MEQ PER LITER

57578. 20971.0

CORE LABORATORIES - CANADA LTD.
PETROLEUM RESERVOIR ENGINEERING
WATER ANALYSIS

File 7021-3674 PAGE 2 of 2

Company Union Oil Company of Canada Limited

Well Union Mobil Colville D-45 K.B. _____ Grd. _____
67° 14'08.57 N.L.

Location 125° 09'20.87 W.L. Field Colville Lake Province _____

Formation _____ Interval 3253' - 3278'

Sampled from DST #5 (Top of Tool) by B.J. Service

Date sampled May 6/73 Date analysed May 10/73 Analyst L. Kinsella

Recovery 2200' Salt water

_____ Mud type _____ Water cushion _____

Total Solids:

Resistivity 0.130 Ohm-meters @ 73 °F Calculated 54,267 mg/liter

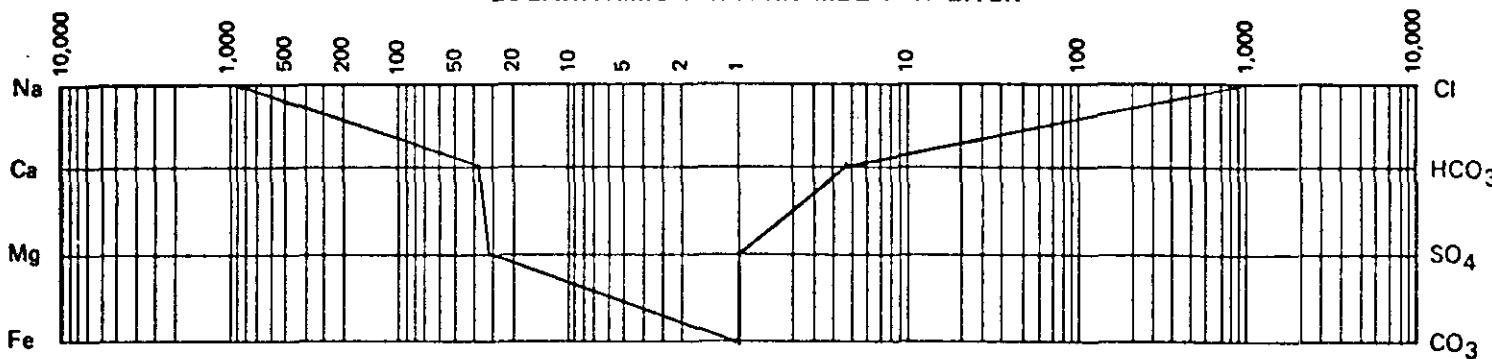
Specific gravity 1.0358 @ 60°F By evaporation @ 110°C _____ mg/liter

pH 6.9 H₂S Absent By evaporation @ 180°C _____ mg/liter

Refractive Index 1.3411 @ 73°F At ignition _____ mg/liter

MILLIGRAMS PER LITER

Na + K	Ca	Mg	Fe	Ba	Br	I	Cl	HCO ₃	SO ₄	CO ₃	OH
19902	746	381	Pres.	-	-	-	32938	298	2	0	0


PER CENT CALCULATED SOLIDS

36.7	1.4	.7	Pres.	-	-	-	60.7	.5	.0	.0	.0
------	-----	----	-------	---	---	---	------	----	----	----	----

MEQ PER LITER

865.3	37.2	31.3	Pres.	-	-	-	928.9	4.9	.0	.0	.0
-------	------	------	-------	---	---	---	-------	-----	----	----	----

LOGARITHMIC PATTERN MEQ PER LITER

CHEMICAL & GEOLOGICAL LABORATORIES LTD.

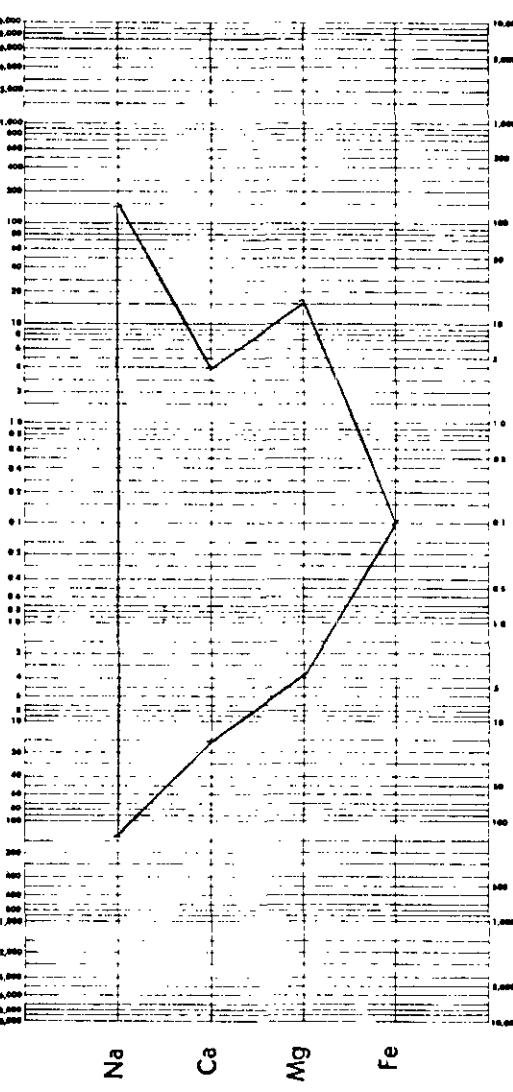
WATER ANALYSIS

Lab No. C73-6392

Received: April 18, 1973 Reported: April 19, 1973

Well: Location: Union Mobil Colville D-45 N.W.T. 47° 14' 08 57" N
Operator: UNION OIL COMPANY OF CANADA LIMITED Field or Area: N.W.T. 125° 09' 20 87" W

Elev: K.B. 2098' Grd. 2080' Zone/Formation: Saline River


Method of Production: Flow into Bore Hole Sampled from: Blooie Line

OTHER PERTINENT DATA

Sample Interval: 2220' T.D. Sampled by: T. Ramsey Date: April 11, 1973

(Signed)

Na & K	Ca	Mg		SO ₄	Cl		CO ₃	HCO ₃
Mg. 3290	310	46			805	5020		---
Meq. 143.13	15.47	3.78			16.74	141.56		249
Meq. 44.07	4.76	1.16			5.15	43.59		4.08
Total Solids Mg/L:	By Evaporation	9700	Fe	Present Specific Gravity	1.012	@ 60°F	Observed pH	7.7 @ 75°F
Calculated	9720	After Ignition	H ₂ S Nil	Refractive Index	1.3348	@ 25°C	Resistivity 0.652 ohm meters	68 °F
							Organic matter - Trace	

Pattern Unit Meq./L
Na Cl HCO₃ SO₄ Fe Ca Mg

Remarks and Conclusions

Analysis determined on a clear colorless filtrate recovered from muddy water.

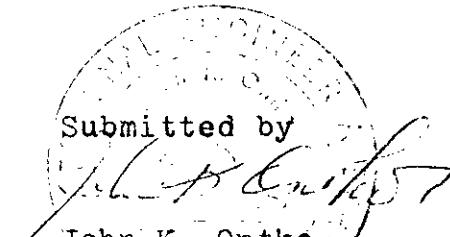
WELL HISTORY REPORT

on

UNION et al MOBIL COLVILLE D-45

NORTHWEST TERRITORIES

CANADA


Submitted by

John K. Ontko
Professional Geologist

TABLE OF CONTENTS

SUMMARY OF PERTINENT WELL DATA

SUMMARY OF SUB-SURFACE DATA

CORE DESCRIPTIONS

SAMPLE DESCRIPTIONS

ENGINEERING SUMMARY

 (a) BIT RECORD

 (b) MUD RECORD

 (c) DAILY PROGRESS REPORT

 (d) DEVIATION RECORD

 (e) DRILL STEM RESULTS

 (f) ABANDONMENT PLUGS

LITHOLOGIC LOG

SUMMARY OF PERTINENT WELL DATA

NAME OF WELL: Union et al Mobil Colville D-45
UNIQUE WELL IDENTIFIER: 300D456720125000
LOCATION: Unit D, Section 45, Grid 67 deg.20'.
125deg.00'.
Latitude 67 deg. 14' 08.57"N
Longitude 125 deg. 09' 20.87"W
UNIVERSAL WELL LOC. REF: 67.23571 deg.N 125.15539 deg.W
PERMITTEE: Mobil Oil Canada Ltd., Permit #5499
EXPLORATORY LICENSE NO.: 1471
OPERATOR: Union Oil Company of Canada,
335 - 8th Avenue S.W.,
Calgary, Alberta.
DRILLING CONTRACTOR: Nabors Drilling Ltd. Rig #8
DRILLING AUTHORITY: Issued Feb. 28th, 1973. No. b85.
CLASSIFICATION: New Field Wildcat
ELEVATION: 2080' Ground K.B. 2099'
SPUDDED: 12:00 Noon, March 2nd, 1973
DRILLING COMPLETED: 4:20 PM, May 29th, 1973
TOTAL DEPTH: 3850'
WELL STATUS: D & A
RIG RELEASED: 8:00 AM, May 7th, 1973
HOLE SIZES: 0 - 60' 17 $\frac{1}{2}$ "
60 - 600' 12 $\frac{1}{4}$ "
600 - 2704 3-3/4"
2704 - TD 6-1/8"
CASING: 15 jts. 9-5/8", 36#, K-55, 8 rd. -
611.97' + Howco shoe, float collar
and D.V. tool (4.60'). Cemented
with 180 sax + 1% CaCl₂. Plug
down 3:30 PM, April 5th. Displaced
with water. Circulated D.V. tool.
Cemented 2nd stage with 125 sax
oilwell cement + 1% CaCl₂. Plug
down @ 4:30 PM, April 5th. Cement
returns visable. D.V. tool @ 160'.
NO. OF DST's: 5
NO. OF CORES: 8
LOGS: Dresser Atlas - DIL, BHCSG, G-N & Dipmeter
TOOLPUSHERS: Al Thoma, Jack Smale

SUMMARY OF PERTINENT WELL DATA CONT'D.

WELLSITE SUPERVISORS: Engineers - Tom Ramsay, Carl Jasinski
Geologist - John Ontko

HEADQUARTER SUPERVISION: Engineer - J. Sullivan
- Geology - D. Connolly

HELICOPTER SUPPORT: Trans North Turbo Air
Pilots - B. Robertson, D. Plaster,
G. Stringer & G. Howell

FIXED WING SUPPORT: Nabor's Navajo & T.N.T.A. Twin Otter

DISTRIBUTION OF DATA: 1 set bags - G.S.C.
1 set can 2790 - TD - G.S.C.
1 set lined bags - Mobil
1 set vials - Mobil
1 set vials - Union
1 set envelopes - Union
All logs - original & prints - Union

SUMMARY OF SUB-SURFACE DATA

KB 2099

<u>FORMATION</u>	<u>E-Log DEPTH</u>	<u>ELEVATION</u>
<u>Lower Ordovician</u> surface		+ 2099
<u>Cambrian</u>		
Saline River	1863	+ 236
Saline River Salt (equiv.)	2206	- 107
Mount Cap	2680	- 581
Mount Clark		
Old Fort Sand Mbr.	3160	- 1061
<u>Proterozoic</u>	3275	- 1176
T.D.	3850	- 1751

CORE DESCRIPTIONS

Core #1 3018 - 32'. Recovered 12'9".

Times 35, 34, 23, 32, -26, 27, 23, 30, 25, -25, 28, 33, 33, 38.

Core badly shattered in part. Jammed on connection.

7'3" Shale - dark grey, with slight greenish tinge. Massive, slightly silty in part with two thin ($\frac{1}{4}$ " to $\frac{1}{2}$ ") irregular siltstone beds with near flat bedding planes.

6" Shale - as above with thin siltstone interbeds indicating 45 degree bedding dip. Basal 1" dark green with an irregular abrupt contact with the underlying section.

5'3" Shale - greenish dark grey with numerous thin beds of light grey, silty shale. Bedding is horizontal.

Core #2 3032 - 62'. Recovered 30'.

Times 5, 10, 5, 7, 8, -8, 8, 10, 10, 10, -10, 10, 10, 12, 12, -10, 10, 10, 13, 13, 14, 13, 15, 14, 15, -17, 16, 10, 10, 15.

7'3" Sandstone - light grey, silt size to fine grained, angular, predominantly well packed with minor black green and green glauconite grains. Sand grains are easily dislodged by scratching with blade. Thin clear, flakes (medium size) are common and dispersed throughout section (a secondary silica, not mica.) Porosity not apparent. Core bleeds light brown oil and has gassy odor. Under fluoroscope appears patchy in small to large blebs as well as linear along micro fractures. The latter are not noticeable to the eye or under the microscope.

The sandstone is much like the lower Cardium of the Pembina Field.

CORE DESCRIPTIONS

Core #2 Cont'd.

12'4" Shale - dark grey, sandy to silty with the coarse clusters expressed as very small blebs and occasional thin beds up to $1\frac{1}{2}$ " thick. The sand & siltstone content decrease gradually towards base of section. Shale to sand ratio approx. 60 - 40. No bleeding oil, stain, minor weak patchy fluorescence.

10'9" Shale - dark grey, massive with noticeable thin interbeds and blebs of light grey, siltstone, decreasing towards base. Siltstone less than 10% of section. No stain or oil bleeding.

Core #3 3062 - 92'. Recovered 30'.

Times 22,22,26,26,27,-23,26,21,22,18,-17,24,36,21,23,-28,29,31,26,9,-7,8,10,8,8,-6,6,7,6,7.

19' Shale - dark grey, massive, hard, featureless.

6'8" Sandstone - grey, argillaceous, very fine grained, angular, slightly salt and peppered, hard, dense. Has blebbed appearance, $\frac{1}{4}$ " max. size, caused by cleaner sand. These blebs have medium fluorescence (faint white color.) No stain, faint gas odor on breaking.

Tight. Both contacts transitional.

0'4" Sandstone - light grey, dolomitic, silt to very fine grained size, hard. Basal contact abrupt and irregular with underlying dolomite.

4'0" Dolomite - brown, fine crystalline, hard, dense, with numerous thin irregular dark shale laminal, giving section a fragmental appearance.

CORE DESCRIPTIONS

Core #4 3092 - 3122'. Recovered 30'.

Times 6,6,8,5,5,-6,10,9,10,20,-25,26,24,12,15,-10,15,28,30,
30,-28,22,15,15,16,-9,5,7,6,7.

3'0" Shale - dark grey, massive, with light grey siltstone patches. Slightly dolomitic.

4'10" Sandstone - light brown, dolomitic, very fine grained, tightly packed, angular, clear quartz, with few dark grey shale interbeds (up to 2" thick) and numerous thin shale partings. Trace pyrite. Oil bleeding. Porosity poor, not obvious.

1'0" Shale & Siltstone - 50 - 50. Shale dark grey, interspersed with blebs and interbeds of light grey, dolomitic siltstone. Tight. No oil bleeding.

1'1" Sandstone & Shale - 70 - 30. Sandstone is light brown, very fine grained as above in bands up to 3" (oil bleeding) interbedded with thin beds of dark grey shale.

4'9" Shale - dark grey, massive.

2'9" Shale - dark grey with minor blebs and patches of dark brown, fine to medium crystalline, tight dolomite.

2'1" Shale - dark grey with numerous blebs and patches of tightly packed fine to medium crystalline dolomite. Tight.

5'0" Shale - greenish grey, massive.

4'5" Sandstone - dark grey green, salt and peppered, consisting of 50 - 50 coarse sub-rounded grains of dark green shale (glauconite?) interspersed with finer textured, angular, poorly sorted, tightly packed clear quartz. (grain size from very fine to coarse, but predominantly less than medium.) Section tight.

CORE DESCRIPTIONS

Core #4 Cont'd.

2'1" Sandstone - light brown, very fine grained, tightly packed, quartzose, with green shale parting and grains, slightly dolomitic. Oil stained with bleeding light brown oil. Basal 1'3" is saturated. Porosity not apparent under microscope.

Core #5 3122 - 52'. Recovered 30'.

Times 4,4,6,5,5,-14,21,22,22,27,-23,24,26,11,12,-12,17,20, 18,19,-11,12,10,13,11,-16,13,12,15,16.

6'2" Sandstone - light brown, very fine grained. tightly packed, oil saturated. Bleeds oil. No obvious porosity.

8'6" Shale - dark grey, massive, slightly sandy toward base.

2'6" Shale - dark grey, silty with numerous small silty blebs.

2'6" Shale - dark grey, clean.

1'4" Siltstone - light grey grading to very fine grained sandstone, shaly with shale intermixed as thin interbeds (partings) and as host rock toward base.

9'0" Shale - dark grey with varying minor amount of light grey siltstone (very fine grained sandstone) interspersed throughout as blebs and irregular thin interbeds.

CORE DESCRIPTIONS

Core #6 3152 - 73'. Recovered 21'.

Times 18,10,7,11,20,-20,15,7,8,17,-9,7,8,17,11,-
10,7,8,9,8,-11 .core barrel jammed.

2'0" Shale - dark grey green, with upper 8"
slightly blebbled with light grey siltstone.

2'0" Sandstone - light grey, very fine to occasional
coarse grained, rounded clear quartz grains
in a argillaceous matrix. Framework 80%.
Tight. No oil stain, or fluorescence. The
unit has occasional dark grey, argillaceous
beds cutting across core without any parallel
pattern.

3'6" Shale - dark grey, massive. Basal 6" contains
rounded vugs ($\frac{1}{2}$ " diameter) infilled with dark
brown crystalline dolomite, (as well as few
paper-thin, light grey, interbeds of dolomite.)

13'6" Dolomite - light grey to brownish grey, very
fine to finely crystalline, in part sandy,
hard, tight. The zone has numerous thin
irregular shale partings giving the zone a
fragmental appearance. Not a rubble zone,
as fragments have not been transported.
No movement.

Core #7 3173 - 3203' Recovered 30'.

Times 13,9,7,5,4,-6,3,3,4,7,-8,4,4,4,4,
6,4,3,3,10,-5,3,3,3,5,-5,6,8,2,2.

0'6" Sandstone - light grey. fine to medium grained,
sub-rounded, poorly sorted, well packed,
dolomitic. Tight. No stain.

0'3" Shale - dark grey, massive.

1'0" Sandstone - light brown, fine to medium
grained, sub-rounded to rounded, with occas-
ional coarse grain size fragment of green shale.
Few thin interbeds of dark grey, and sandy green

CORE DESCRIPTIONS

Core #7 Cont'd.

shale blebs are present. Zone appears depositionally fragmented. Oil stain. No visual porosity.

1'0" Shale - green, sandy in part.

1'3" Sandstone - as above, light grey, fine to medium grained with few thin green shale interbeds at base. No stain. Tight.

2'3" Sandstone - as above, in part light brown stain, grading to very fine to fine grained, sub-angular, quartzose. Hard. Occasional thin shale interbed. Two vugs $\frac{1}{4}$ " in size present 1' below top. Tight visually.

1'10" Sandstone - as above with thin green and dark grey shale interbeds more common, giving section a fragmental (depositional) appearance in part.

3'9" Sandstone - very fine grained, quartzose, massive, with green shale interbeds more common. Hard. Well packed appears tight. Stained.

6'0" Sandstone - as above, in part heavily stained (approx. 1' located $1\frac{1}{2}$ ' from top of unit.) Remainder light brown stained.

1'2" Sandstone - as above interbedded with thin dark grey shale. Stained.

3'7" Shale - green to pale green becoming sandy in basal 6".

1'6" Sandstone - very fine grained as above with green shale matrix in part. Stained.

3'0" Shale & Sandstone - shale is green with abundant light grey sandstone blebs. No stain.

0'4" Shale - dark grey green.

1'6" Sandstone - light grey, very fine grained, quartzose, sub-angular with minor amount of green shale intermixed.

CORE DESCRIPTIONS

Core #7 Cont'd.

1'0" Sandstone - very fine grained, sub-angular intermixed with medium sized sub-rounded grains, poorly sorted, slightly friable. Oil stained.

Core #3 3203 - 33'. Recovered 29'.

Times 2,2,2,2,2,-3,2,2,2,2,-2,2,2,2,2,-
2,2,2,3,3,-2,2,2,2,11,-8,4,1,1,1,-

5'6" Sandstone - brown stained, gassy odor, fine grained, sub-angular, quartzose. good sorting, well packed, friable. Oil stained.

0'3" Shale - pale green, soft.

13'0" Sandstone - as above. Oil stained.

1'3" Sandstone - black, fine to medium, sub-rounded, quartzose grains, friable. Bitumen infill interstitial spaces. No physical barrier at contacts responsible for difference in stain.

5'0" Sandstone- light brown stained as before, predominantly fine grained, sub-rounded, with occasional coarse rounded to sub-rounded clear quartz grains. Well packed. Friable.

1'0" Sandstone - black, fine grained, bituminous as before with no noticeable rock change at contacts.

0'6" Shale - green, soft.

1'0" Sandstone & Shale - broken core, shale is pale green, soft, sandstone is as above, oil stained.

SAMPLE DESCRIPTIONS

Sample interval 30'.

30 Chert - light grey, massive.

60 Chert - light grey to white, massive to micro-crystalline, in part tripolitic. Occasional chip has honeycomb structure.

90 Chert - as above with minor clear angular coarse quartz grains (5%).

120 Chert - as above with trace of quartz.

150 as above, with porous honeycomb, (porous) structured chert common (20%).

180 Chert - light grey brown and white, massive, trace of tripolite. Occasional quartz grain. No porous chert.

210 predominantly light grey and white as above with minor tripolitic and porous chert. Iron stain obvious.

240 Dolomite - light brown to light grey, micro and finely granular (the fine grained has white matrix.) Light grey chert common. Occasional light greenish yellow chert present. Trace of clear quartz. (Sample quality poor, only coarse chips.)

270 as above, without the granular white matrixed dolomite and the pale greenish yellow chert. (Poor sample.)

300 as above with chert occasionally vuggy. (poor sample)

330 as above, without vuggy type chert. (Very poor sample.)

360 Dolomite - light brown, crypto to micro-crystalline with minor chert (one piece has pesolitic structure.) Iron stain spotty.

390 as above, grading to finely crystalline in part, occasionally light grey in color. Light grey, massive chert common to abundant. (30%)

420 Dolomite - as above with abundant light grey, massive, crypto to micro-crystalline dolomite. Decrease in chert to trace.

450 as above, chert approx. 10%.

480 Dolomite - with occasional chip of pale green and green shale.

510 Dolomite - light brown, hard, dense, micro-crystalline (60%), light grey, chalky textured, limy dolomite abundant (40%).
Trace chert.

540 predominantly light brown micro-crystalline dolomite - 70% - with light grey, micro-crystalline dolomite common (20%). Chalky textured dolomite minor (less than 10%).
Trace of chert.

570 as above. Slightly more chert - 5%.
Occasional greenish dolomite chip.

600 as above, with minor amount of chalky textured dolomite (20%).

630 Dolomite - light brown, micro to very finely crystalline with trace (less than 5%) white and light grey chert.

660 - 90 in part - 10% - light grey, very fine to finely crystalline, poorly sorted, tight dolomite. Occasional pale green shale chip.

720 Dolomite - predominantly light brown, micro to very finely crystalline dolomite.

750 with occasional white, soft, chalky textured dolomite chip. Few white chert, and clear quartz chips also present.

780 with ferruginous stain and rust. No primary porosity. Iron indicates fracture, some water in hole at 759 - went to mist.

810 with abundant fine to medium crystalline dolomite. Occasional trace of solution vugs. Much of the cuttings are reddish due to iron stain.

840 Dolomite - the prevalent light brown, micro to very finely crystalline dolomite has occasional solitary vug. The light grey, micro to finely crystalline dolomite is approx. 15%. The light grey sucrosic, very finely crystalline, silty dolomite is approx. 5%. White chert and white chalky texture makes up approx. 5%. No iron stain present.

870 as above - the light brown dolomite is becoming abundantly very fine crystalline (sucrosic.) Occasional small chip of green sandstone. Few yellowish green, cryptocrystalline dolomite chips.

900 as above with minor amount of sandy dolomite, occasional coarse, clear quartz grain.

930 as above with only occasional white chert chip, no coarse quartz observed. Sample is predominantly light brown, micro to very finely crystalline dolomite (70%), light brown to light grey, sucrosic, very finely crystalline dolomite 20%, and very minor amount of light grey, very fine to fine crystalline, poorly sorted dolomite. Occasional chip has yellowish green tint.

990 same lithology as above, but becoming increasingly more light grey in color.

1020 - 50 Dolomite - lighter brown than above, consistently micro-crystalline, with minor light brown to light grey to white, chalky appearing dolomite 20%. Trace white chert.

1080 as above with occasional rust parting.

1140 as above. Occasional reddish speckled and light pinkish colored chip.

1170 as above, increase in amount of the light grey to white (chalky textured) sucrosic dolomite to approx. 50%.

1200 decrease in sucrosic to minor - less than 20%.

1230 with abundant light to medium to dark grey crypto to micro-crystalline dolomite (30%). The dark grey is micro-crystalline. Trace of light grey shale.

1260 Dolomite - as above, predominantly light brown (50%) and light grey (40%) hard, dense, crypto to micro-crystalline. Occasional pale greenish yellow dolomite chip. Minor green, blocky, slightly dolomitic shale (10%).

1290 Dolomite - predominantly light brown in part light grey, crypto to micro-crystalline, hard, dense. Occasional green shale chip.

1320 as above with occasional coarse crystalline calcite lump and odd medium grey, micro-crystalline dolomite chip.

1350 as above with minor light grey, chalky dolomite (10%).

1380 the above chalky (in part sucrosic) dolomite becoming predominant (60%). Light grey and light brown, micro-crystalline, dense dolomite of the above is abundant (40%).

1410 Limestone - light grey to medium grey, micro- to finely crystalline, slightly silty and argillaceous.

1440 Dolomite - light grey to medium grey, micro-crystalline, hard, dense - 70% with light brown, crypto to micro-crystalline, dense dolomite common.

1470 as above with trace of green shale.

1500 Dolomite - as above, light brown 70% and light to medium grey 30%.

1530 Dolomite - predominantly light to medium grey, argillaceous, crypto to micro-crystalline, dense (70%) with light to medium brown, dense, crypto to micro-crystalline dolomite common 25%. Trace of medium grey, blocky, dolic shale.

1560 as above with minor 10% light grey and light brown, soft, chalky textured dolomite.

1590 as above with minor dark grey, blocky dolomitic shale.

1620 increase in shale amount (approx. 20%) with greenish grey, slightly fissile shale obvious. The light brown, chalky dolomite approx. 20%. The light to medium grey and light brown dolomite of above is predominant (60%).

1650 as above with green, blocky shale common (15%). Trace of disseminated pyrite.

1680 as above, becoming predominantly the light grey, dense, hard, micro-crystalline type (50%), the light brown to greyish brown type is approx. 30%. The grey shale and green shale comprises approx. 20%. Trace of pin point solitary vugs in both dolomite color types.

1710 Dolomite - brown, hard, dense, crypto-crystalline in part appear greyish brown (30%) with green, blocky to slightly fissile shale (with occasional disseminated pyrite) 20%.

1740 as above with the dolomite occasionally earthy (softer) appearing. Increase in green shale to approx. 30%.

1770 as above with minor amount of light grey, slightly argillaceous, massive dolomite with occasional trace of fossil detrital. Decrease in amount of green shale (10%).

1800 as above. Dolomite 70% - increase in green fissile to slightly waxy in part shale.

1830 as above. Dolomite remains light grey and light brown, massive, crypto to micro-crystalline. Trace of brown, micro-crystalline dolomite. Green, fissile to blocky shale approx. 20%.

1860 as above, decrease in shale to trace - less than 5%.

Saline River 1870

1890 Shale (50%) rusty to dark brown in part interbedded with light grey, light brown, and pinkish crypto to micro-crystalline dolomite with spotty good vuggy porosity (no stain.) Green waxy to dull shale present as a trace.

1920 Shale - as above reddish to brown, light green to dark green in part waxy (60%), with abundant pinkish, reddish, yellowish, grey, dolomitic siltstone (20%), minor pink and white anhydrite (10%), and light grey to light brown, dense, crypto-crystalline dolomite. (Variegated.)

1950 - 1990 as above with anhydrite only a trace (less than 5%).

Start 10' interval samples at 2000'.

2000 Shale - variegated as above with siltstone and anhydrite and dolomite as above with green shale predominant (approx. 40%).

2010 - 60 as above with trace of white mineral with columnar habit (gypsum?). Occasional clear, needle-shaped, gypsum crystal present.

2070 - 90 as above, yellowish and light grey shale more obvious than above. Dolomite present as trace. Very minor anhydrite and siltstone.

2100 - 2110 variegated section as above with green shale very predominant. Trace dolomite, anhydrite and siltstone.

2120 - 60 as above, with anhydrite obvious.

2170 trace vuggy porous dolomite.

2180 as above with further increase in anhydrite approx. 10%.

2190 as above with increase to obvious in pale yellowish shale.

2200 as above, green, reddish and light grey shale (order of predominance) with trace of yellow shale. Anhydrite common.

2210 as above with considerable light brown, massive, crypto-crystalline dolomite 30%, slightly silty in part; pink anhydrite (sylvite) minor 10%. Trace light grey, dolomitic, fine grained sandstone.

2220 no dolomite. Sample predominantly red shale with abundant green, in part light green, waxy shale. Minor amount of brown, yellowish brown and grey shale. Anhydrite - white and pink (sylvite) present in minor amount approx. 5%. ↑

Pipe Correction -32'.

2230 Salt? at 2223 - 37 with shale as above. Trace light brown dolomite. Anhydrite minor.

2250 Shale as above with trace of white chert, also light grey, fine grained sandstone with medium to coarse quartz crystal inclusions.

2260 - 90 as above with minor amount of pink anhydrite (sylvite) 10%. Trace of pyrite in a dark background, pale green, lithographic shale with conchoidal fracture, occasional chip of light grey, fine to medium grained, angular, poorly sorted.

2300 as above. Variegated shale and minor anhydrite. Occasional chip of light grey, poorly sorted, angular, very fine to medium grained sandstone. Pyrite "dark" as before.

2310 - 20 as above, with odd white chert and white lithographic mineral (appears like chalk.)

2330 - 40 as above with white, soft, chalky textured, limy shale common (10%). Light grey shale obvious, contains sandstone grain interbeds. predominantly green and red shale of above.

2350 as above, decrease in anhydrite to trace.

2360 as above, predominantly green shale.

2370 as above. Minor to trace of anhydrite (Pink) occasional chip of white chert and siltstone.

2380 - 2400 as above with increase in reddish colored shale to approx. 2/3 of the green. Yellowish brown and brown shale obvious. Occasional shale chip is pitted suggesting salt inclusions.

2410 Shale - predominantly green and reddish with minor grey; trace amount of anhydrite.

2420 Decrease in amount of rusty shale with light grey, soft, slightly dolomitic shale obvious. Trace of light brown, crypto-crystalline dolomite.

2440 as above with light brown, soft, chalky appearing, slightly limy dolomite common 10%.

2450 variegated shales as above, abundant green, rust (red) and light grey common, with trace of pink and white anhydrite and light brown, crypto-crystalline dolomite (containing disseminated pyrite in part.) Difficult to dry clean sample because of grey dust.

2460 Decrease in rusty shale with minor light brown dolomite with excellent honeycomb porosity (tight fragments have pelletoidal - granular - texture.)

2470 Dolomite - light brown, earthy, tight (50%) with abundant green shale. No rusty shale. Trace of anhydrite. One coarse mica flake. Few black shale fragments. Difficult to dry sample clean, as it becomes dusty and covers colored cuttings.

2480 Shale - pale green (45%) with abundant very dolomitic light grey shale (shaly dolomite) 45%. Minor to trace of pink and white anhydrite, as well as trace of dolomite. When dried covers colored chips with grey dust. Sticks to pan.

2490 Shale - as above, green to light greenish grey to grey dolomitic (80%) with minor light brown dolomite (10%) and white and orange (pink) anhydrite 10%.

2500 Dolomite - grey to slightly brownish grey, in part light grey, dense, silty, tight (60%) with abundant (30%) above grey, grey green and green shale with minor light grey shale. Occasional anhydrite as well as the odd porous grain cluster. Red (rusty) shale appears as trace, but considered caving. Mud has been in poor condition for last 100' because of salt contamination. Sample dries without grey dusty coating of above samples.

2510 Shale - green and grey, dolomitic in part, as above with minor light brown, dolomite and trace of anhydrite.

2520 as above. Trace of pale yellow green and bright green shale. Occasional chip of anhydrite.

2530 - 60 Shale - as above, green and grey green, dolomitic with abundant grey shale. Minor to trace of light brown, earthy dolomite. Occasional piece of anhydrite. Red (rusty) shale is obvious. Bedding obvious with samples often having micro-flakestone appearance.

2570 - 80 as above with trace dark grey shale, slight increase in dolomite (10%). No anhydrite.

2590 Shale - as above with slightly increased light brown, slightly silty dolomite approx. 15% - light grey, finely crystalline dolomite present as trace amount of less than 5%.

2600 as above. No grey, micro-crystalline dolomite. Increase in light brown dolomite to approx. 25%.

2610 - 30 as above. Light brown to light grey to medium brown, in part crypto-crystalline, argillaceous dolomite approx. 20%.

2640 - 50 becoming predominantly shale. Dolomite approx. 15% with medium brown dolomite as trace.

2660 Shale - as above approx. 40% with abundant dolomite, light brown, earthy to very finely crystalline (granular) 30%, with minor amount of good pin point vug fluorescence with light grey to light brownish grey, argillaceous dolomite 20%. Minor brown chert speckled (inclusions) in part 5%. Trace of dark grey shale, occasional pink (orange) anhydrite chip. Fluorescence less than 5% of sample in brown, very finely crystalline dolomite with occasional pin point vug.

2670 Shale - 60% predominantly bright green, blocky with light green and grey green in minor amount. Dolomite 40% - light brown to medium brown, (fluorescence with occasional pin point vug) to grey brown, crypto-crystalline, in part finely crystalline, granular, silty. Fluorescence less than 5%.

2680 as above - the green shale looks dark greenish grey when dry. Dolomite remains approx. 40% and is similar to above silty, crypto to fine grained, light grey brown to occasionally medium brown in part. Odd chip fluoresces.

2690 Dolomite - 50% as above with occasional brown (oil stained fragment less than 10% of dolomite portion) with occasional pin point vug. Shale 50% - predominantly bright green, slightly fissile and in part pale green, blocky.

2700 Shale - as above 60% with dolomite 40% light grey to light brown, crypto to micro-crystalline with occasional brown, very finely granular, crystalline (oil stain - white - fluorescence.) Less than 1%. Occasional brown chert chip.

2704 circulated Shale 80% Dolomite 20%. Occasional (less than 1% of dolomite portion) oil stained (white fluorescence), finely granular dolomite.

2710 Shale - dark greenish grey to dark grey, blocky to platy to fissile. Trace of reddish, and pale green shale. Occasional chip of light grey, crypto-crystalline dolomite, light grey dolomitic siltstone and fine grained, slightly porous, spotty rust stained sandstone (probably the trace and occasional chips are cuttings from the mud tanks that are circulated through the mud system.)

2715 as above with minor amount 5% of grey, slightly dolomitic, salt and peppered, angular, very fine to fine grained sandstone. The black grains are shale fragments (similar to shale being drilled), and are larger than the quartz grain complementary component. Tight. Trace of light brown to brown crypto-crystalline dolomite 1%. Occasional chip of reddish shale and light grey, fine grained dolomitic sandstone (contaminants?)

2720 Shale as above. Occasional chip of above salt and peppered sandstone, reddish, and pale green shale.

2730 Shale as above - dark greenish grey to dark grey - blocky, platy to fissile.

2740 as above with occasional chip of light brown, crypto to finely crystalline dolomite and white chert, and white tripolite with quartz grain inclusions.

2750 Shale - as above, however, not greenish as before. Habit same. Color dark grey.

2760 as above with minor (less than 5%) light grey, dolomitic, very silty to very fine grained, predominantly quartz with occasional very fine grained shale grains, sandstone (siltstone.) Tight.

2770 Shale & Limestone - Shale 50% - dark grey to black and dark green, blocky to fissile to finely bedded as above with Limestone 50% - light grey to light brown to brown, crypto to micro-crystalline, slightly silty, dense with trace of light grey, soft, chalky limestone. Occasional chip grades to fine granular with odd fragment containing coarse grained inclusions (fossil fragments?)

2780 as above with decrease in above limestone to approx. 30%. Occasional chip of vuggy dolomite with slight cut. Less than 1%. Shale remains grey green in part.

2790 increase in limestone to approx. 80%, and becoming brown, micro to very finely crystalline with occasional chip containing fair inter-crystalline porosity with fluorescence (at most 10% of limestone portion), limestone is also slightly dolomitic. Shale 20%, predominantly green, platy to blocky as above. Evidence of occasional micro fractures infilled with calcite.

2800 Shale - dark grey, blocky, limy, very silty 90% with minor light grey, limy, very argillaceous siltstone 10%. Trace of limestone as above.

2810 as above, grading more to the grey, slightly dolomitic very argillaceous siltstone (silty shale.)

2820 Limestone (80%) brown to buff in part, crypto-crystalline, dense, in part buff, soft, chalky textured limestone. Shale 20% - greenish grey as above. Calcite present in trace amount as fracture infill.

2830 Shale - dark grey, blocky, slightly limy with 10% limestone as above.

2840 Limestone - 80% medium brown, crypto to micro-crystalline in part grading to buff, soft, chalky textured limestone. Occasional fracture infilled with calcite. Shale 20% - green grey, blocky.

2850 Shale - dark grey, fissile to blocky with minor 20% limestone of above.

2860 as above, shale shows platy texture, some minor slickensiding, occasional fossil mold (Trilobite parts.)

2870 Limestone 60% - light to medium brown, slightly dolomitic, crypto-crystalline grading to very finely granular in part, buff colored, softer limestone is common. Shale 40% - predominantly green and dark grey in color, blocky with trace amount of dark brown, fissile shale, and dark brown silty shale.

2880 Siltstone 50% - light grey, very dolomitic in part medium grey, argillaceous, as well as greyish brown. Shale 45% - predominantly dark grey and green with minor black and dark brown. Dolomite 5% - as above, light brown to buff.

2890 Dolomite 90% - light to medium brown, micro to finely crystalline, dense with occasional white calcite chip (fracture infill.) Shale 10% - green, dark grey and brown as above.

2900 Dolomite 60% - becoming light brown to light grey, to medium grey, predominantly crypto-crystalline, slightly silty with Shale 40% - dark grey, in part brown and trace of black fissile, bituminous.

2910 Dolomite - predominantly medium brown, micro-crystalline to tightly packed, finely granular in texture, slightly limy, occasional chip with inter-crystalline porosity; with hard, blocky, dolomitic pale green, silty shale. Trace of green shale.

2920 Dolomite 90% - light grey, silty, very fine granular, massive, dense with rounded glauconite inclusions abundant in numerous chips. Shale 10% - dark grey present in minor amounts.

2930 Dolomite - brown, finely crystalline, slightly silty, tight. Trace of green shale and light grey, very finely crystalline, glauconitic dolomite.

2940 Siltstone - light grey, slightly dolomitic. Trace of green shale.

2950 as above in part brownish in color, with considerable sericite(?) flakes. Thin shale partings also present. Minor black shale present in part sericitic.

2960 Shale 60% - green, blocky, in part platy, with siltstone 40% light brown to light grey in part. Occasional chip fluoresces, no cut.

2970 as above with trace of brown shale. Decrease in siltstone to approx. 10%.

2980 Shale - green and brown shale, blocky to fissile. Approx. 40 - 60 green to brown shale.

2990 Shale - becoming predominantly brownish grey, with abundant green fissile. Minor amount (5%) of light grey chert. Very odd (occasional) angular, fine to coarse, clear quartz grain and clusters. Trace of light brown to reddish, very finely to finely crystalline dolomite.

2995 Shale - green, blocky to fissile.

3000 Shale 90% - predominantly green with brown common and minor amount of grey. Trace of white to light grey chert, light brown dolomite and occasional angular, coarse, clear quartz grain.

3010 Shale - green as above with trace of brown.

3015 Sandstone - light brown, fine grained, angular, quartzose sand. Tightly packed, trace of inter-granular, poor porosity with good oil stain and cut. Not dolomitic, has minor silica cement. Mostly framework, porosity may be good but not noticeable under microscope.

Cored 3018 - 3233 - 8 cores 95% recovery.

3240 Shale - green, fissile to blocky with abundant light grey, very fine grained, quartzose sandstone, in part grading to medium sized, sub-angular to sub-rounded. Porous. Partly stained with faint fluorescence.

3250 Sandstone - light grey to light brown, stained fine to medium, sub-angular to sub-rounded, clear, quartz grains. Good porosity.

3260 - 70 Sandstone - light brown, stained, very fine grained as above with abundant loose coarse, angular to sub-rounded, predominantly translucent quartz with trace of clear, and yellowish quartz. Minor amount 15% of green fissile to blocky shale.

3280 - 90 Shale - green, fissile and blocky with abundant maroon, rusty, and brown colored shale.

3300 Shale - as above with much fine grained, porous sandstone and loose, coarse, rounded sand grains - cavings. (Shale continues very reddish and soft - much is washed out when cleaning.)

3320 Shale - reddish, dark green, trace of pale green, grey and dark grey common. In part silty and sandy grading to siltstone and dolomite, occasional slightly glauconitic sandstone. Numerous lighter shales and siltstone are micaceous (sericite.)

3330 Sandstone - light grey, very argillaceous, with occasional pale green speck inclusions, reddish stained with shales of above common, the brownish grey color being the most prevalent. Mica (sericite) flakes abundant and present in brownish and green shales as well as the sandstone.

3340 - 50 Shale - decrease in sandstone to approx. 20%, predominantly variegated shales as above.

3360 Shale - green to grey green, 30% with grey shale 20% common. Habits are blocky to fissile in part.

3370 Shale - as above with increase in grey type to approx. 40%.

3380 as above with grey shale predominant.

3390 Shale - as above 60% green 40% grey.

3400 as above 50 - 50 with trace light brown, micro-crystalline dolomite, few chips of white bentonite.

3410 Siltstone - light grey to greenish grey, argillaceous, slightly glauconitic grading to very fine grained sandstone with green and grey shale common 30%.

3420 Sandstone - as above decrease in shale to less than 20%.

3430 - 70 Shale - green and grey, fissile, micro-micaceous in part, with minor grey, argillaceous, very fine grained sandstone 10%.

3480 as above, increase in light greenish grey sandstone to approx. 20%.

3490 Sandstone & Shale - 60 - 40 - as above with the glauconitic portion becoming more obvious.

3500 Sandstone - as above with decrease in shale to less than 10%.

3510 as above, shale approx. 25%.

3520 as above, shale 40%.

3530 decrease in shale to 20%. Few dark grey to black to brown chips of shale. Trace of bituminous sandstone.

3540 Sandstone - light grey, silt to fine grained, angular, clear quartz, fair sorting, slightly micaceous, silica cement. Occasional glauconite grain, and green shale grain. Trace of inter-granular porosity.

3550 as above with a few coarse, angular, clear quartz chips occasionally encrusted with quartz crystals suggesting fractures. Occasional rust staining.

3560 Shale 90% - grey green, blocky to fissile with minor amount of above sandstone.

3570 Shale - green 40%, grey 20%, maroon 10%, and sandstone light grey, quartzitic as above 30%.

3580 Shale - green, fissile to blocky with minor amount of dark grey shale. Trace of maroon and pale green shale. Sandstone of above minor in amount.

3590 Shale -- green and dark grey as above with minor sandstone 15%.

3600 - 10 as above with dark grey shale abundant. Brown shale common. Sandstone argillaceous to quartzitic approx. 20%.

3630 Sandstone - light grey, very fine grained, quartzitic, slightly glauconitic, tight. Minor dark grey and brown shale 10%.

3640 Sandstone is very argillaceous in part, increase in above shale to approx. 50%. * Sample is brown due to being burned when drying.

3650 - 90 as above. Dark grey shale approx. 10%.

3700 - 10 as above with texture grading down to silt size. Noticeably quartzitic. Slight increase in shale varying from 10 - 25%.

3720 - 30 as above, becoming more noticeably micaceous; both sandstone and shale.

3740 Shale 60% - grey to dark grey, fissile to blocky, slightly micaceous in part. Minor brown shale. Sandstone 40% - grey and brown, grading to siltstone, quartzitic, argillaceous, slightly micaceous in part.

3750 Shale - dark grey, blocky to fissile with minor amount of green and brown shale. Sandstone - light grey and brown, silty, quartzitic present as trace.

3760 - 70 Shale - as above with brown shale and siltstone and silty shale becoming obvious.

3780 Shale - dark grey with minor green grey, and green, fissile to blocky. Minor light grey, slightly glauconitic, very fine grained quartzitic sandstone - less than 10%.

3790 - 3800 as above, increase in sandstone to approx. 30%.

3810 - 30 Sandstone 60% - as above in part grey, very quartzitic with shale 40%.

3840 decrease in sandstone to less than 40%.

3850 Shale - grey, green with trace of brown, fissile to blocky. Occasional pyrite crystal cluster. Few sandstone grains of above.

TD 3850

May 2nd, 4:20 PM, 1973.

E N G I N E E R I N G

BIT RECORD					
BIT NO.	SIZE	MAKE & KIND	SERIAL	DEPTH	TOTAL FEET
					TOTAL HOURS
1A	17 1/2	H7J	394440	30	30
2A	12 1/4	M4NGJ	913351	32	2
3A	12 1/4	H7UJ			6
4A	12 1/4	H7UJ			5-1-1
3A RR	12 1/4	H7UJ			Drill 21' rat hole.
5A	12 1/4	H10J			5-3-1
6A	12 1/4	H77U			8-4-1
7A	12 1/4	M4NG			2-7-1
8A	12 1/4	3JS			2-1-1
1	8-3/4	WDR-RR	28639	615	4-1/4
2	8-3/4	SS8	M4779	1900	8-3/4
3	8-3/4	TC8 RR	FS005R	2242	29 1/2
4	8-3/4	4JS	MS282		5-7-1
5 RR	8-3/4	WDR	28639	2326	Clean out to bottom
6 RR	8-3/4	4JS	MS282	34	5-2-1
7	8-3/4	H77	369204	187	mud
8	6-1/8	S88	435437	191	1-1-1
9	6-1/8	M88	913695	2704	3-2-1
1D	6-3/32	diamond	EC127112	2930	38 1/2
2D	6-3/32	diamond	EC117235	3032	1-2-1
10 RR	6-1/8	S88	435437	3018	1-1-1
11	6-1/8	S88	435555	3233	1-5-1
				201	39
				3315	18 1/4
				3850	38 1/4
					Total 457-3/4 hours

DAILY MUD RECORD (PROPERTIES & ADDITIVES)

<u>DATE</u>	<u>DEPTH</u>	<u>WT. GAL.</u>	<u>VIS. SECS.</u>	<u>W.L.</u>	<u>PH</u>	<u>KELZON GEL</u>	<u>SAW DUST</u>	<u>CAUSTIC BENEX</u>	<u>SPER SENE</u>	<u>SALT GEL</u>	<u>SALT</u>	<u>CMC</u>	<u>BI- CARB</u>		
Drilling with air															
Apr. 3	267	3.4	110			4	50	100							
4	410	3.5	200				70		4		20				
5	607	9.0	185			4	17			2					
				Drill with air											
15	2242	8.5	200+				6	80	100						
16	2326	8.5	150	11.2			8	70							
17	2434	9.0	90	15.2				15		3					
18	2513	9.5	65	11.8				1							
19	2634	10.0	80	14.0				1							
20	2704	10.0	88	15.2											
				End of Salt Mud System											
21	2704			W.O.C.											
22	2745	8.4	38						1						
23	2876	8.8	47							4					
24	2941	8.8	53							3	19				
25	3020	8.8	52							2	15				
26	3062	8.8	52							12					
27	3105	8.9	50												
28	3169	8.9	60												
29	3233	9.0	58												
30	3279	9.0	62												
May 1	3415	8.8	57												
2	3726	8.8	55												
3	3850	8.8	58												
4	3850	8.8	48												

DAILY PROGRESS REPORT

<u>DATE</u>	<u>DEPTH</u>	<u>FOOTAGE</u>	<u>HRS.ON BOTTOM</u>	<u>BIT NO.</u>	<u>WEATHER</u>	<u>REMARKS</u>
Mar. 25/73	15	15	4	1A	8:00AM +10	Drill with air - rat hole
27	15	ream	10	1A&2A		Ream to 17 $\frac{1}{2}$ "
28	34	19	10	2A&3A	+8	Ran & cemented conductor. W.O.C.
29	34				+12	W.O.C. Headed up air drill equipment.
30	123	89	13 $\frac{1}{2}$	3A&4A	+10 wdy.	Spudded noon March 29.
31	177	47	12	3A&5A	+15	Drill
Apr. 1	210	33	5 $\frac{1}{4}$	5A&6A	+5	Drill. Hole sloughing badly.
2	210			7A	+10	Change to mud. Losing circulation.
3	267	57	8	7A&8A	-5	Drill. No mud loss.
4	410	136	17 $\frac{1}{2}$	8A	-10	Drill.
5	607	197	19 $\frac{1}{2}$	8A	+5	Drill.
6	610	3	$\frac{1}{2}$	8A	+6	Ran 9-5/8" surface casing.
7	610				+5	Nippling up.
8	615	5	3/4	1	+12	Pressured up OK. Drill out.
9	794	179	17 $\frac{1}{4}$	2	+25	Drill with air.
10	1120	326	23 $\frac{1}{4}$	2	+26	Drill.
11	1471	351	23 $\frac{1}{4}$	2	+15 snow	Drill.
12	1876	405	23	2	+10 clr.	Drill.
13	2208	332	18 $\frac{1}{2}$	2&3	+15 clr.	Drill.
14	2242	34	12 $\frac{1}{2}$	3&4	-10 clr.	Hole slough, water in hole. Reaming.
15	2242	0	0	RR5	-10 clr.	Unable to fill hole w/water, mixed mud w/lost circulation material, got returns.

Pipe Correction -32".

DAILY PROGRESS REPORT Cont'd.

DATE	DEPTH	FOOTAGE	HRS. ON BOTTOM	BIT NO.	WEATHER	REMARKS
Apr. 16/73	2326	84	11 1/2	RR5	0 clr.	Clean out 8 hrs. - drill with mud.
17	2434	108	12-3/4	RR6	-5 clr.	Laid down air rotary bed.
18	2513	79	21 1/4	RR6	0 clr.	Change to salt mud.
19	2634	121	22 1/2	7	+5 wdy.	Drill.
20	2704	70	20	7	+18 wdy.	Drill - prepare to run casing.
21	2704				+10 cldy.	Ran 7" casing. <u>W.O.C.</u>
22	2745	41	4	8	+20 wdy.	Test B.O.P.'s, drill.
23	2876	131	21-3/4	8	+10 cldy.	Drill.
24	2941	65	18-3/4	8&9	+5	Drill. Pipe correction 7".
25	3020	79	15	9&D1	-2 clr.	Drill and core.
26	3062	42	11-3/4	D2	+4 wdy.	Core, DST #1.
27	3105	43	12 1/2	D2	+12 wdy.	Core.
28	3169	64	15 1/2	D2	+28 fgy.	Core.
29	3233	64	5-3/4	D2	+18	Core, DST #2 = missrun.
30	3279	46	3-3/4	10RR	+30 clr.	Drill.
May 1	3415	136	21 1/2	10RR	+32 clr.	Drill.
2	3726	311	23 1/4	11	+25 clr.	Drill.
3	3850	124	8	11	+30	Waiting on parts for logger.
4	3850					Logging.
5	3850					Ran DST #4.
6	3850					Ran DST #4 and #5.
7						Ran abandonment plugs.
						Rig released 8:00 AM, May 7th, 1973.

DEVIATION RECORD

<u>DEPTH</u>	<u>DEVIATION (DEGREES)</u>
80	$\frac{1}{4}$
146	0
224	1-3/4
295	2
390	2
490	2
605	2 $\frac{1}{4}$
695	2
910	1-3/4
1200	1
1500	3/4
1798	$\frac{1}{4}$
2110	$\frac{1}{4}$
2320	2
2350	1-3/4
2420	2 $\frac{1}{4}$
2643	1 $\frac{1}{2}$
2700	1-7/8
2815	2
2930	2
3018	1
3850	6-7/8

DRILL STEM TESTS

TEST #1

Date	April 26th, 1973	
Operator	C. Martineau - B.J. Services	
Formation	Old Fort Sand	
Interval	3002 - 62	
Flow Periods	Preflow	15 mins.
	Initial Shut-In	60 mins.
	Flow	90 mins.
	Final Shut-In	90 mins.
Pressures	IHP	1550
	FHP	1370
	Preflow	
	IFP	50
	FFP	50
	ISIP	240
	FSIP	60
Recovery	40' drilling mud, slightly oil flecked & gas cut. Tool open - Fair air blow to faint in 3 minutes.	

TEST #2

Date	April 29th, 1973	
Operator	C. Martineau - B.J. Services	
Formation	Old Fort Sand	
Interval	3186 - 3233	
Misrun	Spline in Shut-In tool damaged	

DRILL STEM TESTS Cont'd.

TEST #3

Date	April 29th, 1973
Operator	C. Martineau - B.J. Services
Formation	Old Fort Sand
Interval	3186 - 3233
Flow Periods	Preflow 5 mins. Initial Shut-In 60 mins. Flow 140 mins. Final Shut-In 120 mins.
Pressures	IHP 1500 FHP 1440 Preflow IFP 310 FFP 990 ISIP 1040 FSIP 1040
Recovery	2300' of water 40,000 ppm. NaCl. Temp. cool - est. 50 deg. F - no therm.

TEST #4

Date	May 5th, 1973
Operator	C. Martineau - B.J. Services
Formation	Old Fort Sand
Interval	3207 - 3224
Flow Periods	Preflow 5 mins. Initial Shut-In 120 mins. Flow 120 mins. Final Shut-In 140 mins.
Pressures	IHP 1550 FHP 1400 IFP 240 FFP 900 ISIP 1050 FSIP 1030
B.H.T.	95 degrees F
Recovery	2200' slightly gassy, salt water (45,000 ppm. NaCl) Upper 500' slightly oil flecked

DRILL STEM TESTS Cont'd.

TEST #5

Date	May 6th, 1973	
Operator	C. Martineau - B.J. Services	
Formation	Old Fort Sand	
Interval	3253 - 78	
Flow Periods	Preflow	10 mins.
	Initial Shut-In	60 mins
	Flow	120 mins.
	Final Shut-In	120 mins.
Pressures	IHP	1590
	FHP	1450
	IFP	380
	FFP	1030
	ISIP	1110
	FSIP	1110
B.H.T.	95 degrees F	
Recovery	2200' salt water (45,000 ppm. NaCl.)	

ABANDONMENT PLUGS

PLUG #1

1st Stage - 3850 - 3250

Ran 150 sax oilwell cement. Displaced with
24 barrels drilling mud.

2nd Stage - 3250 - 2650

Ran 150 sax oilwell cement. Displaced with
18 barrels drilling mud.

Felt Plug at 11:00 PM, May 6th. Top at 2590.

Cut off casing. Placed 5 sax cement at top.
Welded on plate and installed well sign.

Rig released 8:00 AM, May 7th, 1973.