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ABSTRACT

A test was conducted to determine the feasibility of
evaluating insitu the effective elastic modulus of an ice sheet.
A vibratory motion was induced in an ice sheet by heaving a
194 ton air cushion vehicle. The acceleration data was measured
at two points on the ice and one point on the vehicle.

A mathematical equation based on the elastic theory of
plates was derived to analyze the data. Numerical integration
of the equation revealed that the form of the equation results
in singularities which prevents the mathematical analysis of the
field data. Graphical analysis of the field data showed that
the accelrometers on the ice sheet were unable to measure
accurately the accelerations of the vibrating ice sheet.

Future efforts will be the development of a mathematical
analysis accounting for the viscoelastic characteristics of
an ice sheet. This report terminates the effort for an elastic
analysis of a vibrating ice sheet.
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I. INTRODUCTION

This report describes a theoretical analysis of the vibrating
ice sheet problem. Use was made of the ACT-100 vibration data
taken at Yellowknife, N.W.T. on February 10, 1972. The goal of
this study was to determine the reliability of engineering ice
property determinations by vibration techniques.

An attempt was made to simulate mathematically the vibrating
motion of a floating ice sheet with a time varying forcing function
applied over a finite area. Our mathematical basis was the solution
of the equation of motion as obtained by Nevel [1] in 1970. A
forcing function for the ice is derived for use in Nevel's solution.
A numerical evaluation of the solution was attempted to obtain a
time history of ice displacement. Double differentiation of the
solution for displacement was to be compared with the acceleration
data of the ACT-100 vibration test.

The experimental data of this test was obtained by means of
tri-axial accelerometers fixed on the ice surface and on the
ACT-100. The output of these accelerometers was reordered on
magnetic tape by a Kennedy Incremental Recorder. Refer to Figure l
for the orientation of the ACT-100 with respect to the accelerometers
A, B, and C during the vibration test. All accelerations referred to
in this report are those in the vertical direction.
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II, DERIVATION OF THE FORCING FUNCTION

A forcing function is needed to obtain the general solution
of the equation of motion for the ice sheet. This forcing
function is unique to the ACT-100 vibration tests.

Since we know the weight of the ACT-100 and its acceleration
as a function of time, we can write an expression for the force
on the ACT-100 due to the ice. Consider the free body diagram,
Figure 2, of a dynamic system composed of the ACT-100 and its air
cushion.
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Figure 2

FREE BODY FORCE DIAGRAM OF ACT-100

where

P = weight of the ACT-100

F = force on the ACT-100 due to the ice.

From Newton's second law,

y Forces = ma

which when applied to our case becomes: 
or F = p 1-4( 5?

  



 

 

The force felt by the ice is -F or

= a =

As Figure 3 shows, acceleration data obtained from the vibration
test can be simulated by a sinusoidal function for the form,

a(t) = A, sin wt (2)

where An = amplitude of acceleration

w = frequency of hovercraft
oscillation

t = time

Substituting (2) into (1), the forcing function for the ice is:

_ _ A

FL =P £(t) — PCa sin w t -1) (3)

Figure 3 presents a superposed plot of the ACT-100 acceleration
for several cycles of vibration. These cycles were chosen from one
block of test data that seemed to be well behaved (see Table I).
This superposition of successive cycles substantiates the validity
of the assumptions of steady state motion and sinusoidal nature
of the ACT-100 motion.

 

 



 

FIGURE 3-VERTICAL ACCELERATION OF ACT-100

SUPERPOSEO PLOT OF OATA FROM ACCELEROMETER A - DATA BLOCK NO. 44
FREQUENCY OF VIBRATION = 8.636 RAO/SEC
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TABLE I

VERTICAL ACCELERATION DATA*

CYCLE NO. VERTA VERTB VERTC
 

3.56 -.03 -.16
-3.37 09 -.09
-7.77 -60 0.00
-5.88 -60 0.00

1 -88 13 -.06
7.05 0.03 -.09
6.77 -.09 -.13
-79 03 -.16

-5.66 16 -.09
-7.74 - 60 03
-3.40 -60 03

2 3.87 03 -.06
7.77 -.06 -.16
4.75 -.03 -.16

-1.92 03 -.09
-7.14 -60 -.03
-6.58 -60 0.00
-.50 -60 -.03

i 3 6.20 -.03 -.09
7.52 -.09 -.16

-4.56 113 -.06
i -7.65 60 0.00

-4.56 60 0.00
4 2.55 06 -.09

i 7.52 -.06 -.13
5.60 -.06 -.13
-.53 06 -.09

i -6.58 .60 -.03
-7.18 60 03
-1.89 113 0.00

5 5.51 -03 -.09
7.55 -.06 -.16
3.49 -.03 -.13

-3.43 06 -.06
-7.58 -60 -.03
-5.60 -60 0.00

6 1.48 13 -.03
6.95 -.03 -.09
6.58 -.09 -.13
-69 03 -.13

-5.63 -60 -.06
-7.58 -60 0.00
-3.27 -60 0.00

7 3.93 03 -.09
7.77 -.03 -.16

 

*

The units are ft/sec” and the values are taken from data
block No. 44. Total load on ice was 244 tons. 6

 



  

 

III. SOLUTION OF THE GOVERNING EQUATION

As derived by Nevel [1] using the bending theory of thin
plates, the differential equation describing the motion of an
infinite ice sheet floating on water with an applied forcing
function of time, P f(t) is

 

9 t2 + mp g 1+ y" gt yR

where W and y are the transformed displacement and variable of
transformation respectively after the application of a zero order
Hankel Transform.

The assumptions made in Nevel's development were:

(1) infinite ice sheet floating on water
(2) ice assumed to be homogeneous, isotropic,

and elastic
(3) depth of the water assumed constant
(4) water has no viscosity

The complementary solution of Equation (4) is

We = A sin gt + B cos &t (5)

to which must be added the particular solution for the appropriate
forcing function.

Putting Equation (4) in operator form and introducing two
constants, K) and K,, we have

(D- + £°) We K) Sin ot + Ky (6)

Using the method of undetermined coefficients, the particular
solution takes the general form:

w= AK, Sin wt + BK) cos wt + C (7)

Differentiating twice with respect to time;

cos wt - BK,» sin wt (8)DW = AK 12”

"Daw ~AK, w? gin wt - BK, w* cos wt (9)

7
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Substituting Equations (7) and (9) into Equation (6) andrearranging we have;

(8°AK, w?)sin wt + (8°BK) - BK, w*) cos wt + g2¢c = K, sin wt + K, (10)

Evaluating A, B, and c by equating coefficients of like items weobtain;

az— tl

B2 = y2

B= 0

K
C= ——__

(11)Be

    

K K
wo=— 1 Sin uot + 2

(12)
p B2 = w B2

By adding equations (5) and (12), we obtained the total solution

- Ky K,w= A sin st + B cos gt + Sin wt + (13)pa w- 8 2

Using the boundary conditions w = Ww, and — = 0
at time zero, we evaluate the constants A and 8;

 

B=w_-
oO

"A

  



Now taking the inverse Hankel Transform back to the variables
r and w, we obtain the equation of displacement as a function
of time, t, and distance from the load, r;

fo Ki Kow(t,r) ={— Y|- ———sin pt + (Ww. - ) cos pt
22, o P° B (B%=u*)

Ko K)

+ >= + z—2 sin wt Je (Yr) ay (14)

B Bo = &

The sin ft and cos #t terms go to zero for large time as shown
by Titchmarsh [2]. Finally, the equation for the steady state
displacement of an infinite sheet of floating ice with the forc-
ing function of Equation (3) as a function of time and radial
distance is;

“ Ko Ky
w(t,r) -[ Vv a2 J, (yr) + ay sin wt Jo (yr) ay (15)

0

To complete the conversion back into the r and w domain, one must
be able to evaluate the integral of Equation (15). This is dis-
cussed under the section "Evaluation of the Solution."

 

 
 



 

 

IV. EVALUATION OF THE SOLUTION

To complete the transformation of the solution back into
the r and w domain, the integral of Equation (15) must be
evaluated. An attempt was made to evaluate this integral
numerically with the aid of the computer. During this laborius
and lengthy effort to apply numerical integration techniques,
it was discovered that with certain combinations of values
for E and Y, discontinuities of the integrand existed. These
singularities of the integrand function render meaningless any
conventional, real variable, numerical evaluation of this integral.
In light of this information and after consultation with Dr.
R. C. Clarke [6], we decided that a further in depth mathematical
investigation of the nature and meaning of these singularities
is required before conclusions can be reached about the validity
and applicability of Nevel's approach to the solution of this
problem.

10

 
 



 

V. GENERAL DISCUSSION

Equation (4) as derived by Nevel [1), assumes the load
is applied over a circular area. In our case, the load is
applied over a rectangule. An analysis taking into consideration
two dimensional stresses in the ice due to a rectangular load
is extremely complex and beyond the scope of this study. How-
ever, we believe that the use of an equivalent radius for
rectangular loads will yield results with sufficient accuracy.
This point is a possible source of error which increases as the
footprint of a load becomes "less circular" (ratio of length
to width increases).

To explore the possibility of evaluating the solution by
other means, such as by complex variable integration or by use
of asymptotic approximations, would require an estimated man-
month. Even then a fruitful result could not be guaranteed.
Even if the additional study should prove successful, one must
keep in mind Nevel's assumption that the ice behaves as a thin
elastic plate. It has been shown [3], [4] and [5], that ice
behaves as a visco-elastic material and that elastic theory
alone is inadequate to describe the behavior of the ice. Thus,
the time that would be spent attempting to evaluate Nevel's
elastic solution might be better spent deriving a visco-elastic
solution.

If such a solution were developed, comparison to the present
field data on ice vibration would be relatively nonconclusive.
The most that we can deduce from the present ice vibration data is,
for example, that the peak to peak value of ice acceleration was
no greater than 0.69 ft/sec? at B and 0.19 ft/sec? at C. The
variation within these peak to peak values was not discernable
by the 5g accelerometers. Refer to Figure 4 for a plot of
acceleration data from accelerometers B and C from data block
No. 44, These accelerations were small relative to the full scale
reading (5g) of the accelerometers. This resulted in the data
being recorded in increments of magnitude comparible to the
amplitude of the acceleration. Compounding this distortion of the
acceleration data was the occurrence of a gap in the data from B.
It can be seen from Table 1 or Figuye 4 that no values of acceler-
ation are recorded from 0.16 ft/sec* to 0.6 ft/sec“, and yet
the instrument was capable of detecting approximately 15 increments
within this range. The cause of this phenomenon is unknown.

 
Another feature noticable from Figure 4 is an apparent vertical

shift of the data. These curves should be centered about the hori-
zontal axis due to the sinusoidal nature of the ACT-100 accelera-
tion and hence the forcing function and ice motion. This shifting
is no doubt another result of the lack of the required accelero-
meter sensitivity of measurement of accelerations of this magnitude.
Although care was taken with the on site calibration of these
accelerometers, a small error in calibration has understandably
shown up since the amplitude of the phenomenon measured is 1.9%

of the full scale reading of the instrument.

ll

 



 

FIGURE 4-VERTICAL ACCELERATION OF ICE SHEET

DATA FROM ACCELEROMETERS 6 AND C - DATA BLOCK NO. 44

ACCELEROMETER B - ON ICE 66 FT. FROM CENTER OF ACT-100

ACCELEROMETER C - ON ICE 91 FT. FROM CENTER OF ACT-1OO
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VI. CONCLUSIONS

1. The proper mathematical basis has not been developed

that will permit us to determine the feasibility of vibration

techniques for the measurement of engineering ice properties.

2. We found it impossible to use conventional real variable

numerical techniques to evaluate Nevel's solution due to the

singularities which exist in the integrand.

3. A sinusoidal forcing function of the type,

F. (AB ein ot - 2)
i g

was valid for describing the force applied to the ice during the

ACT-100 vibration test.

4. The assumption that steady state motion of the ACT-100

had been reached was valid for the data block studied.

13

 

 



  

VII. RECOMMENDATIONS

l. The effort to advance the elastic solution of this
problem to a usable form should be discontinued.

2. Sun should initiate efforts to obtain the visco-
elastic solution to the vibrating ice sheet problem.

3. Additional field testing to determine the feasibility
of determining the engineering properties of ice by vibration
should be resumed only when the proper mathematical basis has
been obtained.

14
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IX. NOMENCLATURE

  

transformed vertical deflection<I

16

i

i
i A, B, C arbitrary constants

i a acceleration, (ft/sec?)

t AL amplitude of a sinusoidal acceleration, (£t/sec*)

D Eh?/[{12(1 -p2] the flexural rigidity

i
E modulus of elasticity (1b,/£t*)

i
g acceleration of gravity (€t/sec”)

i h the thickness of the plate (ft)

i K, P p2 J) ( R)  _Am
™p g 1+Y 444 YR Cc

i Ko z- O
m

i k foundation modulus, siege /tt°
lbm

i
m mass density of the plate, slugs

i P weight of the load, (1b,)

i R equivalent radius of area over which load is applied, (ft)

i r& Zz cylindrical coordinates, Z positive downward

i t time, (sec)

i w vertical deflection of the plate, (ft)

i

i
 
 

 



 

 

-
static deflection, (ft)

GREK SYMBOLS

p+ ype

M
R
R
T

2
D

variable of transformation

Poisson's ratio of the plate

mass Gensity of water, slugs

. : . rad
frequency of vibration of the load, we

SUBSCRIPTS

complementary solution

amplitude

particnplar solution
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ABSTRACT

A test was conducted to determine the feasibility of
evaluating insitu the effective elastic modulus of an ice sheet.
A vibratory motion was induced in an ice si:eet by heaving a
194 ton air cushion vehicle. The acceleration data was measured
at two points on the ice and one point on the vehicle.

A mathematical equation based on the elastic theory of
plates was derived to analyze the data. Numerical integration
of the equation revealed that the form of the equation results
in singularities which prevents the mathematical analysis of the
field data. Graphical analysis of the field data showed that
the accelrometers on the ice sheet were unable to measure
accurately the accelerations of the vibrating ice sheet.

Future efforts will be the development of a mathematical
analysis accounting for the viscoelastic characteristics of
an ice sheet. This report terminates the effort for an elastic
analysis of a vibrating ice sheet.
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I. INTRODUCTION

This report describes a theoretical analysis of the vibrating
ice sheet problem. Use was made of the ACT-100 vibration data
taken at Yellowknife, N.W.T. on February 10, 1972. The goal of
this study was to determine the reliability of engineering ice
property determinations by vibration techniques.

An attempt was made to simulate mathematically the vibrat
motion of a floating ice sheet with a time varying forcing function
applied over a finite area. Our mathematical basis was the solution
of the equation of motion as obtained by Nevel [1] in 1970. A
forcing function for the ice is derived for use in Nevel's solution.
A numerical evaluation of the solution was attempted to obtain a
time history of ice displacement. Double differentiation of the
solution for displacement was to be compared with the acceleration
data of the ACT-100 vibration test,

The experimental data of this test was obtained by means of
tri-axial accelerometers fixed on the ice surface and on the
ACT-100. The output of these acceler-meters was reordered on
magnetic tape by a Kennedy Incremental Recorder. Refer to Figure 1
for the orientation of the ACT-100 with respect to the accelerometers
A, B, and C during the vibration test. All accelerations referred to
in this report are those in the vertical direction.
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II. DERIVATION OF THE FORCING FUNCTION

A forcing function is needed to obtain the general solution
of the equation of motion for the ice sheet. This forcing
function is unique to the ACT-100 vibration tests.

Since we know the weight of the ACT-100 and its acceleration
as a function of time, we can write an expression for the force
on tlhe ACT-100 due to the ice. Consider the free body ir.
ene 2, of a dynamic system composed of the ACT-100 and its air
cushion.
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Figure 2

FREE BODY FORCE DIAGRAM OF ACT-100

where

P = weight of the ACT-100

F = force on the ACT-100 due to the ice.

From Newton's second law,

> Forces = ma

which when applied to our case becomes:

P
P-F =a

"9

a
PF =z Pp - =or (1 3)  



 

The force felt by the ice is -F or

a
PoP (5-2). (1)

As Figure 3 shows, acceleration data obtained from the vibration
test can be simulated by a sinusoidal function for the form,

a(t) = A, sin wt (2)

where A, * amplitude of acceleration

w = frequency of hovercraft
oscillation

t = time

Substituting (2) into (1), the forcing function for the ice is:

Fy =P f(t) = re sin w t -1l) (3)

Figure 3 presents a superposed plot of the ACT-100 acceleration
for several cycles of vibration. These cycles were chosen from one
block of test data that seemed to be well behaved (see Table I).
This superposition of successive cycles substantiates the validity
of the assumptions of steady state motion and sinusoidal nature
of the ACT-100 motion.
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FIGURE 3-VERTICAL ACCELERATION OF ACT-100

SUPERPOGEO PLOT OF CATA PROM ACCELERGNETER A - DATA BLOCK NO. 44
FREQUENCY OF VIGRATION 3s 6.638 RAD/SEC
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TABLE I

VERTICAL ACCELERATION DATA*

CYCLE NO. VERTA VERTB VERTC

3.56 -.03 -.16
-3.37 09 -.09
-7.77 -60 0.00
-5.88 -60 0.00

1 88 13 -.06
7.05 0.03 -.09

6.77 -.09 -.13
79 03 -.16

-5.66 16 -.09
-7.74 -60 03
-3.40 -60 03

2 3.87 03 -.06

7.77 ~-.06 -.16

4.75 -.03 -.16
-1.92 03 -.09
-7.14 -60 -.03
-6.58 -60 0.00
-.50 -60 -.03

3 6.20 -.03 -.09
7.52 -.09 -.16

-4.56 13 -.06
-7.65 60 0.00

-4.56 -60 0.00

4 2.55 06 -.09
7.52 ~.06 -.13
5.60 -.06 -.13
-.53 06 -.09
-6.58 -60 -.03
-7.18 -60 03
-1.89 13 0.00

5 5.51 03 -.09
7.55 -.06 -.16
3.49 -.03 -.13

-3.43 06 -.06

-7.58 -60 -.03
-5.60 -60 0.00

6 1.48 13 -.03
6.95 -.C3 -.09
6.58 -.09 -.13
-69 03 -.13

-5.63 60 -.06

-7.58 -60 0.00
-3.27 60 0.00

7 3.93 03 -.09

7.77 -.03 -.16

®

The units are ft/sec” and the values are taken from data
block No. 44. Total load on ice was 244 tons.

 

 



 

III. SOLUTION OF THE GOVERNING EQUATION

As derived by Nevel [1] using the bending theory of thin
plates, the differential equation describing the motion of an
infinite ice sheet floating on water with an applied forcing
function of time, P f(t) is

9 t2 * ™|e g l+y* 2% yR

where W and y are the transformed displacement and variable of
transformation respectively after the application of a zero order
Hankel Transform.

The assumptions made in Nevel's development were:

(1) infinite ice sheet floating on water
(2) ice assumed to be homogeneous, isotropic,

and elastic
(3) depth of the water assumed constant
(4) water has no viscosity

The complementary solution of Equation (4) is

We = A sin st + B cos st (5)

to which must be added the particular solution for the appropriate
forcing function.

Putting Equation (4) in operator form and introducing two
constants, Ky and Ko, we have

(D2 + 82) W = K, sin ut + K (6)
1 2

Using the method of undetermined coefficients, the particular
solution takes the general form:

¥= AK, sin wt + BK, cos wt + C (7)
1

Differentiating twice with respect to time;

DW = AK, w cos wt - BK,w sin ut (8)

p27 = “AK, w?. sin wt - BK,w? cos wt (9)

7   
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Substituting Equations (7) and (9) into Equation (6) and
rearranging we have;

(82AK, w?) sin wt + (67BK, - BK, w?) cos wt + 62C = K, sin wt + K, (10)

Evaluating A, B, and C by equating coefficients of like items we
obtain;

 

 

  

A= i
p2 7 w2

B= 0

K

C= 8 (11)
p2

Thus the particular solution is

K K
7. = i sin wt + 2 (12)
P g2 = w2 p2

By adding equations (5) and (12), we obtained the total solution

- K, K
w= A sin pt + B cos pt + sin wt + (13)

g2 = w2 g2

awUsing the boundary conditions w = Wo and se CU 0

at time zero, we evaluate the constants A and B;

 

 

K
Bew.- 2

°o p2

K,w

Az- i
8(B2 = w?)  



 

  

  

Now taking the inverse Hankel Transform back to the variables
r and w, we obtain the equation of displacement as a function
of time, t, and distance from the load, r;

K
wit,r) f|- sin pt + (w, - +) cos pt

8(2-42) P

K2 Ky
+ a. + Be.ot sin wt J, (vr) ay (14)

The sin ft and cos pt terms go to zero for large time as shown
by Titchmarsh [2]. Finally, the equation for the steady state
displacement of an infinite sheet of floating ice with the forc-
ing function of Equation (3) as a function of time and radial
distance is;

7 K K
w(t,r) -{ Y a gy (ve) + to sin wt Jj(vr) ay (15)

0 -wW

To complete the conversion back into the r and w domain, one must
be able to evaluate the integral of Equation (15). This is dis-
cussed under the section "Evaluation of the Solution."

  



Iv. EVALUATION OF THE SOLUTION

To complete the transformation of the solution back into
the r and w domain, the integral of Equation (15) must be
evaluated. An attempt was made to evaluate this integral
numerically with the aid of the computer. During this laborius
and lengthy effort to apply numerical integration techniques,
it was discovered that with certain combinations of values ~
for E and VY, discontinuities of the integrand existed. These
singularities of the integrand function render meaningless any
conventional, real variable, numerical evaluation of this integral.
In light of this information and after consultation with Dr.
R. C. Clarke [6], we decided that a further in depth mathematical
se of the nature and meaning of these singularities
is required before conclusions can be reached about the validity
eeof Nevel's approach to the solution of this
problem.

 



 

 

Vv. GENERAL DISCUSSION

Equation (4) as derived by Nevel [1], assumes the load
is applied over a circular area. In our case, the load is
applied over a rectangule. An analysis taking into consideration
two dimensional stresses in the ice due to a rectangular load
is extremely complex and beyond the pt of this study. How-
ever, we believe that the use of an equivalent radius for
rectangular loads will yield results with sufficient accuracy,
This point is a possible source of error which increases as the
footprint of a load becomes “less circular" (ratio of length
to width increases).

To explore the possibility of evaluating the solution by
other means, such as by complex variable integration or by use
of asymptotic approximations, would require an estimated man-
month. Even then a fruitful result could not be guaranteed.
Even if the additional study should prove successful, one must
keep in mind Nevel's assumption that the ice behaves as a thin
elastic plate. It has been shown [3], [4] and [5], that ice
behaves as a visco-elastic material and that elastic theory
alone is inadequate to describe the behavior of the ice. Thus,
the time that would be spent attempting to evaluate Nevel's
eee solution might be better spent deriving a visco-elastic
solution.

If such a solution were developed, comparison to the present
field data on ice vibration would be relatively nonconclusive.
The most that we can deduce from the present ice vibration data is,
for example, that the peak 5° peak value of ice agoeleration was
no greater than 0.69 ft/sec* at B and 0.19 ft/sec? at C. The
variation within these peak to peak values was not discernable
by the 5g accelerometers. Refer to Figure 4 for a plot of
acceleration data from accelerometers B and C from data block
No. 44, These accelerations were small relative to the full scale
reading (5g) of the accelerometers. This resulted in the data
being recorded in increments of magnitude comparible to the
amplitude of the acceleration. Compounding this distortion of the
acceleration data was the occurrence of a gap in the data from B.
It can be seen from Table 1 or Piguge 4 that nc values of acceler-
ation are recorded from 0.16 ft/sec* to 0.6 ft/eec*, and yet
the instrument was capable of detecting approximately 15 increments
within this range. The cause of this phenomenon is unknown.

Another feature noticable from Figure 4 is an apparent vertical
shift of the data. These curves should be centered about the hori-
zontal axis due to the sinusoidal nature of the ACT-100 accelera-
tion and hence the forcing function and ice motion. This shifting
is no doubt another result of the lack of the required accelero-
meter sensitivity of measurement of accelerations of this magnitude.
Although care was taken with the on site calibration of these
accelerometers, a small error in calibration has understandably
shown up since the ote of the phenomenon measured is 1.9%
of the full scale reading of the instrument.
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FIGURE 4-VERTICAL ACCELERATION OF ICE SHEET

OATA FROM ACCELEROMETERS 6 AND C - OATA BLOCK NO.
ACCELEROMETER 6 - ON ICE 66 FT. FROM CENTER OF RGT-100
ACCELEROMETER C - ON ICE 91 FT. FROM CENTER OF ACT-100
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VI. CONCLUSIONS

1. The proper mathematical basis has not been developed
that will permit us to determine the feasibility of vibration
techniques for the measurement of engineering ice properties.

2. We found it impossible to use conventional real variable
numerical techniques to evaluate Nevel's solution due to the
singularities which exist in the integrand.

3. A sinusoidal forcing function of the type,

ry oP (MB ain ot - 1}

was valid for describing the force applied to the ice during the
ACT-100 vibration test.

4. The assumption that steady state motion of the ACT-100
had been reached was valid for the data block studied.

  



 

VII. RECOMMENDATIONS

1. The effort to advance the elastic solution of this
problem to a usable form should be discontinued.

2. Sun should initiate efforts to obtain the visco-
elastic solution to the vibrating ice sheet problem.

3. Additional field testing to determine the feasibility
of determining the engineering properties of ice by vibration
should be sesumed only when the proper mathematical basis has
been obtained.
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IX. NOMENCLATURE

 

A, B, C arbitrary constants

a acceleration, (£t/sec”)

A, amplitude of a sinusoidal acceleration, (£t/sec*)

D Eh?/[12(1 =n7] the flexural rigidity

E modulus of elasticity (1b,/ft?)

g acceleration of gravity (£t/sec”)

h the thickness of the plate (ft)

K, P p* “1(RD Am
TPS a +y 44 s

K. x Ky

k foundation modulus, (nse /ts)
lbm

m mass density of the plate, slugs

P weight of the load, (1b,)

R equivalent radius of area over which load is applied, (ft)

ré&2z cylindrical coordinates, Z positive downward

t time, (sec)

w vertical deflection of the plate, (ft)

W transformed vertical deflection
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static deflection, (ft)

GREEK SYMBOLS

 

 

¢ _1ryipt
a i
L +STRIVH

variable of transformation

Poisson's ratio of the plate

mass density of water, slugs

rad
frequency of vibration of the load, ==5

SUBSCRIPTS

complementary solution

ice

amplitude

particular solution

 
 


