

KEROGEN TYPE

Canadian Forest Oil Ltd.

APPENDIX 4

Conodont Study

Centre for Earth and Ocean Research
UNIVERSITY OF VICTORIA
PO BOX 3055 STN CSC VICTORIA BC V8W 3P6 CANADA
TELEPHONE (250) 721-8848, FAX (250) 472-4100

February 21, 2000

Dr. James R. (Jim) Taylor
Senior Geological Specialist
Exploration
Canadian Forest Oil Ltd.
Ste. 600, 800-6th Ave. SW
Calgary, AB T2P 3G3

Dear Jim:

This week I sent you a copy of my report as an e-mail attachment, as well as by fax. I am also sending you this hard copy by courier (as a clear copy).

I will arrange an invoice to be sent to you in the next week or two to complete the contract.

Should you wish all or part of the remaining samples to be processed for conodonts, I trust that you will advise me in due course. Likewise, there may be other sample sets in the future that you wished to be processed.

With kind regards,

Christopher R. Barnes, C.M., F.R.S.C., Ph.D., P.Geol.
Director & Professor
CEOR/SEOS

CRB/klw

enclosures

Report to Canadian Forest Oil Company: conodonts from samples of carbonates from the Mount Kindle Formation, NWT

Submitted by : Dr. Christopher R. Barnes, Centre for Earth and Ocean Research, University of Victoria, P. O. Box 3055, Victoria, B. C. V8w 3P6

Thirty samples of carbonate (mainly calcareous dolostone) was received from Canadian Forest Oil Company in October 1999. They were processed using standard techniques as outlined in the contract. The samples were difficult to dissolve, being dolostone, and some undissolved residue was left for most samples as shown below in Table 1. The insoluble residues for the samples were voluminous, being rich in dolomite rhombs; the latter have a specific gravity similar to conodonts and this makes separation by heavy liquids difficult and time-consuming and more especially results in considerable time to pick through the residues to recover any conodonts.

The samples were picked for conodonts but most samples were barren and also had no other organic/fossil material. Five of the 30 samples yielded conodonts, the details of the taxa and an age assignment is given below. The number of individual conodont specimens (elements) is given in parentheses.

Sample F99-c1-2120:

<u>Panderodus unicostatus</u> (Branson and Mehl)	(1)
Ramiform element (Sa, cordylodontiform)	(1)
Age: Silurian to Lower Devonian	

Sample F99-C2-20

<u>Panderodus unicostatus</u> (Branson and Mehl)	(5)
Ramiform element (Sb, zygognathiform)	(1)
Indeterminate fragments	(6)
Age: Silurian to Lower Devonian	

Sample F99-C2-120

Oulodus? kentuckyensis Branson and Branson (9)
Panderodus unicostatus (Branson and Mehl) (1)
Indeterminate fragments (5)
Age: Lower to Middle Llandovery (Rhuddanian to mid Aeronian), Lower Silurian

Sample F99-C2-420

Oulodus? kentuckyensis Branson and Branson (9)
Panderodus unicostatus (Branson and Mehl) (10)
Age: Lower to Middle Llandovery (Rhuddanian to mid Aeronian), Lower Silurian

Sample F99-C2-470

Panderodus unicostatus (Branson and Mehl) (3)
Ramiform element (Sa, cordyliodontiform) (1)
Age: Silurian to Lower Devonian

Summary

The faunas are similar in the five samples that yielded conodonts. Panderodus unicostatus is a long-ranging and relatively ubiquitous species. Oulodus? kentuckyensis has a short range within the Lower Silurian (i.e. lower half of the Lower Silurian) and does not extend down into the Ordovician. The ages are compatible with the age of the upper part of the Mount Kindle Formation (e.g. B. S. Norford (Compiler), 1997, Correlation Chart and biostratigraphy of the Silurian rocks of Canada, IUGS Publication 35, 77p)

Table 1: List of samples processed with initial and undissolved weights.

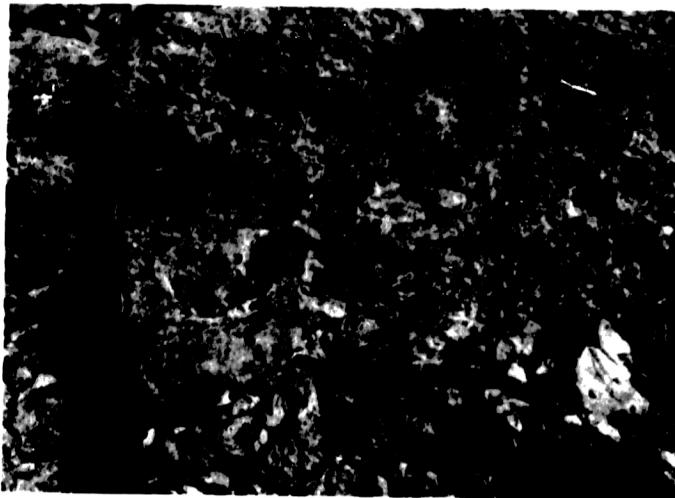
Sample	Original Mass (g)/ Undissolved Residue(g)
F99-C-1-10	2300/776
F99-C-1-110	1800/408
F99-C-1-210	2600/682
F99-C-1-430	2000/550
F99-C-1-920	2200/545

Sample	Original Mass (g)/ Undissolved Residue(g)
F99-C-1-1000	1900/485
F99-C-1-1120	2200/851
F99-C-1-1220	1800/637
F99-C-1-1320	2200/1000
F99-C-1-1420	1800/640
F99-C-1-1520	2000/770
F99-C-1-1660	1900/600
F99-C-1-1720	1900/360
F99-C-1-1820	2500/1034
F99-C-1-1920	2100/769
F99-C-1-2020	2400/826
F99-C-1-2120A	1700/219
F99-C-1-2120B	1300/495
F99-C-1-2220A	1800/409
F99-C-1-2220B	1700/208
F99-C-1-2320A	1500/2320
F99-C-1-2320B	1300/532
F99-C-1-2410	2100/429
F99-C-1-2470	2300/851
F99-C-2-20	2300/630
F99-C-2-120	2200/79
F99-C-2-200	2100/135
F99-C-2-320	2300/441
F99-C-2-370A	1400/520
F99-C-2-370B	1300/357
F99-C-2-420	2300/630
F99-C-2-470A	1400/16
F99-C-2-470B	1300/6
F99-C-2-520A	1300/113
F99-C-2-520B	1300/44
F99-C-2-580A	1500/125
F99-C-2-580B	1400/104

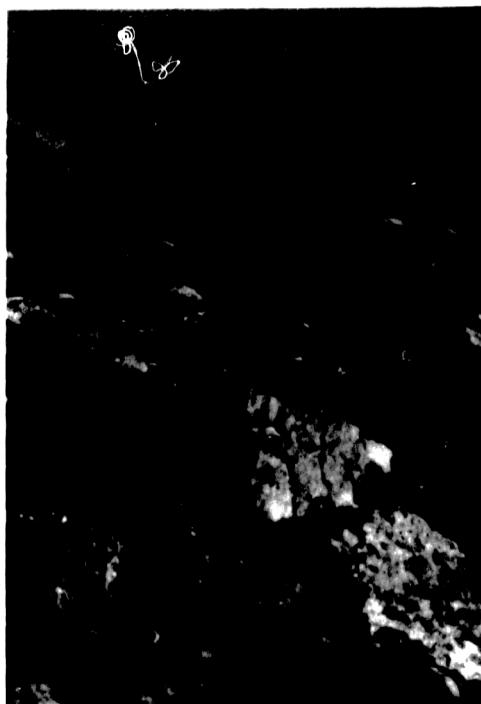
A & B indicate that the original sample was
broken into two batches.

14 Feb 2000

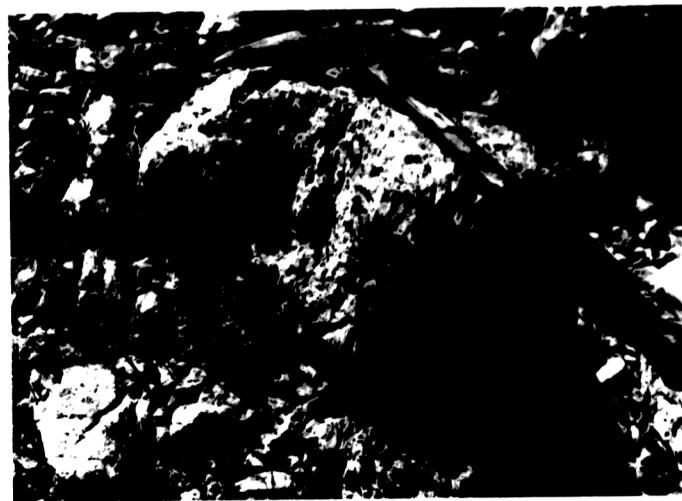
APPENDIX 5


Photographs

1. Dusky (Location 1). A view looking north from the ridge located just south of the Mt. Kindle Dusky section, Dusky Ranges, Mackenzie Mountains. The beds strike 160° and dip 72° W at the top of the Mount Kindle (on the left of the photo). There are a few covered sections in the grassy saddle.


2. Dusky section, Mt. Kindle Dolomite near the top of the section. Large full bags of dolomite samples were collected for conodont identification (foreground). The high-energy carbonate depositional paleoenvironment was apparently not favourable for conodont occurrence. A single sample give a Devonian-Silurian age.

3. Dusky section. Close-up of dolomitized ghost-like fossils and vuggy porosity in the Mount Kindle Formation.


4. Dusky section. Massive bedded dolomite with vuggy and pinpoint porosity. Previous studies (Link Dowling Cook, 1961) described this section as "reef" facies. The 100s of feet of continuous, vuggy, moldic and intercrystalline porosity are a striking feature of Section 4.

5. Dusky section. A view looking north showing the alternating lighter coloured and darker coloured interlayered dolomite beds at the Dusky section. These beds strike north on the successive east-west ridges.

6. Dusky section. Silicified fossils in dark coloured dolomite of the Silurian Mount Kindle Formation.

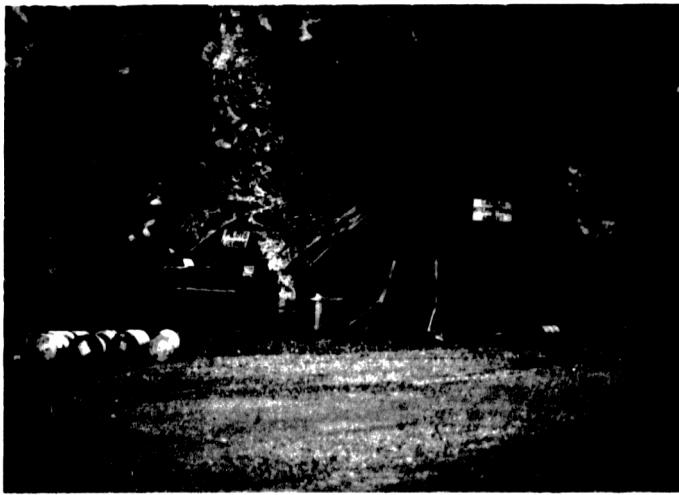
7. Dusky section . Fossil coral head in dolomite in the Mount Kindle Formation.

8. Red Rock Pass (Location 2). The dip slope of the Silurian sandstone. This unit marks the pre-Devonian unconformity. Note the elaborate joint pattern.

9. Red Rock Pass. Sampling bedded dolomites of the Mount Kindle Formation for conodont identification. This locality sits stratigraphically below the Silurian Sandstone in Photo 6

10. Red Rock Pass. Large bulbous stromatoporoids in dolomite of the Silurian Mount Kindle Formation. Conodont samples collected from the lower part of the Red Rock Pass, Section 2, gave Early Silurian ages.

11. North Prairie (Station 4). Silurian Road River Formation. The shale is platey, gray-coloured and barren of graptolithes. The graptolithes are preserved in the deeper water troughs that eventually filled with the very black shales.


10. Red Rock Pass. Large bulbous stromatoporoids in dolomite of the Silurian Mount Kindle Formation. Conodont samples collected from the lower part of the Red Rock Pass, Section 2, gave Early Silurian ages.

11. North Prairie (Station 4). Silurian Road River Formation. The shale is platey, gray-coloured and barren of graptolites. The graptolites are preserved in the deeper water troughs that eventually filled with the very black shales.

12. Tundra (Location 3). Measuring a section and collecting samples of the Devonian Funeral Formation. Fissile light gray shales are interbedded with rusty weathering limey siltstones. Subsequent laboratory analysis shows the Funeral is not a promising source rock.

13. Mine Airport (location 6). Black shales of the Silurian Road River Formation outcrop behind the airport buildings. A very black shale sample from this outcrop yielded a total organic carbon (TOC) value of 0.8. This value may be very significant given the deep burial and over thrusting the shale sample has been subjected to. Abundant graptolites have been reported nearby (David Morrow, personal communication).

14. Tetecla (location 7). An outcrop of the Middle Devonian Horn River Black Shale west of the Tetecla River.

MAP POCKET

Surface Geology Northwest Territories

© 1990 Canadian Forest Oil Ltd.

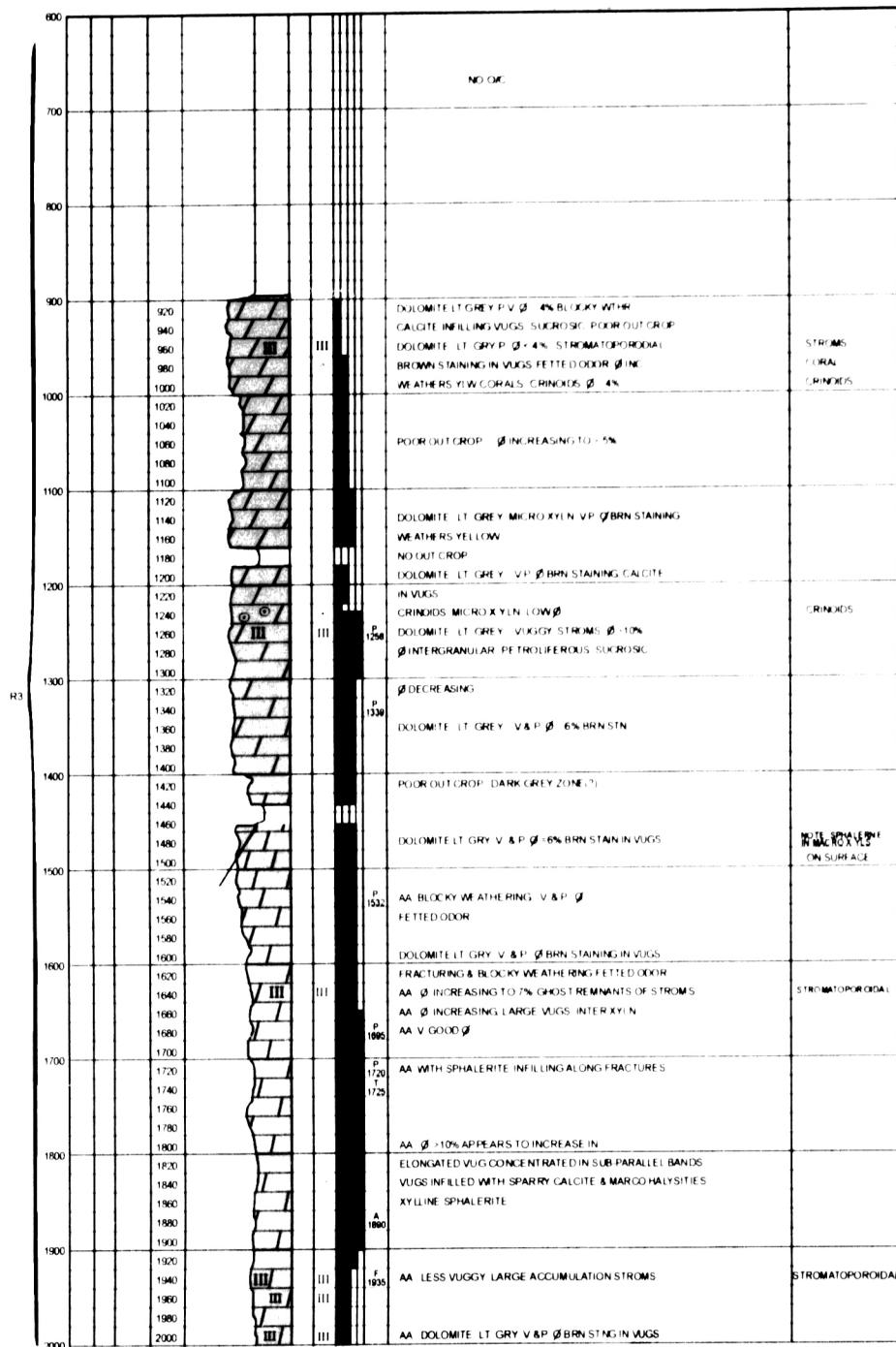
Canadian Forest Oil Ltd.

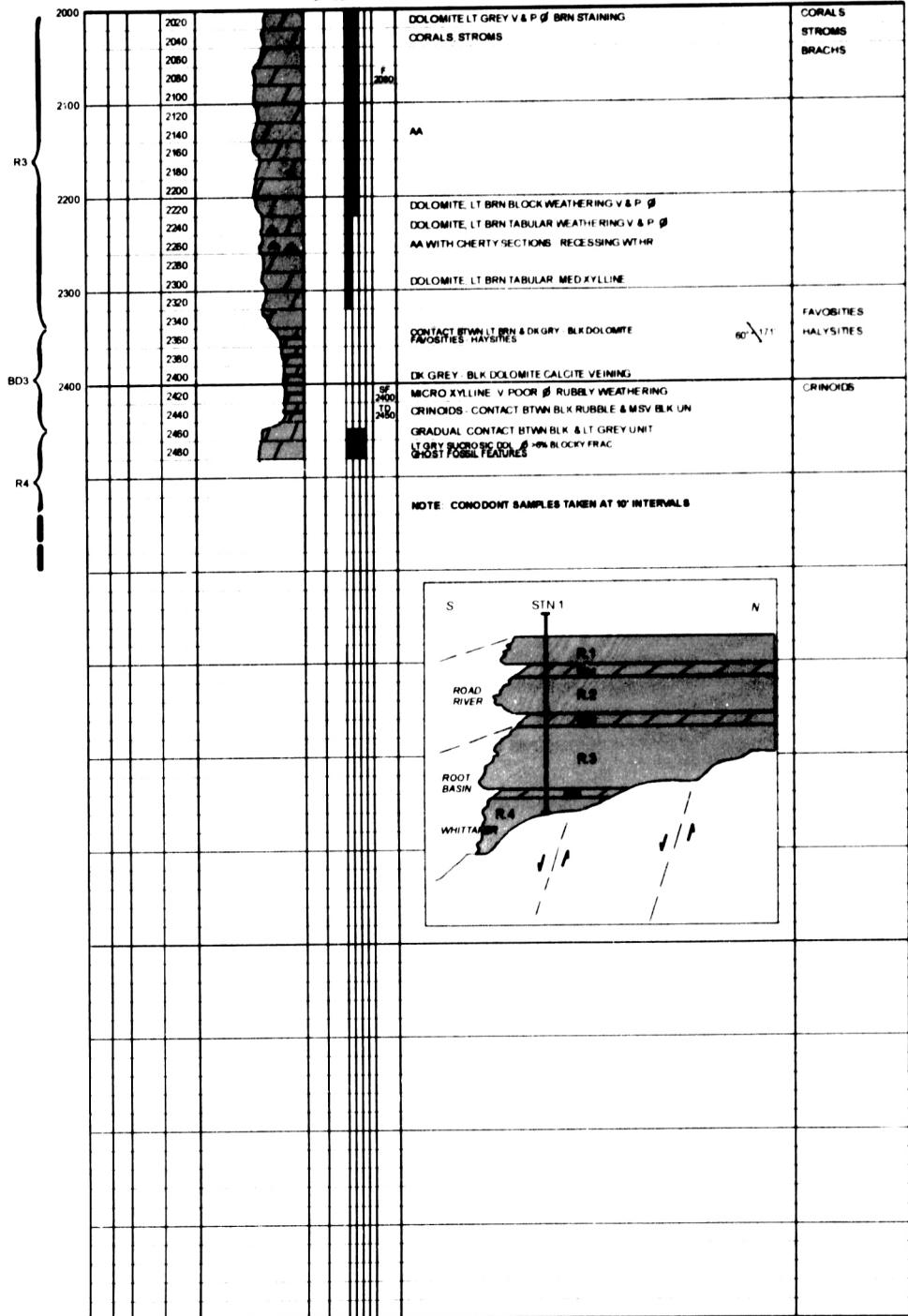
Co-ordinates : $63^{\circ} 15' 125^{\circ} 20' W$
Geographic Location: STATION 1

Geologists: JIM TAYLOR / TODD BURLINGAME
Date of Measurement: AUGUST 05 - 07, 1990

FOSSIL SYMBOLS

- F Fossiliferous
- III Stromatopora
- B Brachiopoda
- Foraminifera
- G Gastropoda
- Crinoid
- Coral
- Algae


POROSITY SYMBOLS


- x intergranular, intercrystalline, interfragmental
- v vugular (greater than 1/16 mm.)
- f fractured
- p pinpoint
- ♦ oil stained or petrolierous
- Dead oil stained (bitumen)

LITHOLOGICAL SYMBOLS

	Limestone		Silty Limestone		Shale		Siltstone
	Dolomite		Limestone Breccia		Calcareous Shale		Anhydritic Shale
	Dolomitic Limestone		Dolomite Breccia		Ironstone		Salt Casts
	Argillaceous Limestone		Rugose to Rubby		Pyritic Micaceous		Chert, light or dark
	Argillaceous Dolomite		Coarse Crystallization				

Age	Formation	Section Thickness	Lithological Log	COCF	Fossils	Sort	Detail Lithological Description		Paleo Record
							Strat	Age	
0									
R1		20		LG			DOLOMITE M. GRAY SUCROSIC TX VP 5%		
		40					THICK BEDDED w/ FRACTURING (Z1162) WHITE CALCITE		
		60					INFILLED Voids BRN STNS IN VUGS FETTED ODER		
		80					WTRNS TO PITTED D.GY. Ø INCREASE DOWN SEC		
		100					GHOST FEATURES S. STROMS (?)		
		120		III			AA BGD @ 63162 4' AVE THKNS V. P. MOLDIC Ø 6%		
		140					BEDDING DIMINISHING WTRNS TO LT GR. YEL		
		160					V. SIZE ING TO 7' CM IN SUB PARALLEL BOS		
		180					DK GRY / BWN DOLOMITE LT BN CHERT NOD TABULAR		
		200					STROMS INFILLED W/ CALCITE		
		220					DK GRY DOLOMITE FINE XLN CASTRINGS POOR Ø		
		240					AA		
		260					LT GRY DOLOMITE Ø 1" CHARGE STROMS REplaced		
		280					W/ CALCITE NODules WEATHERING PELLETS Ø 1"		
		300					0-100 WEATHERS TO YE GRY FINELY XLN		
R2		320					300-350 NO O/C		
		340							
		360					LT GRY DOLOMITE w/ LARGE POCKETS (STROMS?) WEATHERED OUT		
		380					GOOD Ø		
BD2		400		ST			DOLOMITE w/ STROMATOPOROIDAL FINE XLN GHOST STROMS		
		420					POOR Ø STROMS INFILLED ONLY		
		440					LT GRY DOLOMITE BEDDING EVIDENT BIG STROMS INFILLED		
		460					W/ CALCITE MARCO XLY AL GAL MATS (TABULAR STROMS)		
		480					IN IRREG BEDS WIDE SPREAD JOINTING LARGE		
		500					'POTHOLES' WEATHERED OUT (STROMS)		
R3		520					490-920 NO O/C		
		540							
		560							

Surface Geology Northwest Territories

THE BOSTONIAN

Canadian Forest Oil Ltd

Co-ordinates 61° 43' N, 123° 17' W
Geographic Location STATION 2

Geologists JIM TAYLOR / TODD BURLINGAME
Date of Measurement AUGUST 10, 1999

FOSSIL SYMBOLS

F Fossiliferous	III Stromatopora
B Brachiopoda	Foraminifera
G Gastropoda	Cnoid
Coral	Algae

POROSITY SYMBOLS

- x intergranular, intercrystalline, interfragmental
- v vugular (greater than 1/16 mm.)
- f fractured
- p pinpoint
- o oil stained or petrolierous
- Dead oil stained (bituminous)

LITHOLOGICAL SYMBOLS

	Limestone		Silty Limestone		Shale		Slate
	Dolomite		Limestone Breccia		Calcareous Shale		Siltstone
	Dolomitic Limestone		Dolomite Breccia		Anhydritic Shale		Ironstone
	Argillaceous Limestone		Rugose to Rubbly		Salt Casts		Sandstone
	Argillaceous Dolomite		Coarse Crystallization		Pyritic Micaceous		Chert, light or dark

Surface Geology Northwest Territories

$$9 \times 10^{-6} \times 10^{-3} = 1.11$$

Canadian Forest Oil Ltd.

Co-ordinates : SEE BELOW
Geographic Location : STATION 3-4

Geologists JIM TAYLOR / TODD BURLINGAME
Date of Measurement AUGUST 11, 1999

FOSSIL SYMBOLS

F Fossiliferous	III Stromatopora
B Brachiopoda	IV Foraminifera
G Gastropoda	V Crinoid
Coral	VI Algae

POROSITY SYMBOLS

- x intergranular, intercrystalline, interfingamental
- v vugular (greater than 1/16 mm)
- f fractured
- p pinpoint
- o oil stained or petrolierous
- Dead oil stained (bitumen)

LITHOLOGICAL SYMBOLS

	Limestone		Silty Limestone		Shale		Siltaceous
	Dolomite		Limestone Breccia		Calcareous Shale		Siltstone
	Dolomitic Limestone		Dolomite Breccia		Anhydritic Shale		Ironstone
	Argillaceous Limestone		Rugose to Rubbly		Salt Casts		Sandstone
	Argillaceous Dolomite		Coarse Crystallization		Pyritic Micaceous		Chert, light or dark