

9237-C55-2E

Canterra Energy Ltd.

**MIDDLE DEVONIAN
GEOLOGICAL FIELD PARTY
LOWER MACKENZIE VALLEY DRAINAGE
NORTHWEST TERRITORIES**

PROJECT ACTION SHEET

RESOURCE EVALUATION BRANCH

PROJECT NUMBER: 9237-C55-2E

COMPANY: CANterra ENERGY LTD.
MIDDLE DEVONIAN FIELD PARTY LOWER
REPORT TITLE: MACKENZIE VALLEY DRAINAGE NORTHWEST
TERRITORIES.

The following action has been taken:

Receipt acknowledged: _____

Reports and maps date-stamped: APRIL 22/87

Reports for review list edited: " "

Inventory sheet made: " "

Mylar: _____

REVIEW AND APPROVAL MADE BY: W. J. WARD 87/12/03

COMMENTS: 3 COPIES of REPORTS

PROGRAM NUMBER 9237-C55-2E

AREA NORTHWEST TERRITORIES LOWER
MACKENZIE VALLEY

YEAR 1986

E.A. N/A

FILED UNDER: SAME

REPORTS

OPERATIONS REPORT:

NUMBER 1

-MIDDLE DEVONIAN GEOLOGICAL FIELD PARTY LOWER MACKENZIE VALLEY DRAINAGE N.W.T.

INTERPRETATION REPORT:

NUMBER 0

MAPS
SHOTPOINT MAPS

NUMBER 0

INTERPRETATION MIDDLE DEVONIAN HUME FORMATION

NUMBER 10

LOCALITY: FRANCIS CREEK	LITTLE BEAR RIVER
MT. MORROW	HARE INDIAN R. TRIBUTARY
MT. ST. CHARLES	POWELL CREEK
BELL CREEK	HUME RIVER TRIBUTARY (TYPE SECTION)
CARNWATH RIVER	
DODO CANYON	

OTHER

NUMBER 0

SECTIONS

NUMBER 0

MIDDLE DEVONIAN GEOLOGICAL FIELD PARTY
LOWER MACKENZIE VALLEY DRAINAGE
NORTHWEST TERRITORIES

COGLA PROGRAM NO.
9237-C55-2E

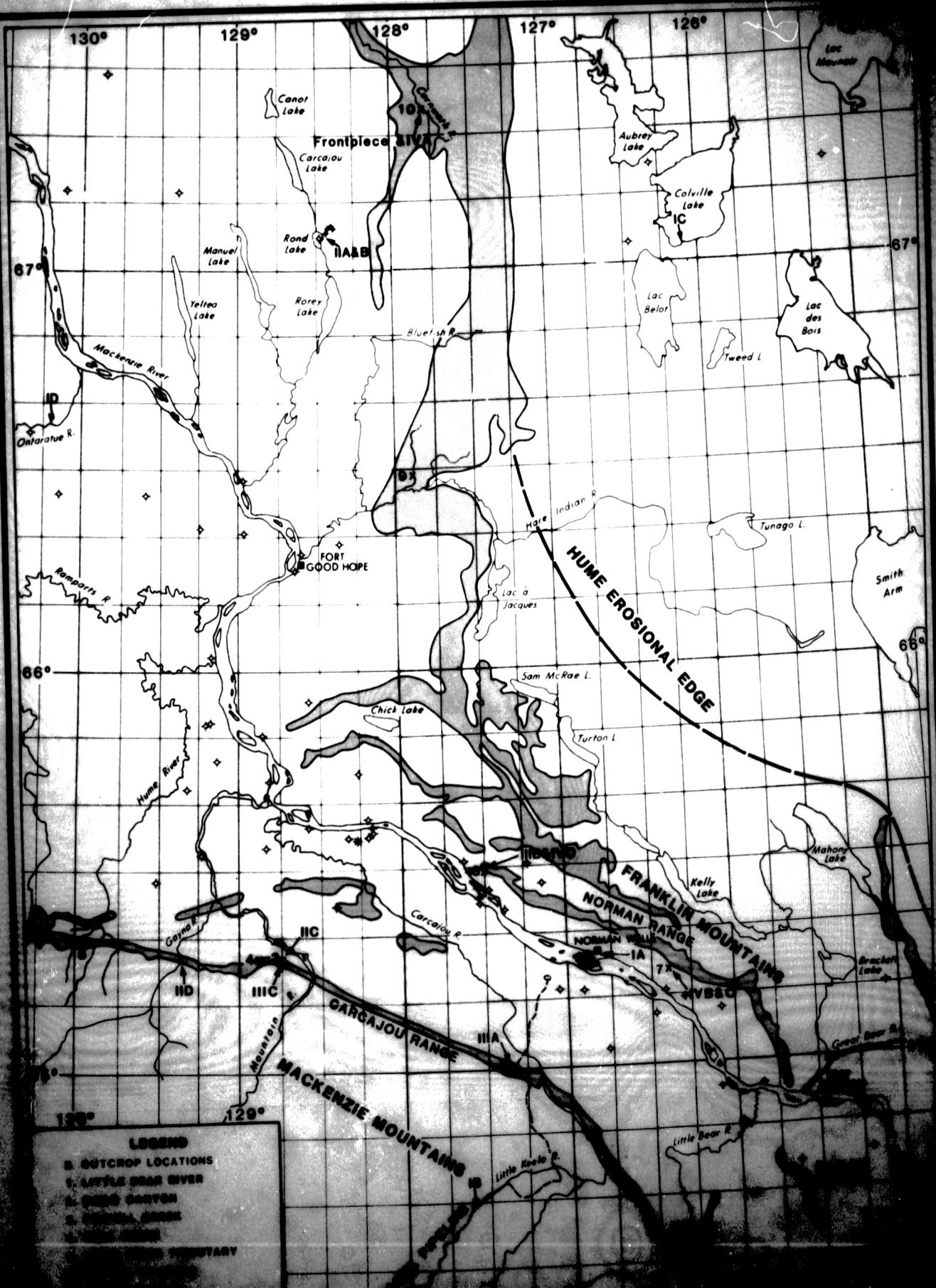
Submitted by:
R.L. McKellar
Northern District Exploration
Canterra Energy Ltd.
February, 1987

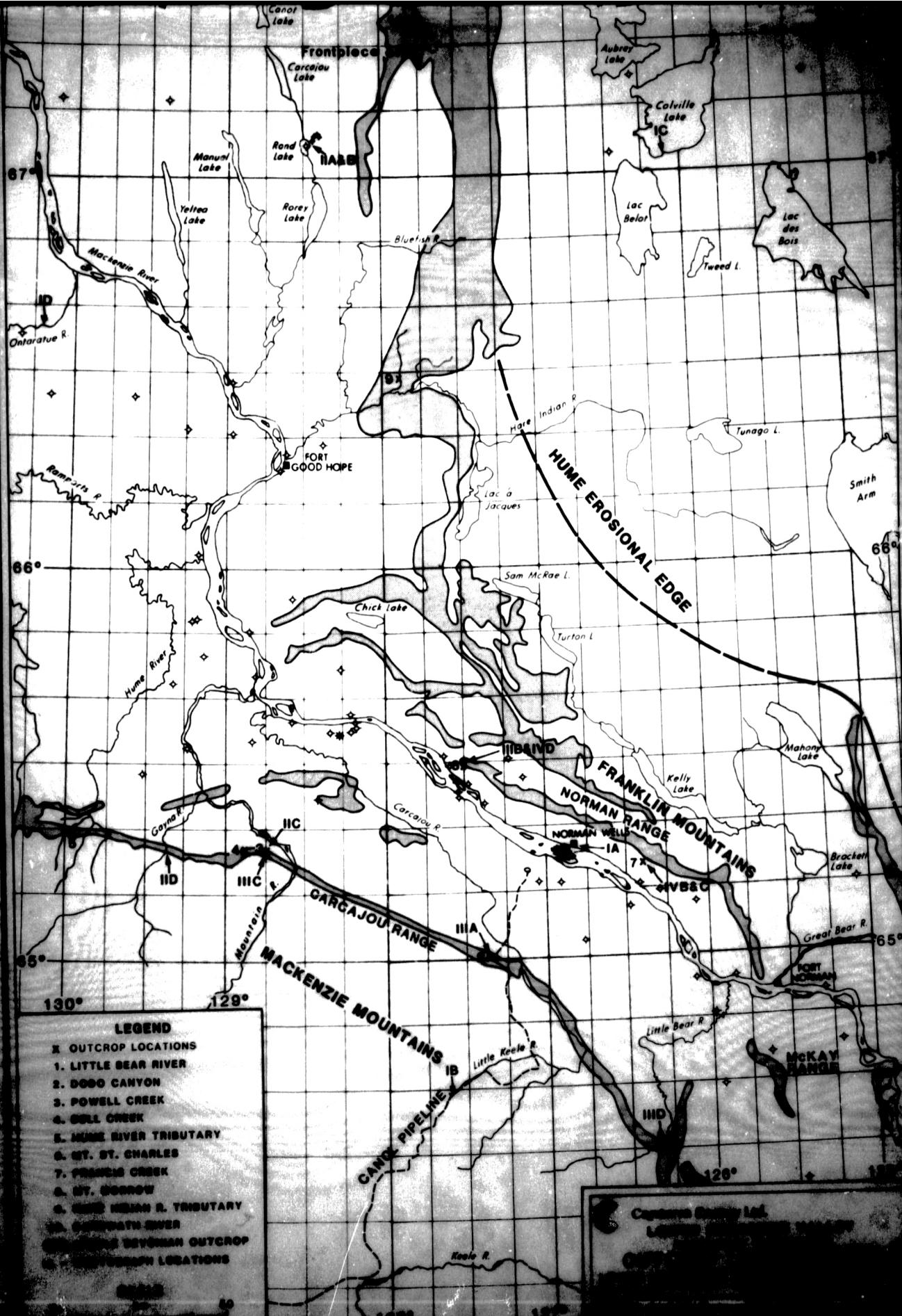
EXECUTIVE SUMMARY

A geological field party was conducted in the lower Mackenzie Valley drainage in the vicinity of Norman Wells and Fort Good Hope, N.W.T. Outcrops of the middle Devonian Ramparts (Kee Scarp) were visited and those of the Hume Formation were studied in detail. A facies model of outcrop data was constructed, based on interpretations of the depositional environments associated with various rock lithologies. By incorporation of subsurface mapping an overall depositional model for the Hume is described. Additional field work to refine aspects of the model should be concentrated on the Franklin Mountains and west of Hume River.

TABLE OF CONTENTS

	Page Number
INTRODUCTION	1
LOGISTICS	1
ACKNOWLEDGEMENTS	3
STRATIGRAPHY	3
INTRODUCTION	3
RAMPARTS (KEE SCARP) FORMATION	3
HUME FORMATION	5
Introduction	5
Basal Contact	5
Lower Hume	5
Upper Hume	5
FACIES MODEL	8
PETROLEUM POTENTIAL	8
CONCLUSIONS	9
REFERENCES	11
APPENDIX I - Field Party Sample List	17
APPENDIX II - Paleontological Identifications	20
APPENDIX III - Measured Section Logs	34


LIST OF FIGURES


	Page No.
FIGURE 1 Generalized Stratigraphy - Northern MacKenzie Platform	2
FIGURE 2 Hume Formation Composite	4
FIGURE 3 Hume Carbonate Shelf Environment	6
FIGURE 4 Hume Facies Model	7
FIGURE 5 Middle-Upper Devonian Stratigraphy	10

LIST OF PLATES

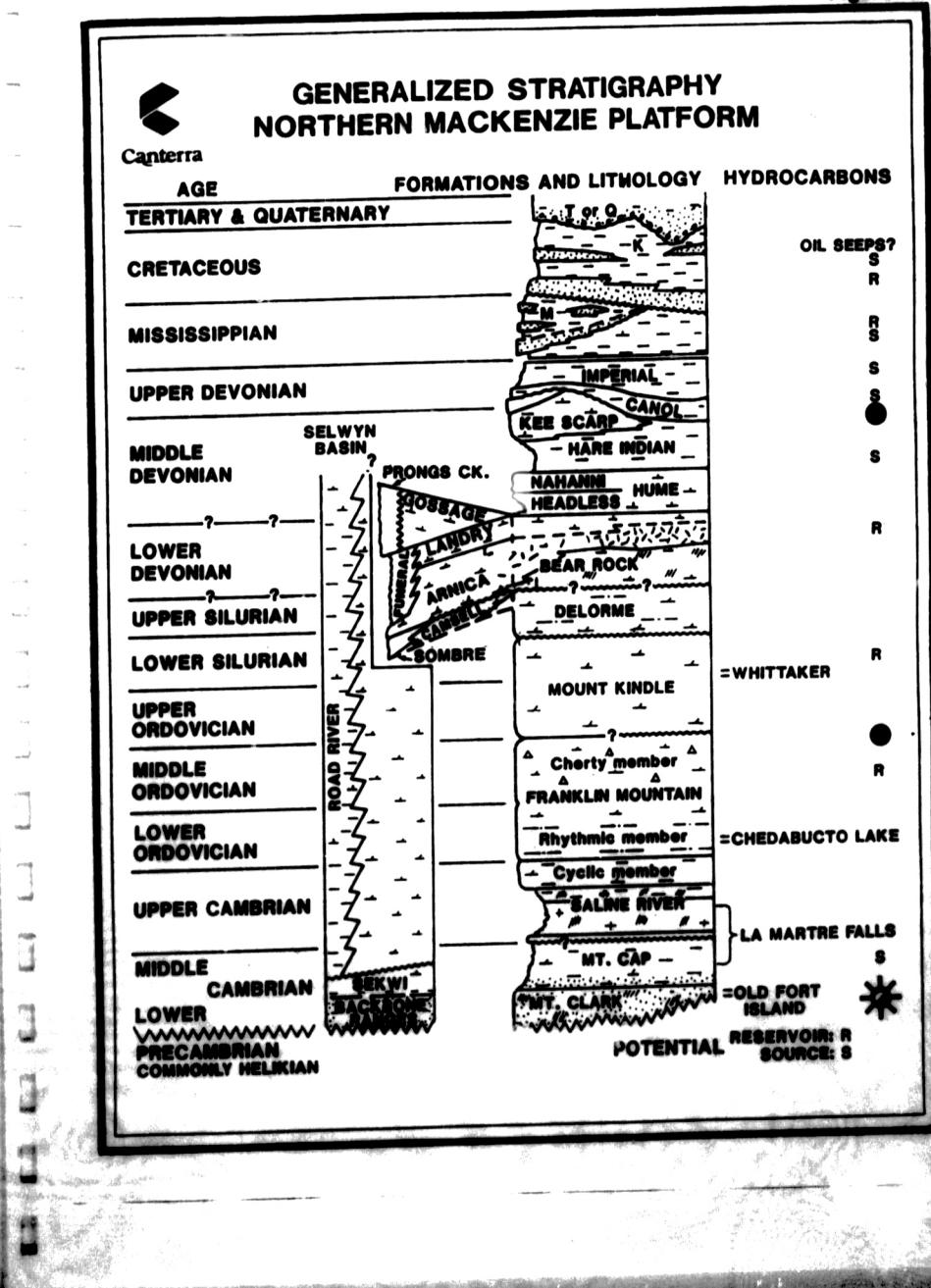
PLATE I Description	13
PLATE II Description	14
PLATE III Description	15
PLATE IV Description	16

(Plate locations are found on Outcrop Location Map)

INTRODUCTION

A geological field party was conducted in the lower MacKenzie Valley drainage from August 19 through September 6, 1986. The main objective was to study the Middle Devonian Ramparts (Kee Scarp) and Hume Formations (figure 1) both of which have potential for reefal development. Canterra's efforts in the N.W.T. became focused on the area as a result of the Ft. Good Hope landsale in February, 1986 where Chevron is currently negotiating an agreement with the Fort Good Hope Indian Band. Initial efforts concentrated on studying the Ramparts Formation which historically had been the primary objective in the landsale area. However, as our understanding of the area matured interest shifted to the Hume Formation, a Keg River equivalent, which in at least one case (Manitou L-61) acts as a platform for pinnacle reef development.

This report is not intended as a comprehensive review of the geology of the area. For a more in depth discussion see Pugh 1983, Williams 1986, 1985, Aitken et al 1982, AGAT 1977.


LOGISTICS

The field party consisted of R.L. McKellar and F. Monnier. Initially J.W. Zaturecky accompanied the field crew on a two-day fixed wing reconnaissance of prospective outcrop locations. Consultant I. Muir conducted a 3 day tour of Ramparts outcrops in the Powell Creek area which he had studied for his doctoral thesis.

The field party was accommodated at the MacKenzie Valley Hotel in Norman Wells and the Ramparts Hotel in Ft. Good Hope. Colville Lake Lodge run by Bern and Margret Brown was also visited on refuelling stops. Transportation to Norman Wells was by PWA scheduled flight. Fixed wing reconnaissance was by Page Flights of Norman wells, Tom Leaman pilot. Okanagan Helicopters of Norman Wells with base manager Lois Hill handled all the outcrop work.

There was one day of down time due to equipment repair on the helicopter and none due to weather. The field party suffered 3 days of rain and snow flurries with temperatures around 1° C in the first week of work. Temperatures recovered to the 20° C mark by the last week of field work. Ten sections were measured with 109 samples being collected for lithological, geochemical and paleontological purposes. Paleontological specimens now reside at the Institute of Sedimentary and Petroleum Geology.

Figure 1

ACKNOWLEDGEMENTS

I benefitted from discussions with Dr. G.K. Williams of the Institute Sedimentary and Petroleum Geology who has extensive experience working in the N.W.T. over the past 25 years. Drs. A.W. Norris and A.E.H. Pedder of the Institute identified paleontological specimens collected in the field. Dr. W.K. Braun of the University of Saskatchewan shared his knowledge of the area and identified micropaleo samples. J.W. Zaturecky and J.R. Lawrence critically read the manuscript. I would also like to recognize management in both Frontier and Northern districts for their support in carrying out this field project.

STRATIGRAPHY

Introduction

It should be mentioned initially that considerable reconnaissance work has been carried out in the area primarily during the sixties by both industry and government. In examining this work, one finds that it was done before studies on recent carbonate depositional environments became available to the field geologist. Despite the generally high quality of the field mapping, notably by Plauchut and Duffaud (1968), this earlier work lacks an interpretation of the rock lithologies in terms of their depositional environments. It follows then that by re-examining some of these sections and by providing an interpretation of their depositional environments a greater understanding of a particular formation can be gained. These interpretations can be a powerful tool in determining where to look for hydrocarbons.

Ramparts (Kee Scarp) Formation

The Kee Scarp is the producing member of the Ramparts Formation at the Norman Wells oil field (Muir, 1987). As such it has been the most intensively studied formation in what is still a rank wildcat area. Hariman (1986) summarizes the play concepts developed for this formation. Discussions with I. Muir are incorporated in that summary. Iain's tour of his thesis area confirmed our prior play concepts. Although geochemical and spot lithology samples were taken during the tour no detailed measuring was done. Refer to Muir (1987,1985,1984) for further elaboration on his study area.

HUME FORMATION COMPOSITE

Thickness 125m	Lithology	Sea Level Fall	Lithology Description	Depositional Environment
100m			BLACK BITUMINOUS SHALES WEATHERING OCHRE. GREY LIME MUDSTONES WITH <i>L. CASTANEA</i> FAUNA. THINLY BEDDED DARK GREY, LIME MUDSTONES TO WACKESTONES, INTERCALATED SHALES, ALLOCHTHONOUS MATERIAL, MOSTLY COVERED.	RESTRICTED MARINE TRANSITIONAL
75m			DARK GREY CORAL/STROMATOPOROID FLOATSTONE AND RUDSTONE WITH A BIOLASTIC WACKESTONE MATRIX. FAUNA, ABUNDANT AND DIVERSE, BIOHERMAL DEVELOPMENT.	OPEN MARINE
50m			LIGHT TAN LIME MUDSTONES TO WACKESTONES, FENESTRAL POROSITY OCCLUDED BY SPAR CALCITE CEMENT. HIGHLY BURROWED, TIDAL CHANNELS, MASSIVELY BEDDED, PAUCITY OF FAUNA.	BIOSTROMAL
25m			DARK GREY CORAL/STROMATOPOROID FLOATSTONE AND RUDSTONE WITH A BIOLASTIC WACKESTONE MATRIX. FAUNA ABUNDANT AND DIVERSE.	INTERTIDAL
0m			THINLY BEDDED DARK GREY LIME MUDSTONE TO WACKESTONE INTERCALATED WITH CALcareous SHALES. — LIMESTONE BEDS COMMONLY CONTAIN CRINOID AND BRACHIOPOD RUDSTONES INTERPRETED AS ALLOCHTHONOUS MATERIAL IN THE FORM OF TURBIDITES, DEBRIS FLOWS AND STORM DEPOSITS. — THIS SECTION IS MADE UP OF A SERIES OF CYCLES 3 TO 5 METRES THICK, FAUNAL ABUNDANCE AND BEDDING THICKNESS INCREASE UPWARD WITHIN EACH CYCLE AND THROUGHOUT THE SECTION.	BIOSTROMAL OPEN MARINE

Figure 2

Hume Formation

Introduction

Detailed measurements of 10 sections were made with sampling for lithology, geochemistry and paleontology. The results are recorded on logs (Appendix III) and only a summary will be given here.

Basal Contact

The Hume can be generally divided into a shale dominated lower recessive unit and a carbonate dominated upper massive unit (Figure 2). The Landry to Hume boundary is abrupt but gradational. A very rapid drowning occurs at the top of the Landry and onset of the Hume is marked by a regressive phase. In outcrop (Plate IIID) this is manifested as centimetre thick beds of lime wackestone in dark grey calcareous shales.

Lower Hume

The lower Hume is characterized by thinly bedded dark grey lime mudstone to wackestone intercalated with calcareous shales. In the Hume all shales are somewhat calcareous and all limestones somewhat argillaceous. These intercalated units are combined in a series of third order shoaling upward cycles ranging from 1 to 5 m thick (Plate IIIC). The limestone beds varying from 1 to 50 cm in thickness are often nodular in appearance and commonly contain crinoid and brachiopod rudstones. The faunal abundance and bedding thickness increase upward within each cycle and throughout the section. The crinoid and brachiopod assemblages are here interpreted as allochthonous material transported downslope in the form of turbidites and debris flows. Near the top of the lower recessive unit the cycles apparently were shallow enough and stable enough that a Crinoid and Brachiopod Assemblage developed in place, quickly followed by a Coral Assemblage and finally a mixed Coral/Stromatoporoid Assemblage (Figure 3). The term biostromal is here used to designate the interval where corals and stromatoporoids are abundant and diverse usually occurring as a floatstone or rudstone (Plate IVA). The unit is observed to be laterally correlatable (Figure 4).

Upper Hume

The biostromal unit also marks the transition between the lower and upper units within the Hume. In the western portion of the field area (Figure 4), the biostromal unit occupies most of the upper massive unit while in the eastern portion, a thinner biostromal unit is superceded by a light tan,

HUME CARBONATE SHELF ENVIRONMENT

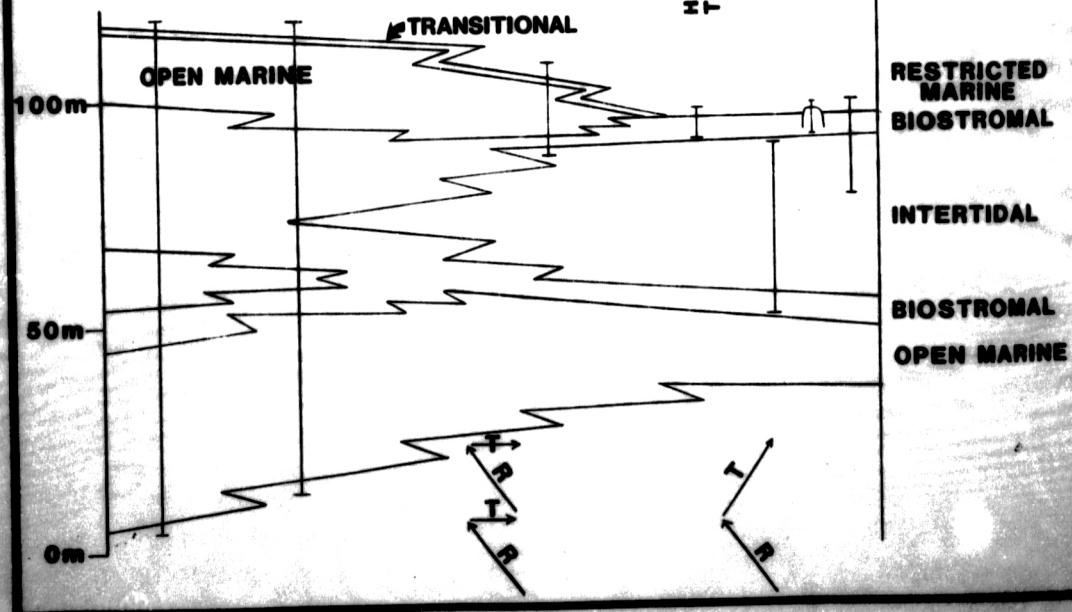
WATER DEPTH m	SUBTIDAL		INTERTIDAL		
	high tide	low tide			
0m					
1m					
25-30 m	wave base transport beachward				
60-70 m	Infra Assemblage -burrowers -transported fauna	Brachiopod Crinoid Assemblage -brachiopods -crinoids -Thamnopora - burrowers	Coral Assemblage -trilobites -rugose corals -tabulate corals -diphyllid corals -burrowers	Coral Stromatoporoid Assemblage -wafer, tabular, hemispherical and bulbous stroms -rugose, and tabulate corals -burrowers	Tidal Flat Assemblage -gastropods -brachiopods -burrowers -transported fauna
	OPEN MARINE -dark lime mudstones to wackestones -bioclastic turbidites and debris flows -allochthonous material	BIOSTROMAL -coral and stromatoporoid rudstones and floatstones -mudstone to wackestone matrix -biohermal development -autochthonous material	INTERTIDAL -tan lime mudstone -fenestral porosity -tidal channels		

HUME FACIES MODEL

BASINWARD
Southwesterly

HUME R.
TRIB.

POWELL CK.


BELL CK.

HARE INDIAN R.
TRIB.

MT. MORROW
CARNWATH R.

FRANCIS CK.

SHOREWARD
Northeasterly

massively bedded and highly burrowed lime mudstone. This unit contains cryptalgal laminites (Plate IVD) and tidal channels (Plate IVC). Fenestral and stromatactis porosity was initially high but has since been occluded by spar calcite cement (Plate IVB). This unit is interpreted as intertidal in origin. This marks the apex of the regression within the Hume and everywhere a marine transgression continues until the end of Hume time.

Above the intertidal unit an upper biostromal unit appears as sea level drops into subtidal range. At the Hare Indian River tributary outcrop the biostromal unit continues until it is abruptly terminated by the Bluefish facies. At Carnwath River the uppermost biostromal facies develops bioherms which presumably project into the overlying but now eroded Bluefish. An inspection of the facies between bioherms indicates an increasing shale content as one moves up section and a decrease in the numbers and diversity of fauna within the limestone beds (see Carnwath River section Appendix III). A readily apparent interpretation is that increasingly muddy conditions forced the fauna into biothermal development in order to elevate themselves above the turbid waters on the sea floor. Relief on the bioherms was probably 1 to 2 m at any given time as measured from the uppermost limestone bed to the top of the exposed bioherms.

In a portion of the Hume platform a rapid drowning occurs terminating biostromal growth. This succession, mainly covered in outcrop, is made of intercalated shales and lime wackestones interpreted to be open marine turbidites. Basin fill at this time is superbly displayed in the Dodo Canyon section (Plate IIIA) where clinoforms can be seen prograding in a basinward (westerly) direction. Wherever this "drown" unit occurs a thin transitional unit marks the top of the Hume. This unit contains the distinctive L. castanea beds. Speculatively, this fauna represents increasingly reduced oxygen conditions in the basin, a prelude to the highly restricted Bluefish facies of the Hare Indian Formation. At Dodo Canyon these two facies are intercalated (Plate IIIA) illustrating the transitional relationship. The Bluefish contains a distinctive Tentaculiti and Styliolinid fauna at its base and the black shales are identified as having good source rock potential.

FACIES MODEL

All lithofacies types and their depositional environments fit into a simple carbonate shelf environment (Figure 3). This carbonate shelf starts in the intertidal zone, moves through a broad shallow subtidal region and then into a deeper water region below storm wave base. The postulated depth of the basin comes from a Powell Creek measurement from the base of the Hume to the intertidal unit. Using the outcrop control and incorporating the transgressions and regressions that affected this carbonate shelf a facies

model for the Hume can be created (Figure 4). It should be noted that the outcrop sections are not set in sequential order but are placed as they best relate to the overall model. The key to this model are the observations that the intertidal unit is associated with the Franklin Mountains and that the biostromal and open marine units envelop the intertidal zone.

PETROLEUM POTENTIAL

The Kee Scarp (Ramparts) hydrocarbon potential is considered good. At least one other buildup besides Norman Wells has been drilled at Hoosier and more may exist in the area. Muir (Figure 5) illustrates the similarities between the Powell Creek outcrop and that at Norman Wells. Buildups in between these two locations should have a similar configuration and could possess the same hydrocarbon trapping characteristics as Norman Wells.

The Hume's hydrocarbon reservoir potential historically has been considered poor. The lower Hume is shaly while the upper Hume is tight. Outcrop observations indicate initial porosity was high in the intertidal unit but has since been filled with spar calcite cement. The rudstone facies of the biostromal unit is recessive in outcrop and poorly cemented (Plate IIIB). This may have been an artifact of outcrop weathering or may genuinely reflect porosity development within the matrix. This situation may exist within any pinnacle reefs developed on the Hume platform. The only example drilled so far (Manitou L-61) is shaved off by the pre-Cretaceous unconformity and is therefore anomalous in many ways. Porosities presumably have been enhanced by surface ground water leaching.

The lateral seals on any reefs found would be the Hare Indian shale underneath the Ramparts platform and, outside these boundaries, the Canol and Imperial shales could act as lateral and top seals. The latter two acts as the sealing rocks at Norman Wells.

CONCLUSIONS

- Detailed measurements of outcrop sections have allowed us to make an interpretation of the depositional environments of the Hume.
- Understanding the environments has lead to the creation of facies models for the Hume.
- Petroleum prospects look good for the Kee Scarp Formation and any pinnacle reefs growing from the Hume may contain hydrocarbons as well.

R.L. McKellar

Canterra Energy Ltd.
R.L. McKellar, Senior Geologist
April 7, 1987

MIDDLE-UPPER DEVONIAN STRATIGRAPHY
OF THE NORMAN WELLS SUBSURFACE
AND MACKENZIE MOUNTAIN OUTCROP

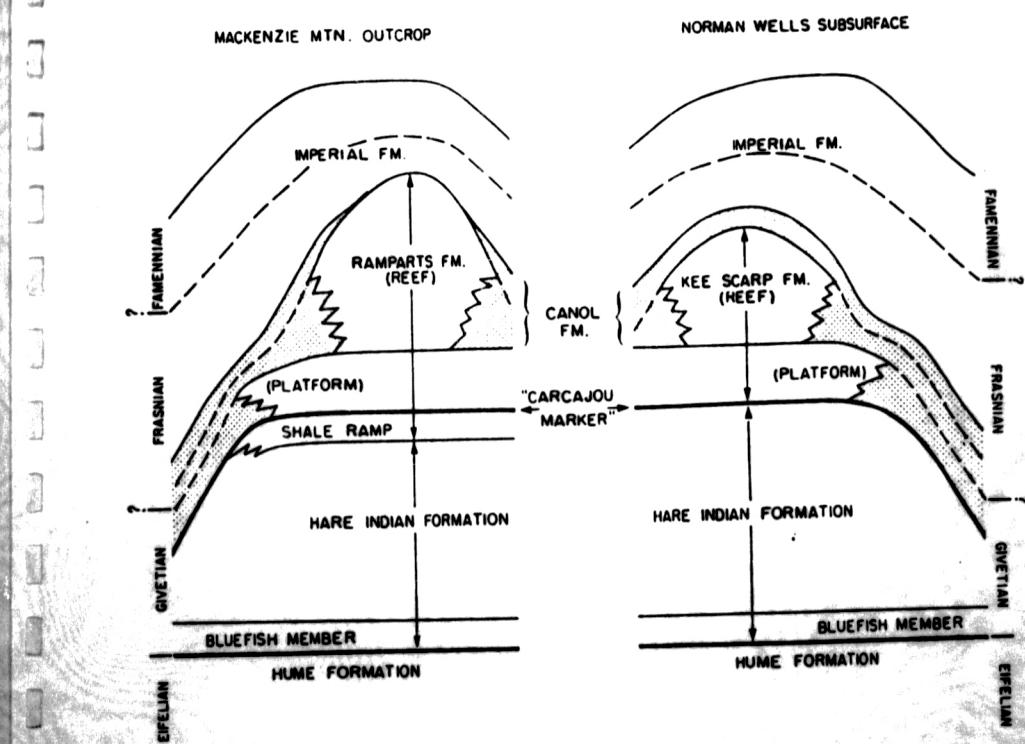


Figure 5
Muir et al., 1984

REFERENCES

AGAT/Geochem, 1977

Lower MacKenzie Energy Corridor Study, 1977
AGAT/Geochem Limited Publication.

Aitken J.D., Cook D.G. and Yorath C.J., 1982

Upper Ramparts River (106G) and Sans Sault Rapids (106H)
Map Areas, District of MacKenzie
Geological Survey of Canada Memoir 388.

Davis G.R./AGAT, 1985

Porosity Controls in the Middle Devonian Kee Scarp Formation,
Norman Wells Area, Northwest Territories
Consultant Report for Canterra Energy Ltd.

Hariman A., 1986

Subsurface Geological Evaluation of the Middle Devonian Kee Scarp
Formation, Norman Wells and Mountain River Areas Northwest Territories
Canterra Energy Ltd.

Muir I., 1987

Sedimentology of a Middle Devonian Carbonate Platform/Reef Complex:
Ramparts (Kee Scarp) Formation, N.W.T.
Phd. Thesis, University of Ottawa, Ottawa, Ontario.

Muir I. and Dixon O., 1985

Devonian Hare Indian - Ramparts Evolution, MacKenzie Mountains, N.W.T.:
Basin Fill and Platform - Reef Development
A progress report submitted to the Geology Office of DIAND.

Muir I., Wong P. and Wendte J., 1984

Devonian Hare Indian - Ramparts (Kee Scarp) Evolution, MacKenzie
Mountains and subsurface Norman Wells, N.W.T.: basin fill and platform
- reef development in L. Eliuk (ed.) Carbonates in Subsurface and
Outcrop.
Canadian Society of Petroleum Geologist Core Conference, 1984, p.82-102.

Norris A.W., 1985

Stratigraphy of Devonian Outcrop Belts in Northern Yukon Territory and
Northwestern District of MacKenzie (Operation Porcupine Area)
Geological Survey of Canada, Memoir 410.

REFERENCES(Continued)

Plauchut B. & Duffaud, 1968

Etude Geologique du Bas Mackenzie: Operation Mainland 1967
Elf Oil Exploration and Production Canada Ltd. 04-R-6L-68-14

Pugh D.G., 1983

Pre-Mesozoic Geology in the Subsurface of the Peel River Map Area,
Yukon Territory and District of Mackenzie
Geological Survey of Canada, Memoir 401.

Stoakes, Frank 1987

Evolution of the Upper Devonian of Western Canada in
Principles and Concepts for Exploration and Exploitation of Reefs
in the Western Canada Basin: Canadian Reef Inventory Project
ed. Graeme Bloy and John Hopkins.

Williams G.K., 1986

Hume Formation, lower Mackenzie River area
Geological Survey of Canada, Open File Report 1336.

Williams G.K., 1985

The Kee Scarp Play, Norman Wells area, Northwest Territories
Geological Survey of Canada, Open File 1228.

PLATE I

- A. Norman Wells looking west southwest towards the Carcajou Range of the Mackenzie Mountains. Production berms in the river and on Goose and Bear Islands produce oil from the Kee Scarp reef for transmission via pipeline to Rainbow Zama.
- B. Abandoned vehicles from the Canol project found at Pumpstation II on Little Keele River.
- C. Colville Lake Village - view from the second floor of Bern Will Brown's museum. Tweed Lake C-12 was drilled within sight of the village.
- D. Gas seep in 1 m of water on the Ontaratué River. Gas was reported from this same spot 25 years ago by J.C. Sproule.

A	B
C	D

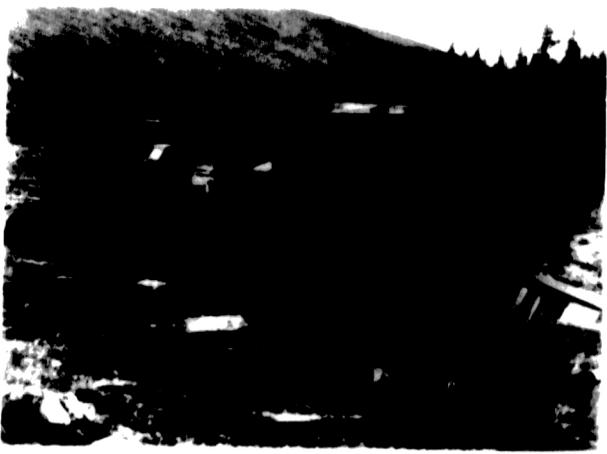


PLATE II

- A. Looking west towards Rond Lake from the eastern ridge. Oil seep occurs over a 100 m² area just below the helicopter.
- B. Sampling Rond Lake oil seep, 5 cm of heavy crude is floating on pond water.
- C. Spectacular exposure of Ramparts (Kee Scarp) reef immediately beyond West Powell Creek. On Powell Creek steeply dipping Hume Formation occurs at (A), overlain by recessive Hare Indian Formation (B), Ramparts platform (C) and Canol Formation (D). Treed area is recessive Imperial Formation. The reef extends for a distance of 15 km in photo. Linear ridge of the Imperial anticline can be seen on the right.
- D. Hume Formation exposed on the Gayna River. Dark grey lime mudstones of the Landry Formation are exposed at (A). The recessive shale dominated lower Hume (B) is capped by the cliff-forming upper Hume (C) and finally the overlying black recessive shales of the Bluefish Member of the Hare Indian Formation can be seen at (D).

A	B
C	D

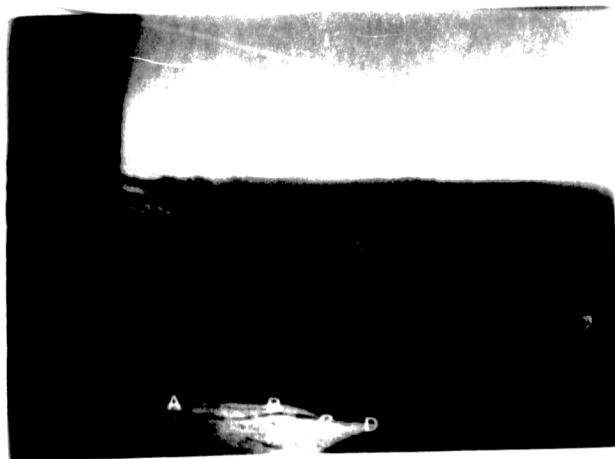


PLATE III

- A. Upper Hume exposed on Dodo Canyon. The lower recessive unit is just exposed above creek bottom (A). The lower biostromal and intertidal units are seen in the middle massive section (B). The upper open marine section (C) is here more carbonate rich than in the more northerly sections and illustrates the clinoform pattern of basin infill. Here an additional biostromal unit (D) and finally the transitional unit and the black shale of the Bluefish source rock (E) caps the sequence.
- B. Hume exposed on a breached anticline at the top of Mt. Morrow. The lower biostromal unit (A) is made up of poorly cemented corals and stromatoporoids which have differentially weathered compared to the upper massively bedded intertidal unit (B).
- C. Hume exposed along the east side of main Powell Creek. This illustrates the carbonate shoaling-upward cycles which predominate throughout the Hume. The lower portion of the cycle starts out as thin-bedded and shale dominated. Faunal abundance and bedding thickness increase towards the top of each cycle.
- D. Lowermost Hume exposed along the southeast side of Little Bear River. There is a gradational contact between the dark-colored lime mudstone of the Landry Formation (A) and the Hume Formation (B) which is marked by the appearance of turbidites seen as light colored centimetre thick lime wackestones to rudstones starting above the red and white marker (1.5 m Jacob's staff for scale).

A	B
C	D

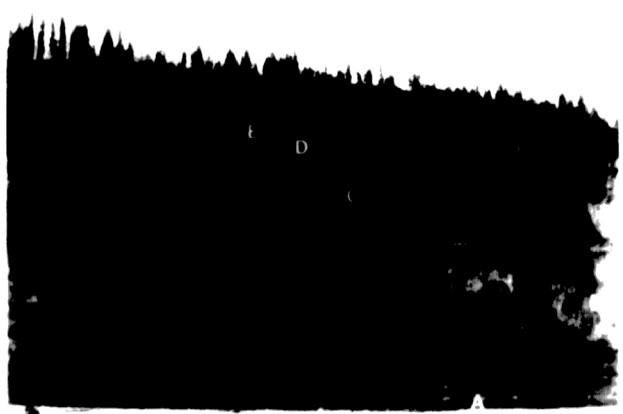
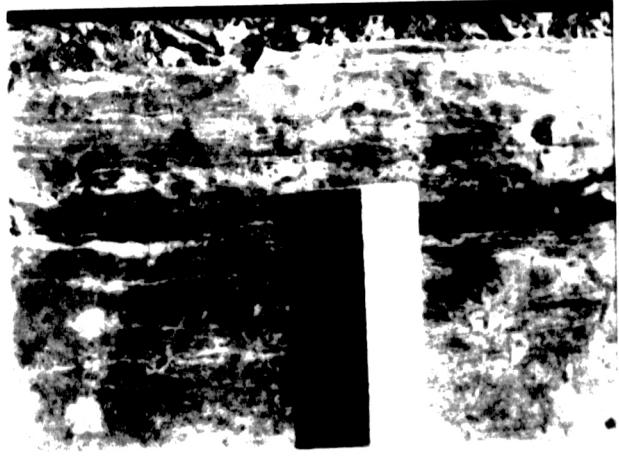



PLATE IV

- A. Coral and stromatoporoid rudstone from Bioherm B at the top of the Hume located on the Carnwath River. The section in this photo is dominated by large solitary and disphyllid corals. However bulbous and tabular stromatoporoids populate the bioherms as well.
- B. Intertidal lime mudstones at Francis Creek. Gastropod shells and fenestral/stromatactis? porosity is infilled by spar calcite cement. Red bar is 10 cm.
- C. At Francis Creek a tidal channel cuts through the section with its base defined by the orange tape and the red and white scale bar. Photo B was taken from the lower left portion of this picture.
- D. Intertidal unit from the Mt. Morrow section. The tan colored lime mudstones are interpreted to be derived from cryptalgal stromatolites represented by the faint parallel laminations in the photo. Red bar is 8 cm.

A	B
C	D

APPENDIX I

**CANTERRA GEOLOGICAL FIELD PARTY
SAMPLE LIST
August 19 to September 6, 1986**

Date	Outcrop Locality	Sample #	Sample Type	Lith	Geochem	Paleo	Preparation	Comments
08/21	Gossage R.	G.R.#1	x				S.&T.S.	
		G.R.#2			x			In Hare Indian
		G.R.#3			x			Lower 3 m of S.S.
08/21	Ontaratuie R.	O.R.#1	x					
08/22	Hare Indian R. Trib.	*H.I.R.#1A	x				S.	Grab sample at recessive ledge.
		*H.I.R.#1B				x		Grab sample above shale 2 bags & sack macro
		H.I.R.#2		x		x		
		*H.I.R.						
08/24	Carnwath R. Bioherm A	C.R.B.A.#1	x				S.	
		C.R.B.A.#2	x				S.	
		C.R.B.A.#3	x					As Below
		C.R.B.A.#4	x					As Below
		*C.R.B.A.#5	x				S.	
		*C.R.B.A.#6	x			x	S.	Much Paleo
		C.R.B.A.#7	x				S.	
		*C.R.B.A.				x		2 bags macropaleo
	Carnwath R. Bioherm B	C.R.B.B.#1	x				S.	
		C.R.B.B.#2	x				S.	
		C.R.B.B.#3	x					
		C.R.B.B.#4	x				S.	
		C.R.B.B.#5	x				S.	
		C.R.B.B.#6	x				S.	Encrusting-tabstrom
		C.R.B.B.#7	x					Orange patina
		C.R.B.B.#8	x					
		C.R.B.B.#9	x				S.	
		*C.R.B.B.				x		4 bags macropaleo
08/24	Carnwath R.C.	C.R.C.	x					Sample of coally sand
	Carnwath R.D.	C.R.D.#1	x				S.	
		C.R.D.#2	x			x		
		C.R.D.						Micropaleo
08/29	Francis Ck.	F.C.#1	x				S.&T.S.	
		F.C.#2	x				S.	
		F.C.#3	x					
		*F.C.#4			x			Macropaleo
		F.C.#5	x			x	S.	
		F.C.#6	x			x	S.	
		F.C.#7		x				
08/30	Hume R. Trib.	H.R.#1	x					Missing
		H.R.#2	x				S.	
		*H.R.#3	x			x		
		*H.R.#4	x			x	S.	

Date	Outcrop Locality	Sample #	Lith	Geochem	Sample Type	Sample Preparation	Comments
	Hume R. Trib.	H.R. #4	x		x	S.	
		H.R. #5	x			S.	
		H.R. #6		x			
		H.R. #7	x			S.	
		H.R. #8	x			S.&T.S.	
		H.R. #9	x			S.	Trilobite pygidium
		H.R. #10	x			S.&T.S.	
		H.R. #11	x			S.	
		H.R. #12	x			S.	
		H.R. #13	x		x		
		H.R. #14	x			S.	
		H.R. #15		x			
		*H.R. #16		x	x		Macropaleo
08/31	Powell Ck. (West)	P.C. #1	x			S.	Light gy mudstone
		P.C. #2		x			Probably a.a. faulted
		P.C. #3	x			S.	
		P.C. #4	x			S.	
		P.C. #5	x			S.	Biostromal unit matrix
		P.C. #6	x			S.	Orange patina
	Powell Ck. (East)	P.C. #7	x			S.	Corals & sand
		P.C. #8	x			S.	
		P.C. #9	x			S.	Two #9's
		*P.C. #10			x		Coral floatstone
09/01	Dodo Canyon	D.C. #1	x			S.	
		D.C. #2	x			S.	
		D.C. #3	x			S.	
		D.C. #4	x	x			Pic of wall 50% stroms
		D.C. #5	x			S.	I.T.
		D.C. #6	x			S.	
		D.C. #7		x			
		D.C. #8	x				
		D.C. #9	x				}
		D.C. #10	x				Unit sample above
		D.C. #11	x				biostromal unit
		D.C. #12	x			S.	}
09/02	Little Bear R.	L.B.R. #1		x			Perhaps B.R.
		L.B.R. #2		x		S.	Shell hash *orient
		L.B.R. #3	x			S.&T.S.	Shell hash *orient
		L.B.R. #4	x			S.&T.S.	Have polaroid
		L.B.R. #5	x			S.	
		L.B.R. #6	x				
		L.B.R. #7	x				
		L.B.R. #8	x				
		L.B.R. #9	x				
		L.B.R. #10	x				
		L.B.R. #11		x			1st strom at sequence
		L.B.R. #12	x			S.	

Date	Outcrop Locality	Sample #	Lith	Geochem	Paleo	Sample Preparation	Comments
09/03	Mt. St. Charles	M.S.C. #1			x	S.	Sample is coral
		M.S.C. #2	x			S.&T.S.	Calcareous s.s.
		*M.S.C. #3	x		x	S.	
09/03	Mt. Morrow	M.M. #1	x			T.S.	Unmeasured sample
		M.M. #2		x			Unmeasured intertidal
		M.M. #3	x				
		M.M. #4	x			S.	Matrix sample in
		M.M. #5	x				biostromal unit
09/04	Hare Indian R. Trib.	H.I.R.(2)#1	x			S.	Sample of matrix
		H.I.R.(2)#2			x		Shale micropaleo
		H.I.R.(2)#3	x				Coral filled with oil
		H.I.R.(2)#4		x			Coral frags
		H.I.R.(2)#5	x				Bluefish sample
		H.I.R.(2)#6	x			S.	
09/05	Bell Ck.	B.C. #1	x			S.&T.S.	Biostromal
		B.C. #2	x				I.T.
		*B.C. #3	x		x	S.	Biostromal Matrix
		*B.C. #4		x	x		Coral debris fauna
		*B.C. #5	x		x		Fossil hash from
							turbidite
		B.C. #6		x			Fred took for geochem
		B.C. #7	x				
		B.C. #8	x			S.	

GRAND TOTAL 109 samples

S. = slabbed and polished

T.S. = thin section

* Samples have been sent to Drs. A.W. Norris and A.E.H. Pedder of the
I.S.P.G. for identification and will henceforth reside at the Institute
under their identification (see Appendix II).

APPENDIX II
PALEONTOLOGICAL IDENTIFICATIONS

File B16AWN87

Report No. 5-AWN-1987

~~111~~
Report on sixteen lots of Devonian fossils from eight localities in the lower Mackenzie Valley area, District of Mackenzie, collected by R. C. McKellar and F. Monnier, 1986, geologists of Canterra Energy Ltd., 505-5th Avenue S. W., Calgary T2P 2K7.

The relevant parts of any manuscript prepared for publication that paraphrase or quote from this report should be referred to the Paleontology Subdivision, Calgary, for possible revision.

TRIBUTARY OF HARE INDIAN RIVER

Field No. 5 Stratigraphy

86HIR-1A; Hume Fm., 27 m below top of fm.

Locality, Fauna & Age

Tributary of Hare Indian River at $66^{\circ}29'N$, $127^{\circ}54'W$ (NTS 92L/5). cup and colonial corals - to A. E. H. Pedder

Variatrypa (Variatrypa) arctica (Warren, 1944)

Spinatrypa (Isospinatrypa) borealis (Warren, 1944)

Carinatrypa pauciplicata Copper, 1978

cf. *Philonene* sp.

cf. *Spirorbis* sp.

Age: *V. (V.) arctica* Zone, late Eifelian, early Middle Devonian.

GSC Locality No. C-146956.

Field No. 5 Stratigraphy

86HIR-1B; Hume Fm., 27 m below top of fm.; a GRAC sample at recessive ledge.

Locality, Fauna & Age

Locality as above.

cup and colonial corals - to A. E. H. Pedder

Variatrypa (Variatrypa) arctica (Warren, 1944)

Age: *V. (V.) arctica* Zone, late Eifelian, early Middle Devonian.

GSC Locality No. C-146957.

Field No. 5 Stratigraphy

86HIR; Hume Fm., 27 m below top of fm.; grab sample above shale.

Locality, Fauna & Age

Locality as above.

colonial corals - to A. E. H. Pedder

Age: not determined.

GSC Locality No. C-146958.

CARNWATH RIVER

Field No. 5 Stratigraphy

86CRBA-5; Hume Fm., 3 m below top of bioherm A.

Locality, Fauna & Age

Carnwath River at $67^{\circ}03'N$, $127^{\circ}43'W$ (NTS 92M/5).

Spinatrypa (Spinatrypa) andersonensis (Warren, 1944)

Age: *C. dysmorphostrota* Zone cf. Pedder (1975), late Eifelian, early Middle Devonian.
GSC Locality No. C-146959.

Field No. & Stratigraphy
86CRBA-6; Hume Fm., top of bioherm A.
Locality: Fauna & Age
Locality as above.
colonial corals - to A. E. H. Pedder
Spinatrypa (Spinatrypa) andersonensis (Warren, 1944)
undet. gastropod
echinoderm ossicle with single axial canal
Age: *C. dysmorphostrota* Zone, late Eifelian, early Middle Devonian.
GSC Locality No. C-146960.

Field No. & Stratigraphy
86CRBA; Hume Fm., float from base of bioherm A.
Locality: Fauna & Age
Locality as above.
corals - to A. E. H. Pedder
Variatrypa (Variatrypa) arctica (Warren, 1944)
Spinatrypa (Isospinatrypa) borealis (Warren, 1944)
Emanuella sp.
Dechenella (Dechenella) sp. cf. D. (D.)
spaeckkassensis (Tolimachoff, 1926)
Age: *C. dysmorphostrota* or *V. (V.) arctica*
Zone, late Eifelian, early Middle Devonian.
GSC Locality No. C-146961.

Field No. & Stratigraphy
86CRBB; Hume Fm., float from base of bioherm B.
Locality: Fauna & Age
Locality almost same as above; 450 m downstream (north) of bioherm A.
corals - to A. E. H. Pedder
Gypidula n. sp., a new costate form - to Index Collection
Spinatrypa (Isospinatrypa) borealis lata
(Warren, 1944)
Carinatrypa dysmorphostrota (Crickmay, 1960)
Emanuella sp.
Tentaculites sp.
undet. planispiral gastropod with radial ornament - to Index Collection
circular echinoderm ossicle with single axial canal
five-sided echinoderm ossicle with single axial canal
Age: *C. dysmorphostrota* Zone, late Eifelian, early Middle Devonian.
GSC Locality No. C-146962.

FRANCIS CREEK

Field No. & Stratigraphy
86FC-4; Hume Fm., 2 m below top of fm.
Locality: Fauna & Age
Francis Creek at 65°14'N, 126°22'W (NTS 96E/1).
coral fragments - to A. E. H. Pedder

c. *Dechenella* (*Dechenella* *spaekkassensis*)
(Tolmachoff, 1926), cf. Ormiston, 1967
echinoderm ossicle with single axial canal
Age: Eifelian, early Middle Devonian.
GSC Locality No. C-146963.

TRIBUTARY OF HUME RIVER

Field No. & Stratigraphy
86HR-3; Hume Fm., 2 m a.b. of fm.

Locality: Fauna & Age
Tributary of Hume River at $65^{\circ}20'N$, $129^{\circ}57'W$ (NTS 106H/5).

Eoschuchertella adoceta (Crickmay, 1960)
undet. trilobite cephalon fragment
Age: *E. adoceta* Zone of Crickmay (1960), early Eifelian, early
Middle Devonian.
GSC Locality No. C-146964.

Field No. & Stratigraphy
86HR-4; Hume Fm., 10.5 m a.b.

Locality: Fauna & Age

Locality as above.
Eoschuchertella adoceta (Crickmay, 1960)
Tentaculites sp.
circular echinoderm ossicle with single axial canal
five-sided echinoderm ossicle with single axial canal
Age: *E. adoceta* Zone, early Eifelian, early Middle
Devonian.
GSC Locality No. C-146965.

Field No. & Stratigraphy
86HR-16; Hume Fm., 0.5 m from top (lithology and fossils suggest basal
Hare Indian Fm.).

Locality: Fauna & Age

Locality as above.
Leiorhynchus castanea (Meek, 1868)
Spinatrypa (*Isospinatrypa*) *borealis* (Warren, 1944)
Age: *L. castanea* Zone (Warren and Stelck, 1950), probably
within conodont *ensensis* Zone which straddles the Eifelian/
Givetian boundary.
GSC Locality No. C-146966.

POWELL CREEK (EAST)

Field No. & Stratigraphy
86PC-10; Hume Fm., float from base of fm.

Locality: Fauna & Age
Powell Creek (east section) at $65^{\circ}16'N$, $128^{\circ}46'W$ (NTS 106H/7).

colonial coral - to A. E. H. Pedder
echinoderm ossicle with single axial canal
undet. trilobite tail fragment
Age: not determined.
GSC Locality No. C-146967.

MOUNT ST. CHARLES

Field No. & Stratigraphy
86MSC-3; Hume Fm., 9.5 m from top of fm.
Locality: Fauna & Age
Mount St. Charles at 65°10' N, 124°49' W (NTS 86F-2).
undet. stromatoporoid
colonial coral - to A. E. H. Pedder
cf. *Dechenella* (*Dechenella*) *macilarenii* Ormiston, 1967
Age: Eifelian, early Middle Devonian.
GSC Locality No. C-146968.

BELL CREEK

Field No. & Stratigraphy
86BC-3; Hume Fm., 16 m below top of fm.; biostromal matrix.
Locality: Fauna & Age
Bell Creek at 65°17' N, 128°53' W (NTS 106N/7).
colonial coral - to A. E. H. Pedder
Age: not determined.
GSC Locality No. C-146969.

Field No. & Stratigraphy
86BC-4; Hume Fm., 9.5 m below top of fm.; coral debris fauna.
Locality: Fauna & Age
Locality as above.
corals - to A. E. H. Pedder
Carinatrypa pauciplicata Copper, 1978
Age: *C. dysmorphostrota* Zone, late Eifelian, early Middle Devonian.
GSC Locality No. C-146970.

Field No. & Stratigraphy
86BC-5; Hume Fm., 9 m below top of fm.; fossil hash from turbidite.
Locality: Fauna & Age
Locality as above.
Spinatrypa (*Spinatrypa*) *andersonensis* (Warren, 1944)
cf. *Nucleospira* sp.
Tentaculites sp.
cf. *Fuscinipysa yolkini* Ormiston, 1972
Spirorbis sp.
echinoderm ossicle with single axial canal
Age: *C. dysmorphostrota* Zone, late Eifelian, early Middle Devonian.
GSC Locality No. C-146971.

Comments

TRIBUTARY OF HARE INDIAN RIVER

Samples C-146956 and C-146957 contain *Variatrypa* (*Variatrypa*) *arctica* which in the Mackenzie Valley region overlaps the ranges of the *Carinatrypa dysmorphostrota* and *Leiorhynchus castanea* zones. *V. (V.) arctica* has a wide geographical distribution outside of the Mackenzie Valley region where it has been recorded from the lower Keg River and lower Methy formations of

northern Alberta, the lower Winnipegosis Formation of Saskatchewan, the Elm Point and lower Winnipegosis formations of Manitoba, the Murray Island Formation of the Moose River Basin of northern Ontario, and the lower Rogers City Formation of Michigan. In the latter areas, *V. (V.) arctica* is a much more useful form than *C. dysmorphostrota*, which is sporadically and sparsely represented, and where *L. castanea* is absent.

CARNWATH RIVER

The fossils of bioherms A and B of the Hume Formation (samples C-146959 to C-146963 inclusive) are representative of the *C. dysmorphostrota* Zone of Pedder (1975). This zone is broadly aligned with the conodont *cockellianus* Zone of late Eifelian, early Middle Devonian age, but its precise relationship to the conodont zonal scheme has not been established.

The distinctive brachiopod *V. (V.) arctica* and a trilobite suggestive of *Dochenella (D.) spaekkassensis* (Tolmachoff, 1926) of Ormiston (1967) are present in sample C-146961.

FRANCIS GREEK

The trilobite suggestive of *Dochenella (D.) spaekkassensis*, present in sample C-146963, appears to be a common element of the *C. dysmorphostrota* Zone.

TRIBUTARY OF HUME RIVER

Samples C-146964 and C-146965 contain the zonal designate, *Eoschuchertella adoceta* Crickmay (1960). The *adoceta* Zone is broadly aligned with the conodont *australis* Zone of early Eifelian, early Middle Devonian age (Norris, 1985).

Elements of both the *adoceta* and *dysmorphostrota* zones have been collected recently from Melville Island of the western Arctic Archipelago in beds with numerous pelecypods.

Leiorhynchus castanea (Meek, 1868), in sample C-146966, occurs typically in a thin stratigraphical interval in the uppermost Hume and lower Hare Indian formations in the lower Mackenzie Valley region. Its occurrence here in a matrix of dark bituminous limestone is more suggestive of basal Hare Indian rather than uppermost Hume Formation. Many workers including Warren and Stelck (1950), Bassett (1961), Tassonyi (1969) and Caldwell (1971) placed the *castanea*-bearing beds in the basal Hare Indian Formation. In this area, the zone is broadly equivalent to the conodont *ensensis* Zone, which straddles the Eifelian/Givetian boundary of the Middle Devonian, although a precise biological marker for the base of the Givetian is still not decided.

Forms suggestive of *L. castanea* have been found in the Nahanni River region, northeastern British Columbia, Great Slave Lake area, Nevada, and a single specimen has been noted in an early collection from Melville Island. The form occurring in the Bituminous limestone member of the Pine Point Formation on the south side of Great Slave Lake is currently being studied and appears to be slightly younger (Lower and Middle *varcus* subzones) than the typical *castanea* of the lower Mackenzie Valley region.

POWELL CREEK (EAST)

No diagnostic fossils in sample C-146967, and age not determined.

MOUNT ST. CHARLES

The form suggestive of *Dechenella* (D.) *maclareni* Ormiston (1967), present in sample C-146968, is known in the northern Yukon Territory in beds broadly equivalent to the Hume Formation. It occurs typically in the Blue Fiord Formation of the Arctic Archipelago.

BELL CREEK

The presence of *Carinatrypa pauciplicata* Copper (1978) in sample C-146970, and *Spinatrypa* (S.) *andersonensis* (Warren, 1944) and cf. *Nucleospira* sp. in sample C-146971, suggest assignment to the *C. dysmorphostrota* Zone of late Eifelian, early Middle Devonian age.

References

Bassett, H. G.
1961: Devonian stratigraphy, central Mackenzie River region, Northwest Territories, Canada; in G. D. Raasch, Editor, Proceedings, First International Symposium on Arctic Geology, University of Toronto Press, v. 1, p. 481-498.

Caldwell, W. G. E.
1971: The biostratigraphy of some Middle and Upper Devonian rocks in the Northwest Territories: An historical review; The Musk-Ox, publication no. 9, p. 1-20, 4 Pls., 5 text-figs.

Copper, P.
1978: Devonian atrypoids from western and northern Canada; in C. R. Steck and B. D. E. Chatterton, Editors, Geological Association of Canada, Special Paper 18, p. 281-331, 7 Pls.

Crickmay, C. H.
1960: The older Devonian faunas of the Northwest Territories; published by author, Imperial Oil Limited, Calgary, 21 p., 11 Pls.

Meek, F. B.
1868: Remarks on the geology of the valley of the Mackenzie River, with figures and descriptions of fossils from that region, in the Museum of the Smithsonian Institution, chiefly collected by the late Robert Kennicott, Esq.; Chicago Academy of Sciences, Transactions, v. 1, pt. 1, art. 3, p. 61-113, Pls. 11-15 (imprinted 1867).

Norris, A. W.
1985: Stratigraphy of Devonian outcrop belts in northern Yukon Territory and northwestern District of Mackenzie (Operation Porcupine area); Geological Survey of Canada, Memoir 410, 61 p., 16 figs.

Ormiston, A. R.
1967: Lower and Middle Devonian trilobites of the Canadian Arctic

Islands; Geological Survey of Canada, Bulletin 153, 147 p., 17 Pls.,
7 text-figs.

Ormiston, A. R.

1972: **Fuscinipyge**, new Middle Devonian trilobite genus from northwest Territories, Canadian Journal of Paleontology, v. 46, no. 5, p. 666-674, 1 Pl., 2 text-figs.

Ormiston, A. R.

1976: New Middle Devonian trilobites from northwestern Canada; Journal of Paleontology, v. 50, no. 6, p. 1162-1174, 3 Pls.

Pedder, A. E. H.

1975: Revised megafaunal zonation of Middle and lowest Upper Devonian strata, central Mackenzie Valley; Geological Survey of Canada, Paper 75-1, Pt. A, p. 571-576.

Tassonyi, E. J.

1969: Subsurface geology, lower Mackenzie River and Anderson River area, District of Mackenzie; Geological Survey of Canada, Paper 68-25.

Tolmachoff, I. P.

1926: On the fossil faunas from Per Schei's Series D from Ellesmere Land with the exception of brachiopods, corals, and cephalopods; Report of the Second Norwegian Arctic Expedition in the "Fram", 1898-1902; Videns.-Seisk. i Kristiana, No. 38, p. 1-106, 8 Pls.

Warren, P. S., and Steck, C. R.

1950: Succession of Devonian faunas in western Canada; Transactions, Royal Society of Canada, v. 44, 3rd ser., sec. 4, p. 105-135.

*R. L. McKellar
434*

*26 V. Jones
A. W. Norris*

Paleontology Subdivision,
Institute of Sedimentary and Petroleum Geology,
Calgary, February 3, 1987.

Copies to: R. L. McKellar
A. E. H. Pedder

Report No. RLM-128-AEHP-87

Report on 12 lots of Middle Devonian fossils submitted by R.L. McKellar, Canterra Energy Ltd., from the District of Mackenzie, NTS 96E, 96F, 96L, 96M and 106H.

The relevant parts of any manuscript prepared for publication that paraphrase or quote from this report should be referred to the Paleontology Subdivision, Calgary, for possible revision.

Field No. 86 H1R 1A

GSC Loc. C-146956

Stratigraphy: Hume Formation, 27 m below top of formation.

Locality: District of Mackenzie, tributary of Hare Indian River; 66°29'N, 127°54'W; NTS 96L.

Age: Middle Devonian, late Eifelian, **dysmorphostrota** Zone.

Fauna: **Favosites** sp.
Thamnopora sp.
Alveolites sp.
Digonophyllum sp. nov.
Lekanophyllum mediale McLean
Sociophyllum glomerulatum (Crickmay)
Radiastrea norrisi Pedder
Hederella sp.
Variatrypa (V.) **arctica** (Warren)
Spinatrypa (**Iospinatrypa**) **borealis** (Warren)
Carinatrypa **dysmorphostrota** (Crickmay)
Serpulospira ? sp.
Spirorbis sp.

Remarks: This is a typical **dysmorphostrota** Zone assemblage.

Field No. 86 H1R 1B

GSC Loc. C-146957

Stratigraphy: Hume Formation, 27 m below top of formation.

Locality: District of Mackenzie, tributary of Hare Indian River; 66°29'N, 127°54'W; NTS 96L.

Age: Middle Devonian, late Eifelian, **dysmorphostrota** Zone.

Fauna: **Favosites** sp.
Alveolites sp.
Microplasma caespitosum (Schluter) small form
Lekanophyllum andersonense McLean

Aphroidophyllum sp. nov.
Variatrypa (V.) *arctica* (Warren)

Remarks: The new species of *Aphroidophyllum* is well known to the writer and is diagnostic of the *dysmorphostrota* Zone.

Field No. 86 H1R

GSC Loc. C-146958

Stratigraphy: Hume Formation, 27 m below top of formation.

Locality: District of Mackenzie, tributary of Hare Indian River;
66°29'N, 127°54'W; NTS 96L.

Age: Middle Devonian, late Eifelian, *dysmorphostrota* Zone.

Fauna: *Favosites* sp.
Alveolites sp.
Mastopora sp.
digitate tabulate corals, not studied
Digonophyllum rectum (Meek)
Aphroidophyllum howelli Lenz
Taimyrophyllum stirps (Crickmay)
Tanuphyllum sp. nov.
Radiastraea sp. nov.

Remarks: *Aphroidophyllum howelli* and *Taimyrophyllum stirps* are diagnostic of the *dysmorphostrota* Zone.

Field No. 86 CRBA 5

GSC Loc. C-146959

Stratigraphy: Hume Formation, Bioherm "A", 3 m below top.

Locality: District of Mackenzie, Carnath River, 67°23'N,
127°43'W; NTS 96M.

Age: Middle Devonian, late Eifelian, *adoceta* or
dysmorphostrota Zone.

Fauna: *Thamnopora* sp.
Alveolites sp.
Spinatrypa (S.) *andersonensis* (Warren)

Remarks: The two tabulate corals are far less diagnostic than *Spinatrypa* (S.) *andersonensis*, which is characteristic of the *dysmorphostrota* Zone, but also occurs rarely in the underlying *adoceta* Zone.

Field No. 86 CRBA 6

GSC Loc. C-146960

Stratigraphy: Hume Formation, Bioherm "A", top of bioherm.

Locality: District of Mackenzie, Carnath River, $67^{\circ}23'N$,
 $127^{\circ}43'W$; NTS 96M.

Age: Middle Devonian, late Eifelian, **dysmorphostrota** Zone.

Fauna: **Thamnopora** sp.

Digonophyllum sp. fragmentary and immature specimen

Radiastraea norrisi Pedder

Spinatrypa (S.) andersonensis (Warren) identified by A.W.

Norris

gastropods, indet.

Remarks: Corals such as **Radiastraea norrisi** were confused with **R. verilli** for many years. **R. verilli**, in the strictest sense, may be confined to the **adoeceta** Zone, whereas **R. norrisi** is confined to the **dysmorphostrota** Zone.

Field No. 86 CRBA

GSC Loc. C-146961

Stratigraphy: Hume Formation, loose from base of Bioherm "A".

Locality: District of Mackenzie, Carnath River, $67^{\circ}23'N$,
 $127^{\circ}43'W$; NTS 96M.

Age: Middle Devonian, late Eifelian, **dysmorphostrota** Zone.

Fauna: **Favosites** sp.

Thamnopora sp.

Alveolites sp.

Syringopora sp.

Lekanophyllum andersonense McLean

L. mediale McLean

new cystiphyllid coral; study pending

Disphyllum? sp. solitary corallites only

Radiastraea norrisi Pedder

R. tapetiformis (Crickmay) small fragment

stropheodontid brachiopod

Spinatrypa (Isospinatrypa) borealis (Warren)

Emanuella sp.

Tentaculites sp.

trilobite pygidium

Remarks: This is another typical **dysmorphostrota** Zone assemblage, although the new cystiphyllid coral has not been seen before. It may represent a new genus.

Field No. 86 CRBB

GSC Loc. C-146962

Stratigraphy: Hume Formation, loose from base of Bioherm "B".

Locality: District of Mackenzie, Carnath River, approximately 450 m north, that is downstream, from Bioherm "A"; 67°23'N, 127°43'W; NTS 96M.

Age: Middle Devonian, late Eifelian, **dysmorphostrota** Zone.

Fauna: **Favosites** sp.

Thamnopora sp.

Alveolites sp.

Lekanophyllum sp. small, presumed immature specimen

Aphroidophyllum meeki Pedder

A. sp. nov.

Taimyrophyllum stirps (Crickmay)

Redstonea sperabilis (Crickmay)

Spinophyllum sp. nov.

Radiastrea tapetiformis (Crickmay)

stropheodontid brachiopod

Gyridula sp. nov. identified by A.W. Norris

Variatrypa (V.) **arctica** (Warren)

Spinatrypa (**Isospinatrypa**) **borealis** (Warren)

Emmanuelia sp.

Cyrtina sp.

gastropod, not studied, see Pal. Rept. 6-AWN-1987

Tentaculites sp.

Spirorbis sp.

Remarks: This is another typical **dysmorphostrota** Zone assemblage.

The new species of **Aphroidophyllum** is conspecific with the species in C-149657 (field no. 86 H1R 1B).

Field No. 86 FC 4

GSC Loc. C-146963

Stratigraphy: Hume Formation, 2 m below top of formation.

Locality: District of Mackenzie, Francis Creek; 65°14'N, 126°22'W; NTS 96E.

Age: not determined.

Fauna: stromatoporoid, not studied.

Alveolites? sp.

trilobite pygidium, see Pal. Rept. 6-AWN-1987

Field No. 86 PC 10

GSC Loc. C-146967

Stratigraphy: Hume Formation, loose from base of formation.

Locality: District of Mackenzie, Powell Creek (east section);
 $65^{\circ}16'N$, $128^{\circ}46'W$; NTS 106H.

Age: Middle Devonian, late Eifelian, **dysmorphostrota** Zone.

Fauna: **Utaratuia laevigata** Crickmay very poor preservation

Remarks: Although this talus specimen was collected at the base of the Hume Formation, all known *in situ* examples of *U. laevigata* are from the **dysmorphostrota** Zone, which is above the basal Hume megafossil zone of *Eoschuchertella adoceta*.

Field No. 86 MSC 3

GSC Loc. C-146968

Stratigraphy: Hume Formation, 0.5 m below top of formation.

Locality: District of Mackenzie, Mount St. Charles; $65^{\circ}10'N$,
 $124^{\circ}49'W$; NTS 96F.

Age: Middle Devonian, Eifelian, see Pal. Rept. 6-AWN-1987

Fauna: stromatoporoid, not studied.

Alveolites sp.
trilobite pygidium, see Pal. Rept. 6-AWN-1987

Field No. 86 BC 3

GSC Loc. C-146969

Stratigraphy: Hume Formation, 16 m below top of formation.

Locality: District of Mackenzie, Bell Creek; $65^{\circ}17'N$,
 $128^{\circ}53'W$; NTS 106H.

Age: not determined.

Remarks: The rugose coral present in this sample is too fragmentary and too poorly preserved for identification.

Field No. 86 BC 4

GSC Loc. C-146970

Stratigraphy: Hume Formation, 9.5 m below top of formation.

Locality: District of Mackenzie, Bell Creek; 65°17'N,
128°53'W; NTS 106H.

Age: Middle Devonian, late Eifelian, **dysmorphostrota** Zone.

Fauna: "Disphyllum" sp. nov.
Carinatrypa pauciplicata Copper, identified by A.W.
Norris.

Remarks: The unnamed species of rugose coral is well known to
the writer from the **dysmorphostrota** Zone of the Hume Formation.
It resembles species of **Disphyllum** but has a peculiar
disseptimentarium, that is sufficiently different to remove it
from that genus.

A.E.H. Pedder

Paleontology Subdivision
Institute of Sedimentary
and Petroleum Geology
Calgary, Alberta
March 24, 1987

APPENDIX III

MEASURED SECTION LOGS

APP 22 1987

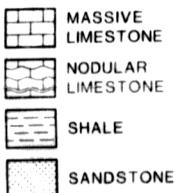
Resource Evaluation Branch
Direction de l'évaluation des
Ressources

9237-C55-2E

CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION

(type section)

LOCALITY: HUME RIVER TRIBUTARY LATITUDE: 65° 20' N. LONGITUDE: 129° 57' W.


MILITARY GRID REFERENCE: 554463 GRID AREA: 106 H/5

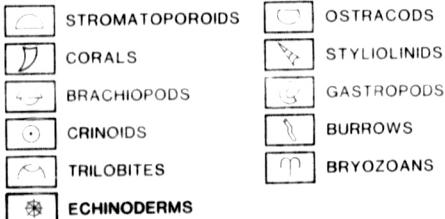
REMARKS: This type section can be located by the distinctive "S" curve of the Hume River tributary as it passes through the resistant upper Hume cliffs

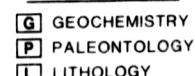
MEASURED BY: R.L. McKellar and F. Monnier DATE: August 30, 1986

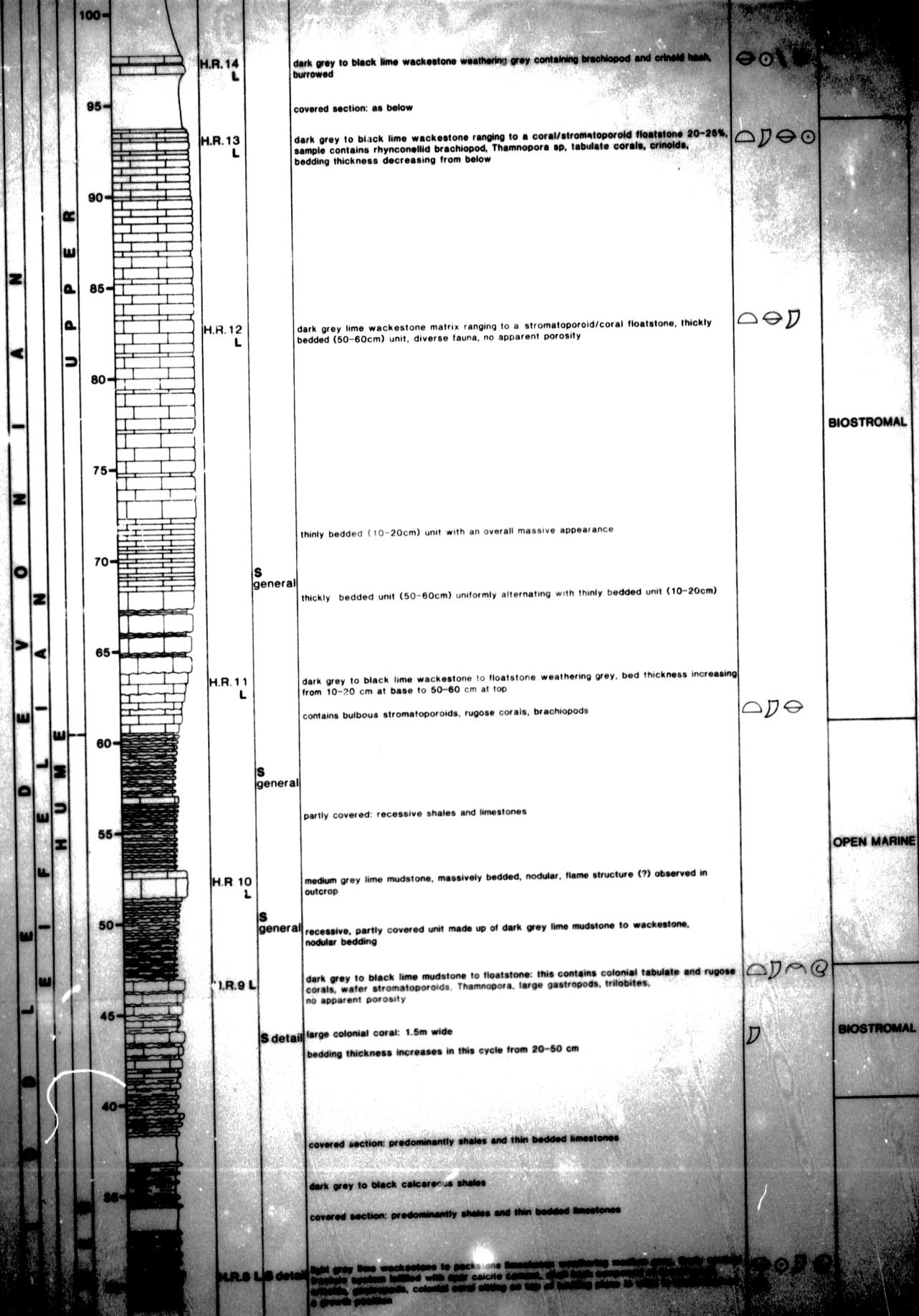
PLOTTED BY: R.L. McKellar DATE: September 1986

LITHOLOGY

PALEONTOLOGY





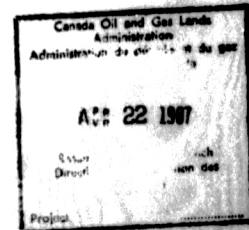

PHOTO RECORD

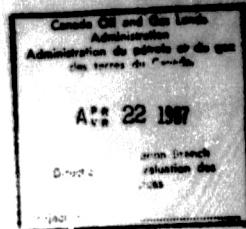
SAMPLE TYPE

EPOCH	STAGE	FORMATION	MEMBER	WATERAGE	LITHOLOGY AND TOPOGRAPHIC EXPRESSION	ROCK SAMPLE	PHOTO RECORD	LITHOLOGY DESCRIPTION	PALEONTOLOGY	PALEO-ENVIRONMENTAL INTERPRETATION
ORDOVICIAN	MIDDLE	HUME FORMATION	BULLFISH							
				110				upper portions weathering yellow and ochre		RESTRICTED MARINE
					H.R. 17 G H.R. 15 P, G (TOC: 2.04%) (TOC: 3.43%)	P detail S detail		black bitumenous shale, thinly laminated, platy, containing Styliolinids and Tentaculites black calcareous shale composed over 90% of <i>L. castanea</i> fauna intercalated with grey lime mudstone beds with a nodular appearance		TRANSITIONAL
				105				covered section: lithology as below, becoming more thinly bedded		
				100						
					H.R. 14 L			dark gray to black fine wackestone weathering grey containing brachiopod and stromatoporoid		
								covered section: as below		

LANDRY

		covered section: predominantly shales and thin bedded limestones	
35		dark grey to black calcareous shales	
30		covered section: predominantly shales and thin bedded limestones	
25	H.R. 8 L	S detail light grey lime wackestone to packstone limestones weathering medium grey, finely vertical fracture system infilled with spar calcite cement, shell hash composed of brachiopods, crinoids, gastropods, colonial coral sitting on top of bedding plane in what is interpreted as a growth position	⊖ ⊖ ⊖ ⊖
20	H.R. 7 L	covered section	⊖ ⊖
15	H.R. 6 G (TOC: 0.47%)	dark grey lime mudstone weathering medium grey, beds nodular contact with shale abrupt rugose corals, tabulate corals, tabular stromatoporoids in lime wackestone matrix, no apparent porosity	OPEN MARINE
10	H.R. 5 L	S detail dark grey to black lime wackestone weathering dark grey high extended hemispherical stromatoporoid, colonial coral, Thamnopora in a lime mud matrix bed thickness increasing to 3-4 cm limestone beds become nodular, however the contact between shale and limestone is still abrupt	⊖ ⊖
5	H.R. 4 L	dark grey lime wackestone to packstone, thinly bedded 1-2 cm occasionally grading to 15-20 cm thick: these wackestone/packstones exhibit a grading similar to components of the Bouma sequence and are interpreted as turbidites	⊖ ⊖ ⊖
0	H.R. 3 L H.R. 2 L H.R. 1 G (TOC: 0.73%)	S general dark grey to black calcareous shales, thinly bedded 1-2 cm alternate with dark grey lime wackestone to packstone thinly bedded 1-2 cm with occasional thicker bedded wackstones 15-20 cm thick: wackstones predominantly composed of brachiopod and crinoid hash: some foraminifera and ostracods in a mudstone matrix dark grey lime mudstone weathering grey	⊖ ⊖ ⊖


LANDRY


H.R.3 L
H.R.2 L

H.R.1 G
(TOC:
0.73%)

dark grey to black calcareous shales, thinly bedded 1-2 cm apart with thin
wackestones to packstone thinly bedded 1-2 cm with occasional thicker bedded wackestones
15-20 cm thick: wackestones predominantly composed of bioclastic and skeletal
foraminifera and ostracodes in a mudstone matrix

dark grey lime mudstone weathering grey

9207-C55-2E

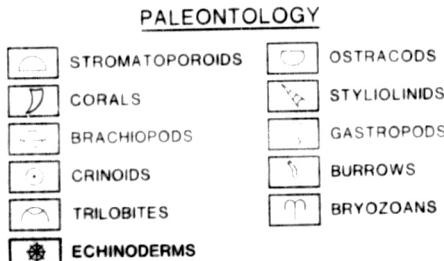
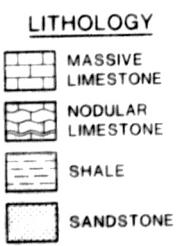
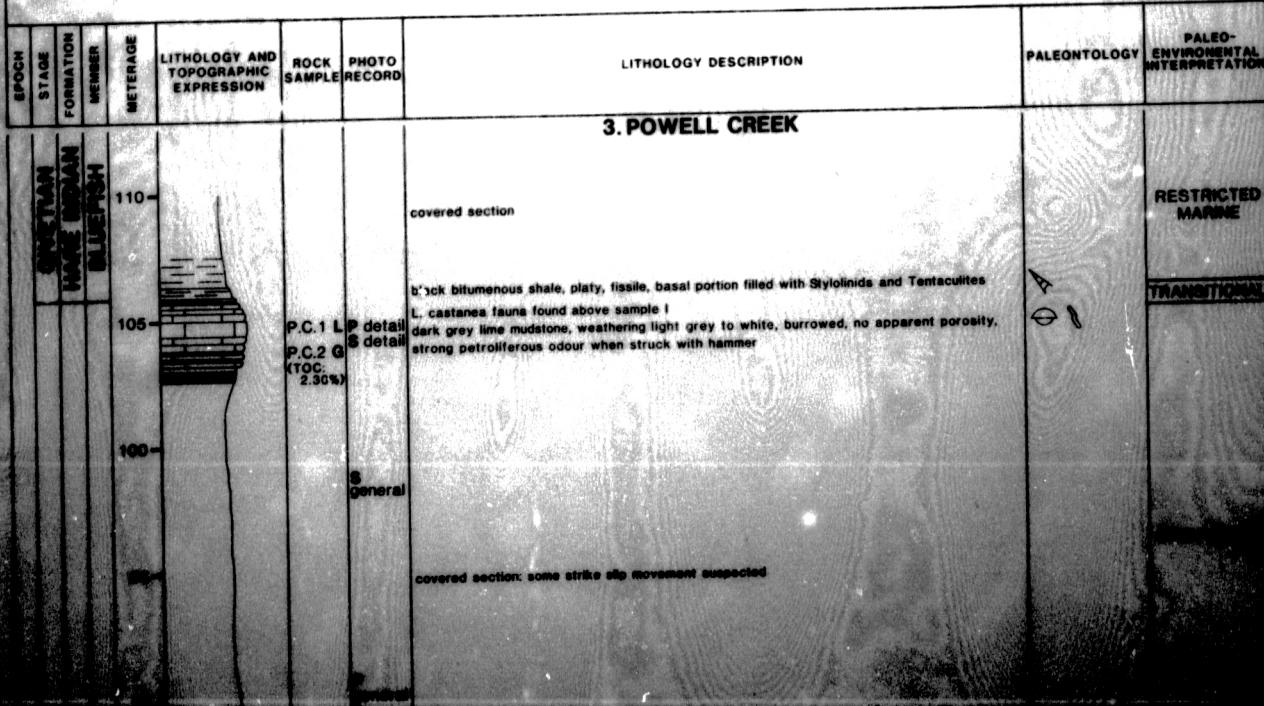
CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION

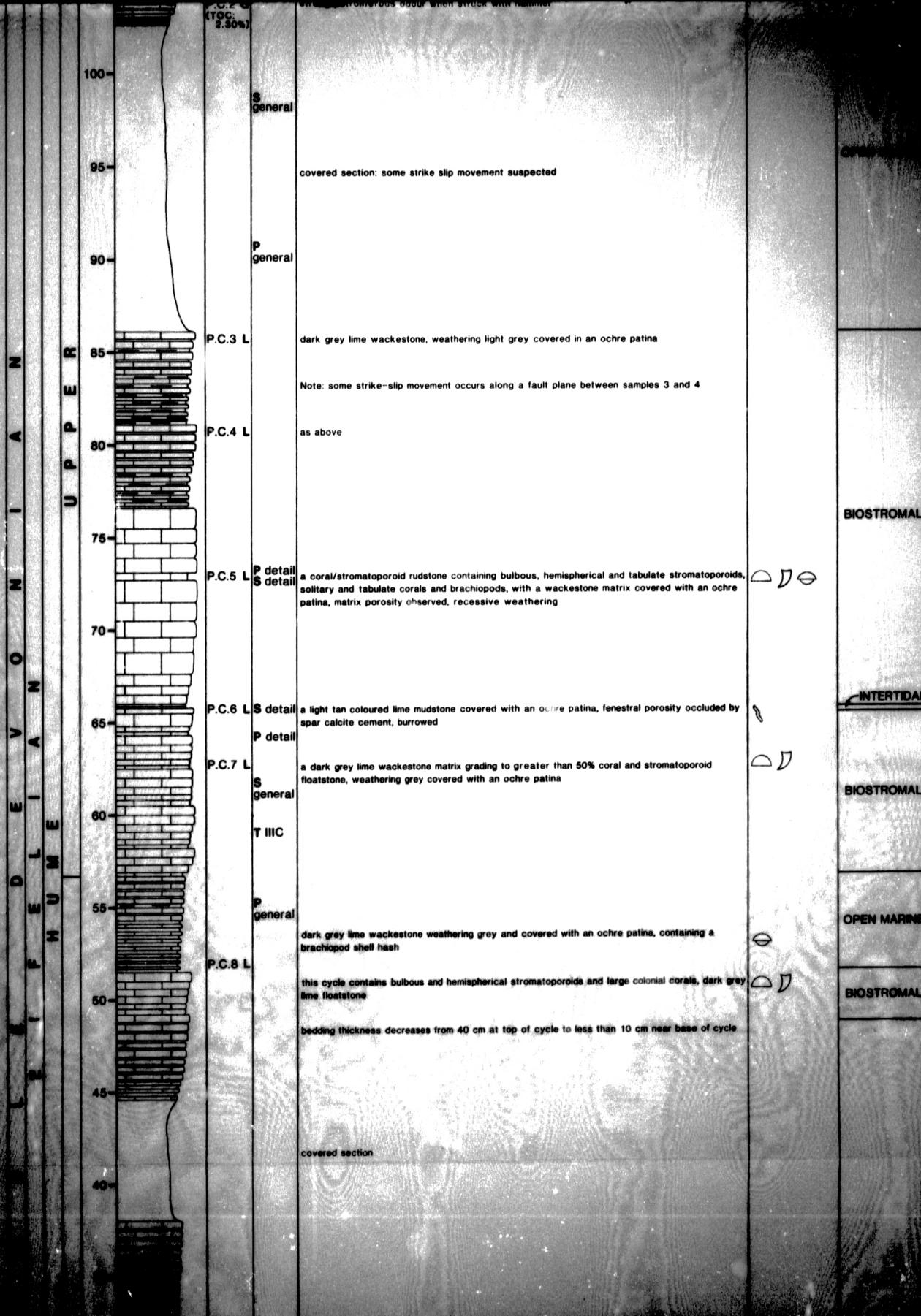
LOCALITY: POWELL CREEK LATITUDE: 65°16'N. LONGITUDE: 128°46'W.
(west side) (east side)
MILITARY GRID REFERENCE: 105388 107385 GRID AREA: 106 H/7

REMARKS: This section was measured on the west side and east side of the creek where the
outcrop meets the creek bottom.

MEASURED BY: R.L. McKellar and F. Monnier DATE: August 31, 1986

PLOTTED BY: R.L. McKellar DATE: September 1986


PHOTO RECORD

- POLAROID
- SLIDE
- TEXT

SAMPLE TYPE

- GEOCHEMISTRY
- PALEONTOLOGY
- LITHOLOGY

LANDRAY

P.C.9 L

dark grey lime wackestone ranging in places to a coral floatstone weathering light grey covered with an ochre patina, containing a brachiopod shell hash, bedding thickness varies from less than 10 cm at the base of a cycle to 40 cm at the top with thin 1-2 cm beds of calcareous shale between limestone beds, no apparent porosity

○ D ●

covered section

a dark grey lime wackestone weathering light grey covered with an ochre patina, containing a brachiopod shell hash

○ * ○

covered section

a dark grey lime wackestone weathering light grey covered with an ochre patina, containing a brachiopod shell hash, no apparent porosity, thinly bedded

○ ○ *

covered section: thinly laminated shales and limestones

Canada Oil and Gas
Administration
Administration du pétrole et du gaz
des terres du Canada

Aug 22 1987

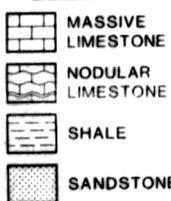
Resource Evaluation Branch
Direction de l'évaluation des
Ressources

Project 6

9237-C55-2E

CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION

LOCALITY: FRANCIS CREEK LATITUDE: 65° 14'N. LONGITUDE: 126° 22'W.


MILITARY GRID REFERENCE: 224379 219378 GRID AREA: 96E/1
(start) (finish)

REMARKS: This section starts at the base of a 6 cm waterfall which cuts through the resistant upper Hume within the narrow confines of a canyon created by the upper Hume, Hare Indian and Canol sequence.

MEASURED BY: R.L. McKellar and F. Monnier DATE: August 29, 1986

PLOTTED BY: R.L. McKellar DATE: September 1986

LITHOLOGY

PALEONTOLOGY

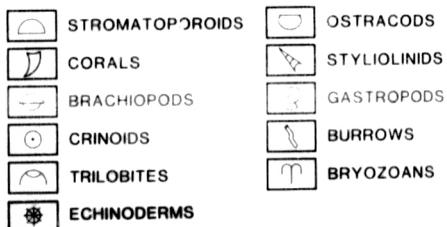
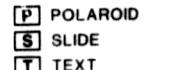
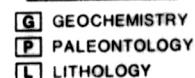
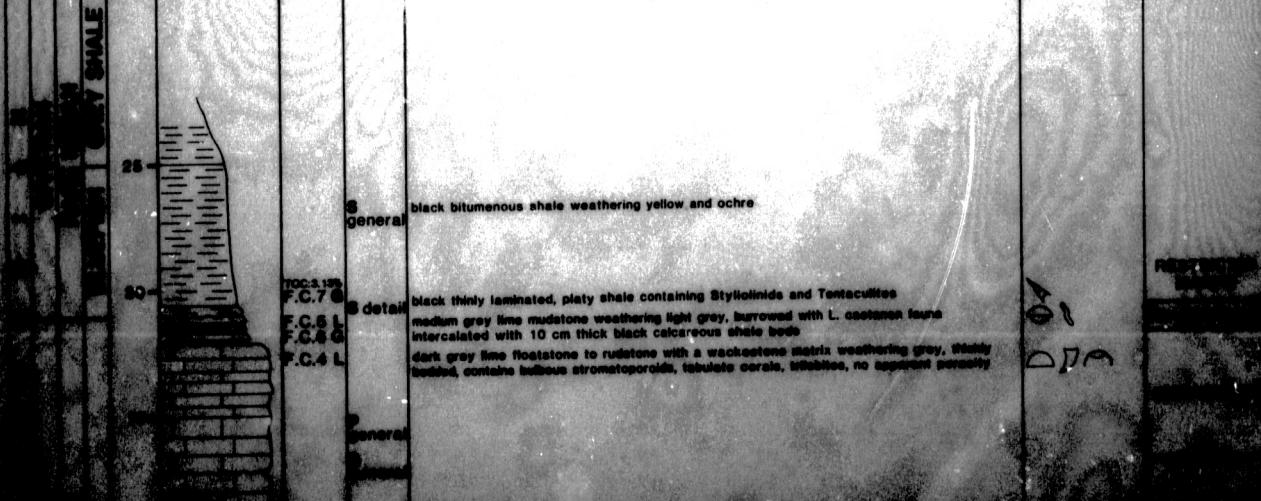
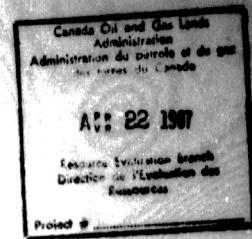




PHOTO RECORD



SAMPLE TYPE



Epoch	Stage	Formation	Number	W.M.	Lithology and Topographic Expression	Rock Sample	Photo Record	Lithology Description	Paleontology	Paleo-Environmental Interpretation
-------	-------	-----------	--------	------	--------------------------------------	-------------	--------------	-----------------------	--------------	------------------------------------

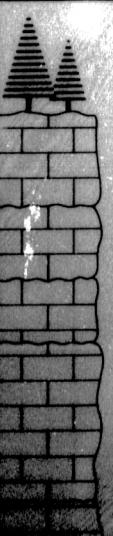
7. FRANCIS CREEK

STAGE	FORMATION	MEMBER	INTERVAL	LITHOLOGY AND TOPOGRAPHIC EXPRESSION	ROCK SAMPLE	PHOTO RECORD	LITHOLOGY DESCRIPTION	
DEVONIAN	GIVETIAN	HARE INDIAN	25	TOC 3.13% F.C. 7 G	S general		black bitumenous shale weathering yellow and ochre	
DEVONIAN	BLUEFISH	GREY SHALE	20	F.C. 5 L F.C. 6 G F.C. 4 L	S detail		black thinly laminated, platy shale containing Styliolids and Tentaculites medium grey lime mudstone weathering light grey, burrowed with <i>L. castanea</i> fauna intercalated with 10 cm thick black calcareous shale beds	RESTRICTED MARINE
DEVONIAN	BLUEFISH	GREY SHALE	15	F.C. 3 L	P general S general		dark grey lime floatstone to rudstone with a wackestone matrix weathering grey, thickly bedded, contains bulbous stromatoporoids, tabulate corals, trilobites, no apparent porosity	TRANSITIONAL
MIDDLE DEVONIAN	BLUEFISH	HUMER	10				light tan coloured lime mudstone to wackestone weathering light grey, fenestral porosity occluded by spar calcite cement, massively bedded, contains brachiopods, Thamnopora, robust cylindrical stromatoporoids, no apparent porosity	BIOSTROMAL
MIDDLE DEVONIAN	BLUEFISH	HUMER	5	F.C. 2 L TIVB	P detail		tidal channels observed in outcrop, 1 to 2 m deep, 3 to 5m wide dark grey lime mudstone to wackestone weathering grey, burrowed, some spar calcite cement, no apparent porosity	INTERTIDAL
MIDDLE DEVONIAN	BLUEFISH	HUMER	0	F.C. 1 L P general			light tan coloured lime mudstone to floatstone, fenestral porosity occluded by spar calcite cement, fossil molds also replaced by spar calcite cement, stylitized, massively bedded, contains fragments of brachiopods and solitary corals	
							covered section	

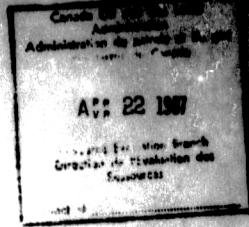
9237-C55-2E

**CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION**

LOCALITY: MT. MORROW LATITUDE: 69° 29'N. LONGITUDE: 127° 29'W.


MILITARY GRID REFERENCE: 695645 GRID AREA: 96E/6

REMARKS: This section was measured on the southern end of the northeast arm of the breached anticline that is Mt. Morrow. A break in the cliff face allowed us to land the helicopter on the top of the mountain and walk down to the base of the cliff to measure the section.


MEASURED BY: R.L. McKellar and F. Monnier DATE: September 3, 1986

PLOTTED BY: R.L. McKellar DATE: October 1986

LITHOLOGY	PALEONTOLOGY	PHOTO RECORD
MASSIVE LIMESTONE	STROMATOPOROIDS	POLAROID
NODULAR LIMESTONE	CORALS	SLIDE
SHALE	BRACHIOPODS	TEXT
SANDSTONE	CRINOIDS	SAMPLE TYPE
	TRILOBITES	GEOCHEMISTRY
	ECHINODERMS	PALEONTOLOGY
		LITHOLOGY

EPOCH	STAGE	FORMATION	MEMBER	METERAGE	LITHOLOGY AND TOPOGRAPHIC EXPRESSION	ROCK SAMPLE	PHOTO RECORD	LITHOLOGY DESCRIPTION	PALAEONTOLOGY	PALEO- ENVIRONMENTAL INTERPRETATION	
								8. MT. MORROW			
				40		P general		light tan coloured lime mudstone weathering light grey, fenestral porosity occluded by spar calcite cement, massively bedded, occasional coral, shell and gastropod fragments in mud matrix, no apparent porosity		D ⊖ @	

STAGE	FORMATION	LITHOLOGY AND TOPOGRAPHIC EXPRESSION	ROCK SAMPLE	PHOTO RECORD	LITHOLOGY DESCRIPTION	
N						
A						
-						
N						
O						
N						
O						
N						
O						
A						
V						
E						
E						
L						
E						
H						
U						
P						
U						
P						
E						
E						
L						
E						
I						
D						
D						
E						
E						
L						
E						
I						
D						
D						
E						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						
E						
L						
E						
I						
D						
D						

9237-C55-2E

**CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION**

LOCALITY: MT. ST CHARLES LATITUDE: 65° 10' N. LONGITUDE: 124° 49' W.

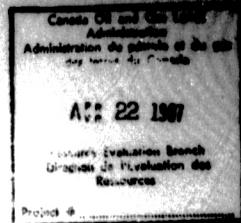
MILITARY GRID REFERENCE: 144285 GRID AREA: 96F/2

REMARKS: This section was measured on the second Hume ridge north of the prominent Pleistocene stream cut through Mt. St. Charles. The top of the outcrop is in probable fault contact with the Cretaceous Basin to the east while the base of the formation is recessive and covered.

MEASURED BY: B.L. McKellar and F. Monnier DATE: September 3, 1986

PLOTTED BY: R.L. McKellar DATE: September 1986

LITHOLOGY


PALEONTOLOGY

- STROMATOPOROIDS
- CORALS
- BRACHIOPODS
- CRINOIDS
- TRILOBITES
- ECHINODERMS

PHOTO RECORD

P POLAROID
S SLIDE
T TEXT

SAMPLE TYPE
G GEOCHEMISTRY
P PALEONTOLOGY
L LITHOLOGY

STAGE	FORMATION	MEMBER	METERAGE	LITHOLOGY AND TOPOGRAPHIC EXPRESSION	ROCK SAMPLE	PHOTO RECORD	LITHOLOGY DESCRIPTION	PALEONTOLOGY	PALEO-ENVIRONMENTAL INTERPRETATION
6. MT. ST. CHARLES									
			5	L & P MSC.3 MSC.2L8 detail			top of Hume in fault contact with Mesozoic dark grey brown lime mudstone grading to floatstone in parts with crinoids, brachiopods, trilobites and corals very fine grained spar calcite cemented quartz sandstone, bedding plane thickness 2-3 cm, burrowed extremely low amplitude ripples, wave length 3-4 m	○ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖	OPEN MARINE
			0	MSC. 1P8 detail			dark grey brown lime mudstone grading to a floatstone in part dominated by crinoids and brachiopods recessive covered section of 20 m to Bear Rock		

9237-C55-2E

**CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION**

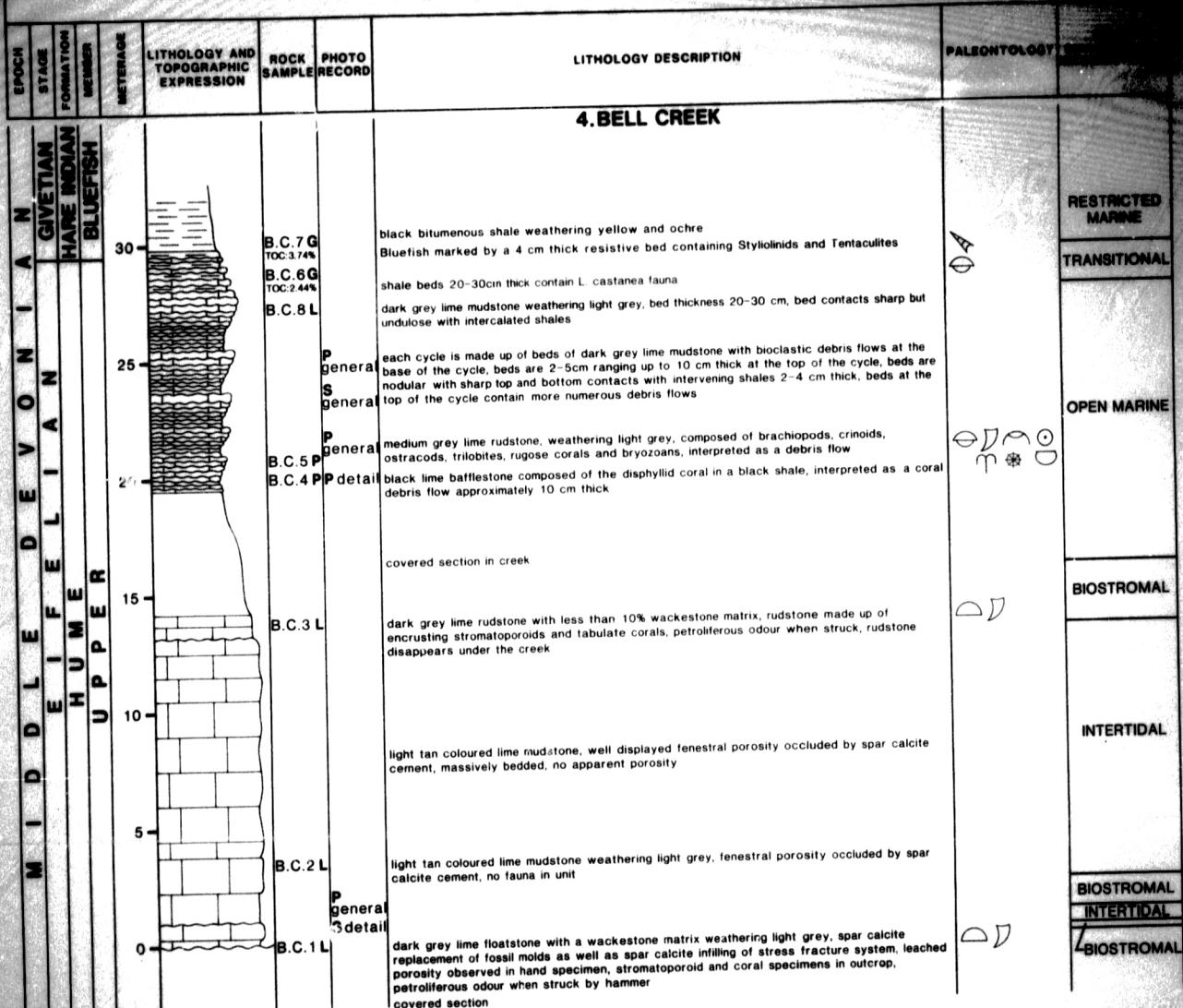
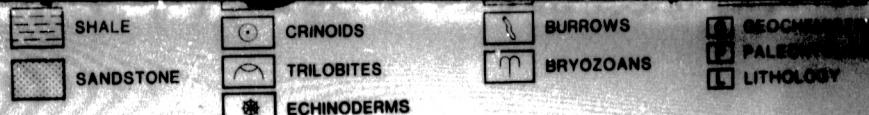
LOCALITY: BELL CREEK LATITUDE: 65° 17'N. LONGITUDE: 123° 53'W.

MILITARY GRID REFERENCE: 051404 GRID AREA: 106H/7

REMARKS This section was measured where a small tributary plunges down a 3m waterfall through a narrow gorge in the resistant upper Hume and meets the main creek.

MEASURED BY: R.L. McKellar and F. Monnier DATE: September 5, 1986

PLOTTED BY: R.L. McKellar DATE: October 1986



LITHOLOGY

PALEONTOLOGY

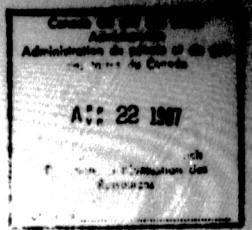

	STROMATOPOROIDS		OSTRACODS
	CORALS		STYLIOLINIDS
	BRACIOPODS		GASTROPODS
	CRINOIDS		BURROWS
	TRILOBITES		BRYOZOANS
	ECHINODERMS		

PHOTO RECORD

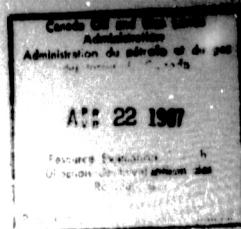
P POLAROID
S SLIDE
T TEXT

SAMPLE TYPE
G GEOCHEMISTRY
P PALEONTOLOGY
L LITHOLOGY

9237-C55-2E

CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION

LOCALITY: DODO CANYON LATITUDE: 65°00'N. LONGITUDE: 127°20'W.
MILITARY GRID REFERENCE: Southside Northside GRID AREA: 96E/3
(start) 785101(finish) 782101 781103


REMARKS: This section was measured on a prominent bend of Dodo Creek near the entrance to Dodo Canyon. The section was measured on both sides of the creek because faulting in the upper Hume causes a shortening within the section. Only the upper two thirds of the formation are exposed here, the lower portion being covered.

MEASURED BY: R.L. McKellar and F. Monnier DATE: September 1, 1986

PLOTTED BY: R.L. McKellar DATE: September 1986

LITHOLOGY	PALEONTOLOGY	PHOTO RECORD
MASSIVE LIMESTONE	STROMATOPOROIDS	<input checked="" type="checkbox"/> POLAROID
NODULAR LIMESTONE	CORALS	<input checked="" type="checkbox"/> SLIDE
SHALE	BRACHIOPODS	<input checked="" type="checkbox"/> TEXT
SANDSTONE	CRINOIDS	
	TRILOBITES	
	ECHINODERMS	
		SAMPLE TYPE
		<input checked="" type="checkbox"/> GEOCHEMISTRY
		<input checked="" type="checkbox"/> PALEONTOLOGY
		<input checked="" type="checkbox"/> LITHOLOGY

9237-C55-2E

**CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION**

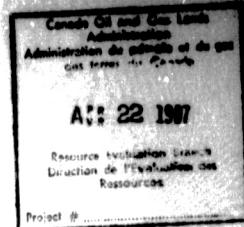
LOCALITY: CARNWATH RIVER LATITUDE: 67° 23'N. LONGITUDE: 127° 43'W

MILITARY GRID REFERENCE: 549742 (Bioherm A) GRID AREA: 96M/5

REMARKS: Bioherm A - the southernmost bioherm exposed on the Carnwath R. is located in the east cutbank of a prominent bend in the river. Bioherm B (544746) can be found approximately 450m downstream (north) and Location (Carnwath R.) D (544745) is located roughly 250m further downstream between two prominent bioherms on the east bank. Site (Carnwath R.) C (489803) is located in a prominent cutbank where the river runs against the valley escarpment exposing Lower Cretaceous sandstones.

MEASURED BY: R.L. McKellar and F. Monnier DATE: August 24, 1986

PLOTTED BY: R.L. McKellar DATE: October 1986


LITHOLOGY

PALEONTOLOGY

	STROMATOPOROIDS		OSTRACODS
	CORALS		STYLIOLINIDS
	BRACIOPODS		GASTROPODS
	CRINOIDS		BURROWS
	TRILOBITES		BRYOZOANS
	ECHINODERMS		

PHOTO RECORD

P POLAROID
S SLIDE
T TEXT

SAMPLE TYPE
G GEOCHEMISTRY
P PALEONTOLOGY
L LITHOLOGY

9237-C65-2E

**CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION**

LOCALITY: HARE INDIAN R. TRIBUTARY LATITUDE: 66° 29'N. LONGITUDE: 127° 54'W.

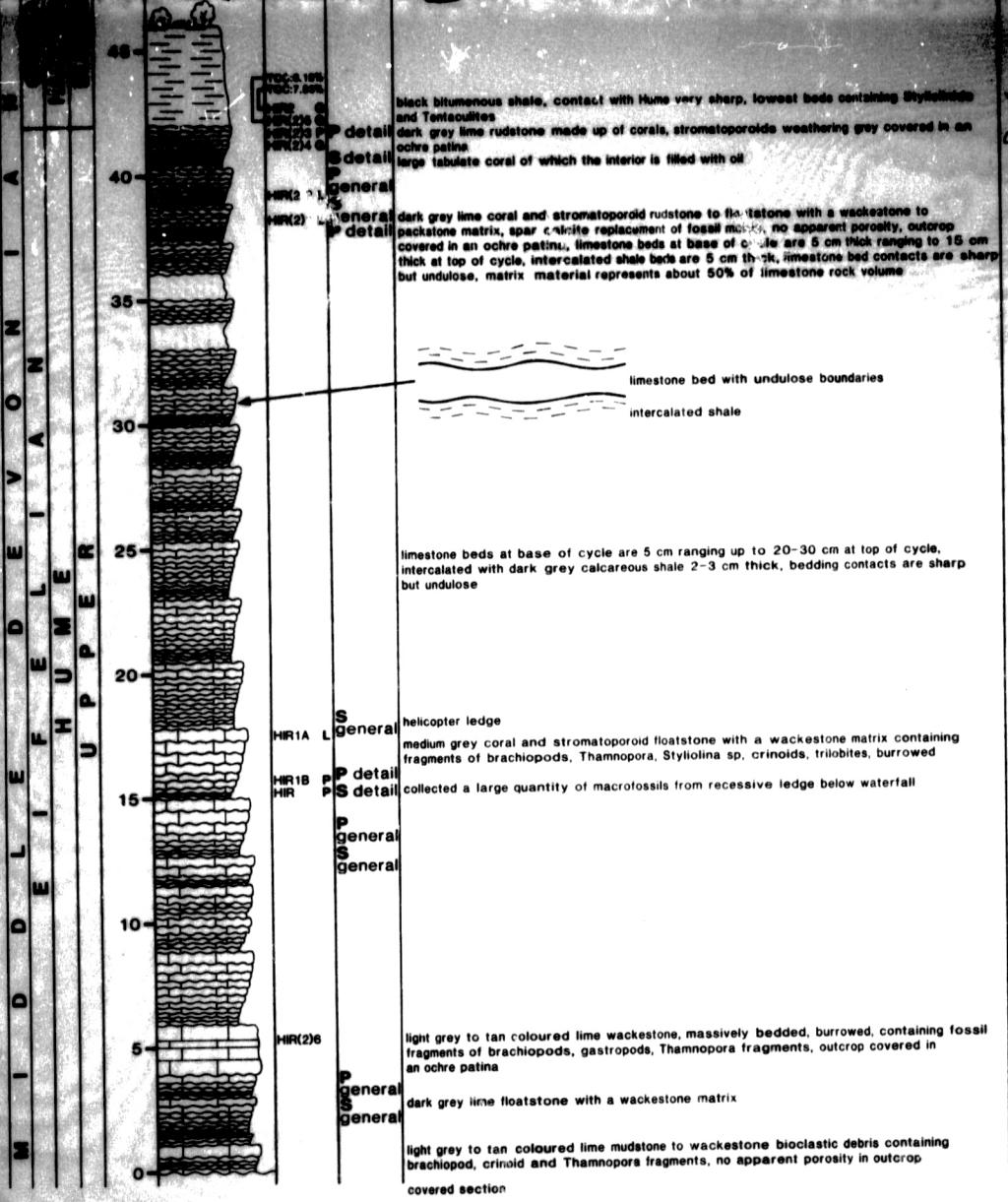
REMARKS: This section starts in an unnamed creek flowing into the Hare Indian R. and moves up through the escarpment overlooking the north side of the river valley. Several 3 to 5m waterfalls are traversed on the way up the creek and 3m of Bluefish cover the Hume before the top of the creek is reached.

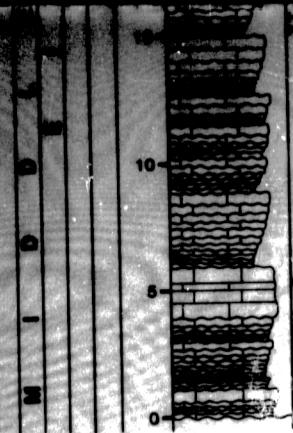
MEASURED BY: R.L. McKellar and F. Monnier DATE: September 4, 1986

PLOTTED BY: R.L. McKellar DATE: October 1986

LITHOLOGY

PALeONTOLOGY


	STROMATOPOROIDS
	CORALS
	BRACHIOPODS
	CRINOIDS
	TRILOBITES
	ECHINODERMS


PHOTO RECORD

POLAROID
 SLIDE
 TEXT

SAMPLE TYPE

GEOCHEMISTRY
 PALEONTOLOGY
 LITHOLOGY

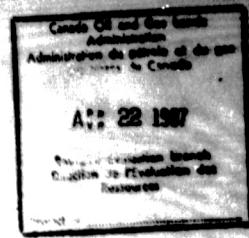
10
8
6
4
2
0

general
general

WHR(26)

general
general

light grey to tan coloured lime wackestone, massively bedded, burrowed, containing fossil fragments of brachiopods, gastropods, Thamnopora fragments, outcrop covered in an ochre patina


dark grey lime floatstone with a wackestone matrix

light grey to tan coloured lime mudstone to wackestone bioclastic debris containing brachiopod, crinoid and Thamnopora fragments, no apparent porosity in outcrop

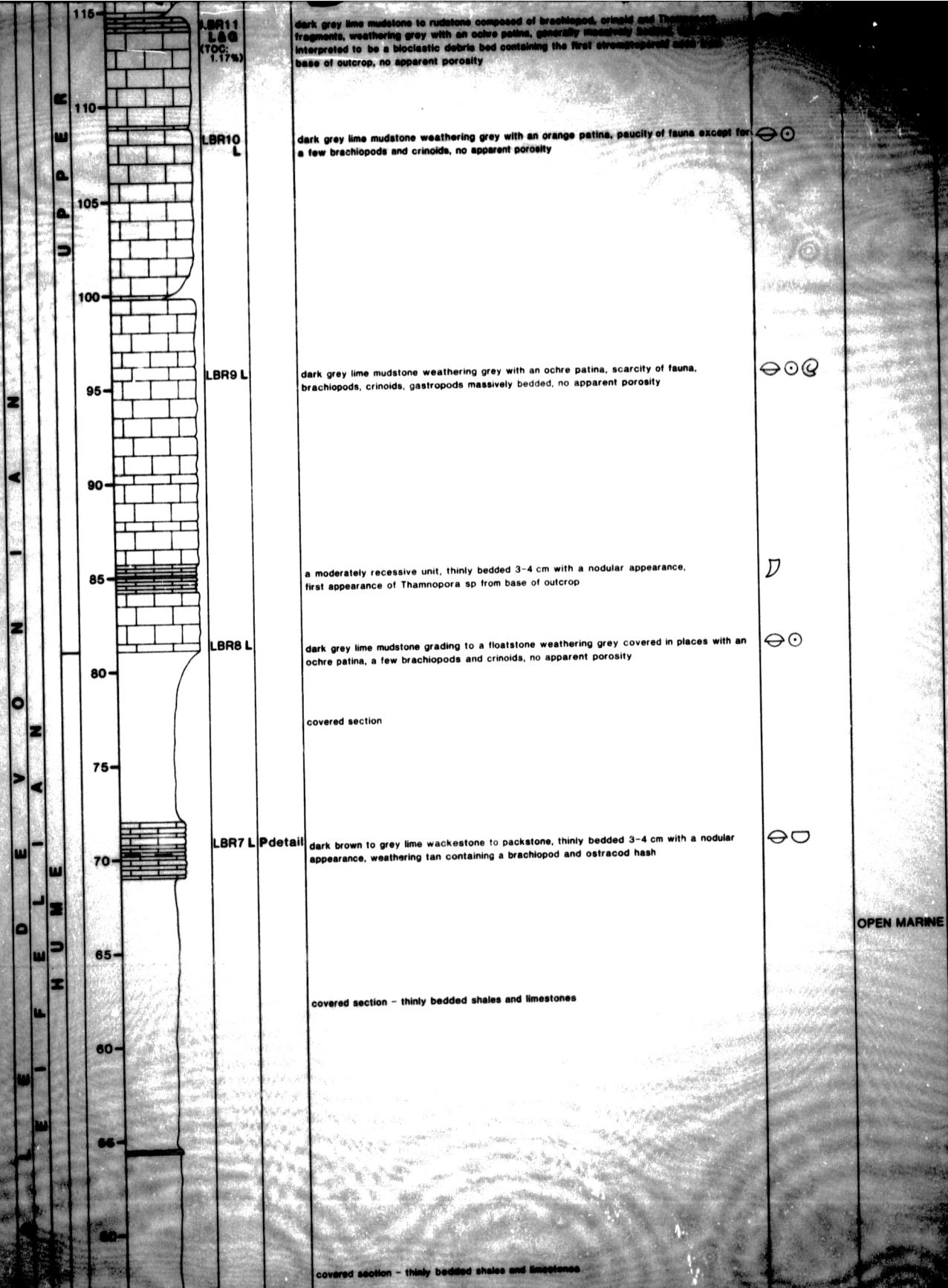
covered section

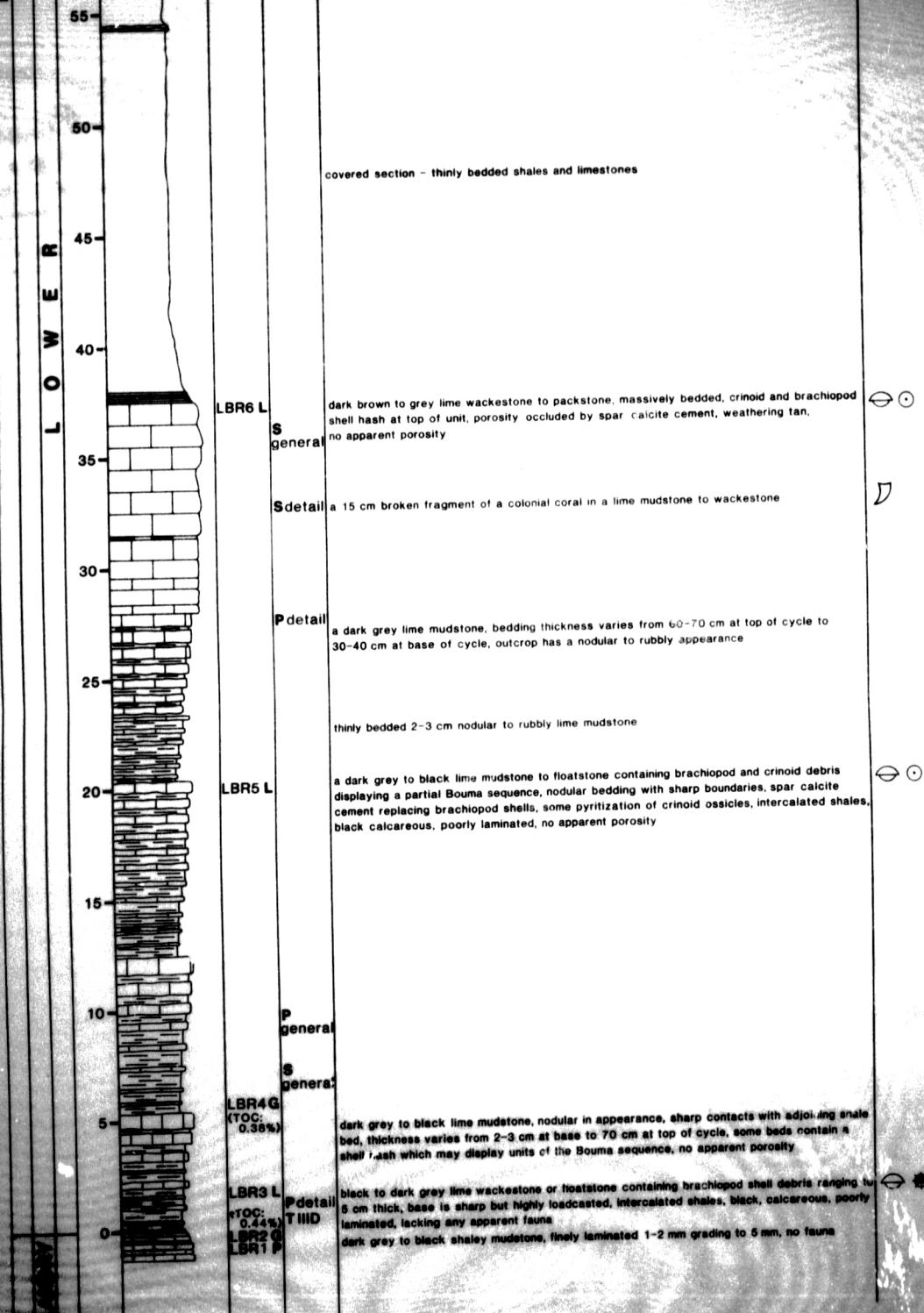
○○○

○○○

9237-C55-2E

**CANTERRA ENERGY LIMITED
LOWER MACKENZIE VALLEY FIELD PARTY 1986
MIDDLE DEVONIAN HUME FORMATION**


LOCALITY: LITTLE BEAR RIVER LATITUDE: 64°28'N. LONGITUDE: 126°29'W.
(start) (finish)
MILITARY GRID REFERENCE: 207517 210520 GRID AREA: 96D/8


REMARKS: This section was measured on the southern exposure of the north fork of Little Bear River where the Hume outcrop meets the river channel.

MEASURED BY: R.L. McKellar and F. Monnier DATE: September 2, 1986

PLOTTED BY: R.L. McKellar DATE: September 1986

LITHOLOGY	PALEONTOLOGY	PHOTO RECORD
MASSIVE LIMESTONE	STROMATOPOROIDS	OSTRACODS
NODULAR LIMESTONE	CORALS	STYLIOLINIDS
SHALE	BRACHIOPODS	GASTROPODS
SANDSTONE	CRINOIDS	BURROWS
	TRILOBITES	BRYOZOANS
	ECHINODERMS	
SAMPLE TYPE		
		GEOCHEMISTRY
		PALEONTOLOGY
		LITHOLOGY

