



Report on the  
GEOPHYSICAL EXPLORATION SURVEY  
**PROGRAM No. 9229-P28-10E**

in

BRACKETT LAKE  
NORTHWEST TERRITORIES

Exploration Agreement No. 159

APRIL, 1986

### PROBLEMS AND ACTION STEPS

PREVIOUS NUMBER: ..... 9229-P28-10E .....

COMPANY..... PETRO-CANADA.....

REPORT NUMBER: GEOPHYSICAL EXPLORATION SURVEY BRACKET LAKE EA.159

The following action has been taken:

Receipt acknowledged APRIL 16/86

Report is and copy is late - stamped  YES  NO

Reports for the last month YES

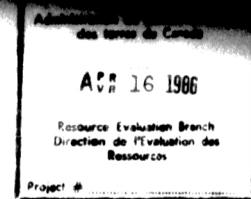
Inventory shrinkage  YES

## FILE B - MAPS AND SECTIONS

## ANSWER

NO SECTIONS OR MYLAR AS YET M MCLINTON *Mac Gregor*  
HOT POINT MAPS AND SECTIONS APRIL 24/86

#### COMMENTS.

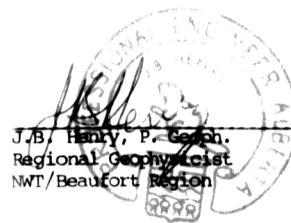

Report on the  
Geophysical Exploration Survey

PROGRAM NO. 9229-P28-10E

Brackett Lake Survey  
Northwest Territories  
EXPLORATION AGREEMENT NO. 159

by

Petro-Canada Inc.  
April 1986




BRANCH

**FIELD WORK PERIOD:** March - April, 1985  
**LAND USE PERMIT NO.:** N85B293  
**AREA COORDINATES:** Latitude 65° 05' - 65° 20'  
Longitude 125° 00' - 125° 45'  
**DATA ACQUISITION:** Reflection Seismograph (Dynamite)  
Western Geophysical Company of Canada

Submitted  
By

*[Handwritten signature]*  
K.N. Davies  
Project Geophysicist  
NWT Region



## CONTENTS

---

|                                                   | Page |
|---------------------------------------------------|------|
| 1. Introduction . . . . .                         | 1    |
| 2. Data Acquisition and Reduction . . . . .       | 3    |
| 2.1 Field Operations Summary. . . . .             | 3    |
| 2.1.1 Field Conditions . . . . .                  | 3    |
| 2.1.2 Seismic Operations . . . . .                | 3    |
| 2.1.3 Gravity Operations . . . . .                | 5    |
| 2.2 Seismic Data Acquisition. . . . .             | 6    |
| 2.2.1 Instruments. . . . .                        | 6    |
| 2.2.2 Parameters . . . . .                        | 7    |
| 2.2.3 Survey System. . . . .                      | 8    |
| 2.3 Gravity Data Acquisition. . . . .             | 9    |
| 2.3.1 Field Techniques and Measurements. . . . .  | 9    |
| 2.3.2 Accuracy of Data . . . . .                  | 10   |
| 2.4 Geophysical Data Processing . . . . .         | 10   |
| 2.4.1 Seismic. . . . .                            | 10   |
| 2.4.2 Gravity. . . . .                            | 12   |
| 3. Interpretation of Results. . . . .             | 13   |
| 3.1 Regional Geology. . . . .                     | 13   |
| 3.1.1 Structural Geology . . . . .                | 13   |
| 3.1.2 Stratigraphy . . . . .                      | 13   |
| 3.1.3 The Prospect . . . . .                      | 16   |
| 3.2 Correlation of Geology to Geophysics. . . . . | 18   |

CONTENTS (Cont'd)

---

|                                                               | Page |
|---------------------------------------------------------------|------|
| 3.3 Presentation of Results . . . . .                         | 19   |
| 3.3.1 Data Quality . . . . .                                  | 19   |
| 3.3.2 Seismic Maps . . . . .                                  | 19   |
| 3.3.3 Depth Conversion . . . . .                              | 20   |
| 3.3.4 Gravity Data . . . . .                                  | 20   |
| 3.4 Discussion of Results for Brackett Lake Project . . . . . | 20   |
| 3.4.1 Regional Structural Style. . . . .                      | 20   |
| 3.4.2 Geological History . . . . .                            | 21   |
| 3.4.3 Gravity Interpretation . . . . .                        | 24   |
| 3.4.4 The Proterozoic Depth Structure. . . . .                | 25   |

## LIST OF FIGURES

|                                                                                                                | Page    |
|----------------------------------------------------------------------------------------------------------------|---------|
| Figure 1.1 Map of Northwest Territories showing the general location of the Mackenzie Plains E.A. . . . .      | 2       |
| Figure 3.1 Map of major structural features and geological control points for the Brackett Lake area . . . . . | 14      |
| Figure 3.2 Location map of the 1984-1985 geophysical program in the Brackett Lake area . . . . .               | 15      |
| Figure 3.3 Stratigraphic column for the Brackett Lake area . . . . .                                           | 17      |
| Figure 3.4 Synthetic seismic package for the Brackett Lake C-21 well . . . . .                                 | Map Box |
| Figure 3.5 Seismic base map (96F-South) . . . . .                                                              | Map Box |
| Figure 3.6 Top of Proterozoic Time Structure Map . . . . .                                                     | Map Box |
| Figure 3.7 Near Top of Salt Time Structure Map . . . . .                                                       | Map Box |
| Figure 3.8 Cretaceous Unconformity Time Structure Map. . . . .                                                 | Map Box |
| Figure 3.9 Mount Cap to Proterozoic Isochron Map . . . . .                                                     | Map Box |
| Figure 3.10 Top of Salt to Proterozoic Isochron Map . . . . .                                                  | Map Box |
| Figure 3.11 Salt Isochron . . . . .                                                                            | Map Box |
| Figure 3.12 Cretaceous Unconformity to Salt Isochron. . . . .                                                  | Map Box |
| Figure 3.13 Cretaceous Unconformity to Proterozoic Isochron . . . . .                                          | Map Box |
| Figure 3.14 Proterozoic Depth Structure . . . . .                                                              | Map Box |
| Figure 3.15 Gravity Index Map . . . . .                                                                        | Map Box |
| Figure 3.16 Bouguer Gravity Map . . . . .                                                                      | Map Box |
| Figure 3.17 Residual Gravity Map. . . . .                                                                      | Map Box |
| Figure 3.18 Line 8521 illustrating decollement thrusting from the salt. . . . .                                | 22      |
| Figure 3.19 Line 8521 illustrating normal faulting of possible Middle Cambrian age . . . . .                   | 23      |

**LIST OF TABLES**

---

|                                                              | Page |
|--------------------------------------------------------------|------|
| Table 2.1 Seismic Project Chronology . . . . .               | 4    |
| Table 2.2 Seismic Production . . . . .                       | 4    |
| Table 2.3 Seismic Drilling . . . . .                         | 4    |
| Table 2.4 Project Organization . . . . .                     | 5    |
| Table 2.5 Gravity Project Chronology and Production. . . . . | 6    |
| Table 2.6 Seismic and Survey Instruments . . . . .           | 7    |
| Table 2.7 Recording Parameters . . . . .                     | 8    |
| Table 2.8 Gravity Measurements . . . . .                     | 9    |

LIST OF DATA TRANSMITTED UNDER SEPARATE COVER

---

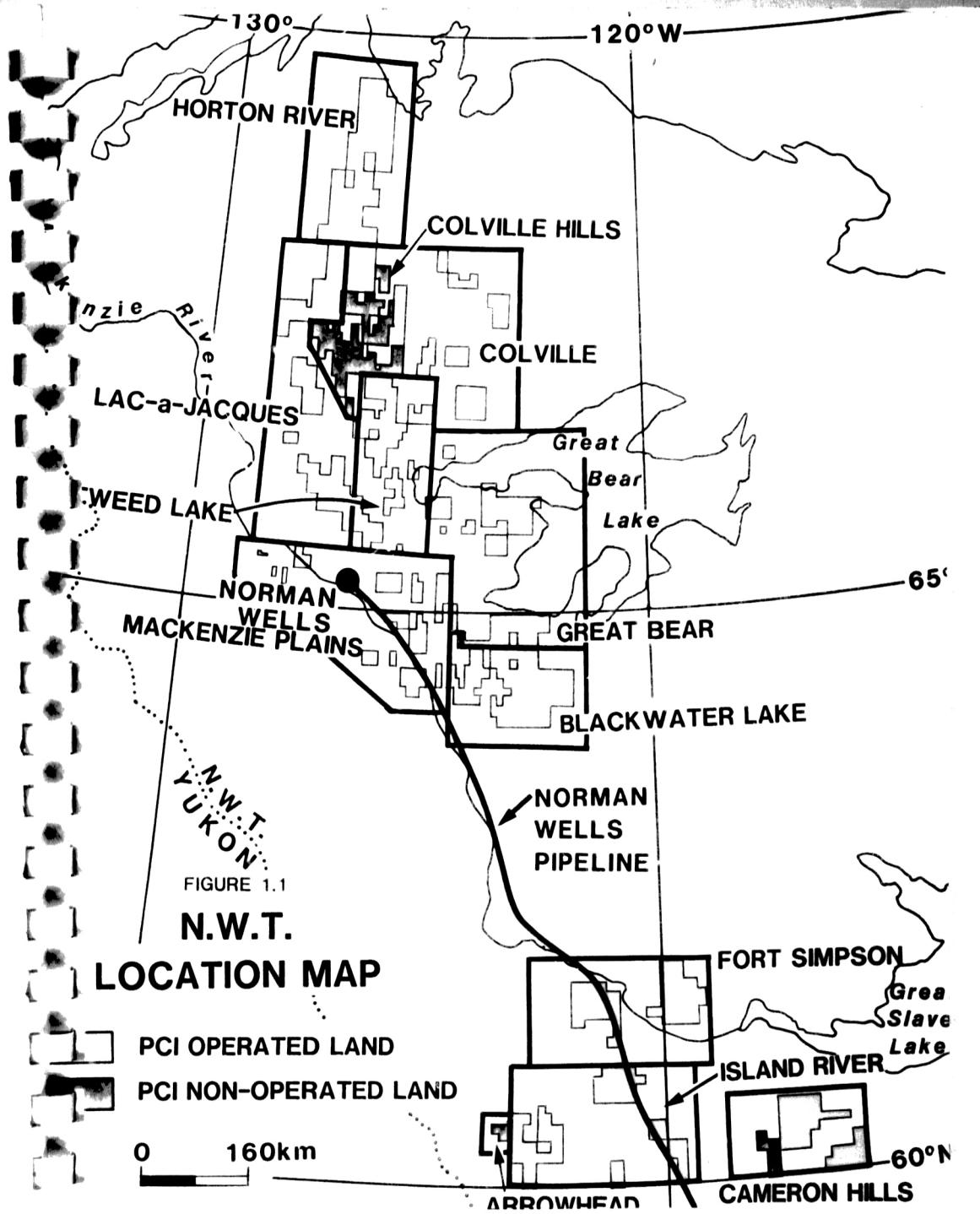
1. 1 Mylar Shot Point Map: 96F (South)
2. 7 Seismic Sections: 8511, 8513A, 8513B, 8515, 8517, 8519, 8521

1 mylar and 2 paper copies of each migrated section (normal and reverse polarities) plus depth migration for all save 8515 and 8517

**SECTION ONE**

**INTRODUCTION**

---


Petro-Canada Inc. conducted a geophysical survey in the Brackett Lake area of the Northern Interior Plains in the Northwest Territories during the 1984-1985 winter season. The lands involved were operated by PCI under Exploration Agreement number 159 referred to as Mackenzie Plains. See Figure 1.1 for the location.

The survey was designed to obtain subsurface information to delineate a feature with hydrocarbon potential. A total of 125 kilometres of seismic data were shot and 131 kilometers of gravity were measured along the seismic lines.

This report, submitted to COGLA as required by the Exploration Agreement, summarizes the procedures of data acquisition, processing, and the results of the interpretation.

The interpretation of this data incorporated Petro-Canada's existing seismic data. Seismic time structure and isochron maps, as well as gravity maps were produced and are enclosed with the report.

Data which has been sent separately from this report includes mylar copies of the seismic base map and seismic sections, and paper copies of seismic sections.



## SECTION TWO

### DATA ACQUISITION AND REDUCTION

---

#### 2.1 Field Operations Summary

##### 2.1.1 Field Conditions

Weather conditions were normal during the course of the program with temperatures in the -40°C to +5°C range in late March. Towards the end of the survey, it became necessary to work a night shift with the recording crew because of the warm daytime conditions.

Drilling formations varied from clay and rock to soft shale and wet sand. The majority of the time, wet clay and rocks were encountered.

Timber growth was often heavy. Elevations varied from 100 to 375 metres above sea level.

##### 2.1.2 Seismic Operations

The survey was conducted by Western Geophysical Company of Canada. Western employed a total of 60 people, of which 50% of the field personnel were native residents. Tables 2.1, 2.2, 2.3, and 2.4 summarize the project chronology, production, drilling, and organization.

---

|                         |                |
|-------------------------|----------------|
| Mobilization            | March 20, 1985 |
| Start of Drilling       | March 20, 1985 |
| Start of Recording      | March 21, 1985 |
| Completion of Drilling  | April 2, 1985  |
| Completion of Recording | April 4, 1985  |

---

Table 2.1 Seismic Project Chronology

---

---

|                                        |        |
|----------------------------------------|--------|
| Total Recording Days                   | 15     |
| Total Poor Weather Days                | Nil    |
| Total Moving Days                      | Nil    |
| Production Profiles Shot               | 918    |
| Kilometres Shot                        | 124.56 |
| Average Profiles per Day               | 61.20  |
| Average Kilometres per Production Day  | 8.304  |
| Total Days Mobilization/Demobilization | 4      |

---

Table 2.2 Seismic Production

---

---

|                         |                 |
|-------------------------|-----------------|
| Total Poor Weather Days | Nil             |
| Total Drilling Days     | 14              |
| Number of Holes Drilled | 950             |
| Average Hole Depth      | 14.7 metres     |
| Average Holes per Day   | 67.9            |
| Total Metres Drilled    | 13,960          |
| Powder Consumed         | 1,954 kilograms |
| Average Charge per Hole | 2 kilograms     |

---

Table 2.3 Seismic Drilling

---

---

| <u>Misc. Personnel</u>  |    | <u>Drilling</u>                         |
|-------------------------|----|-----------------------------------------|
| Party Manager           | 1  | Drillers (includes relief workers)      |
| Assistant Party Manager | 1  | 8                                       |
| Clerk                   | 1  | Drill Helpers (includes relief workers) |
| Mechanic                | 1  | 8                                       |
| Mechanic's Helper       | 1  | Water Hauler                            |
| Expediter               | 1  | 1                                       |
| Expediter's Assistant   | 1  | Driller Mechanic                        |
|                         |    | 1                                       |
| <u>Recording</u>        |    | <u>Catering</u>                         |
| Observer                | 1  | Cooks                                   |
| Assistant Observer      | 1  | 2                                       |
| Shooter                 | 1  | Assistant Cooks                         |
| Shooter's Helper        | 1  | 1                                       |
| Cable Truck Drivers     | 3  | Camp Attendant                          |
| Recording Helpers       | 9  |                                         |
| <u>Surveying</u>        |    | <u>Line Cutting</u>                     |
| Surveyor                | 1  | Machine Operators                       |
| Rodmen                  | 2  | 6                                       |
| Cat Push                | 1  | Foreman                                 |
|                         |    | Cook                                    |
|                         |    | 1                                       |
|                         |    | Native Monitor                          |
| <u>Native Personnel</u> |    |                                         |
|                         | 49 |                                         |

---

Table 2.4 Project Organization

---

### 2.1.3 Gravity Operations

Airborne Geophysical was contracted to undertake the gravity acquisition. Two gravity operators were employed.

Table 2.5 summarizes the project chronology and production.

---

**Project Chronology**

|                     |                   |
|---------------------|-------------------|
| Mobilization Date   | March 18-20, 1985 |
| Demobilization Date | April 1, 1985     |

**Production**

|                          |     |
|--------------------------|-----|
| Total number of stations | 559 |
| Total number of lines    | 8*  |
| Total distance run       | 131 |

---

Table 2.5 Gravity Project Chronology and Production

---

\* Includes the west end of line 79X which had been shot in 1982.

**2.2 Seismic Data Acquisition**

**2.2.1 Instruments**

Table 2.6 summarizes equipment used in drilling, recording, detection, and surveying.

Drilling

8 Drilling Rigs

1 - CF - 110 Mayhew Model 1000 -  
Air/Water  
6 - CF - 110 Mayhew Model 1000 -  
Air Drill  
1 - CF - 110 Hillbrand C-1000 Top  
Drive Air/Water Drill

Recording

Oscillograph

Tektronic

Amplifiers

Texas Instruments

DFSV

Tape Systems

Texas Instruments

DFSV

Camera

S.I.E.

ERC-10C

Detection

Remote Firing System

Input - Output, Encoder/Decoder

Cables

Mark Products, 660 feet

Geophone Strings

LRS Model 1011 - 14 Hz.  
420 Ohm Coil

Surveying

2

Wilde T-16 Theodolite

1

Sokkisha Rod II E.D.M.

Table 2.6 Seismic and Survey Instruments

2.2.2 Parameters

The source-detector geometry was a 1551-66-0-66-1551 spread. The interval between geophone groups was 33 metres. The detector array was 9 geophones in line over 66 metres.

Table 2.7 lists the recording parameters used.

---

|                         |                                 |
|-------------------------|---------------------------------|
| Sample Rate             | 2 milliseconds                  |
| Record Length           | 6 seconds                       |
| Recording Filter        | Low cut-8 Hz., High cut-128 Hz. |
| Sub-surface Coverage    | 1200%                           |
| No. of Groups           | 96                              |
| Group Interval          | 33 metres                       |
| Group Array             | Inline array over 66 metres     |
| Geophone Group          | 9                               |
| Shot Point Interval     | 132 metres                      |
| Spread Length           | 1551-66-0-66-1551               |
| Holes per Shot Location | 1                               |

---

Table 2.7 Recording Parameters

---

#### 2.2.3 Survey Systems

New cut lines were surveyed-in using topographic features and sun shots. Station elevations were computed by stadia, and horizontal locations by latitudes and departures. Shot point and station intervals were measured with a chain and rod.

Accuracy of positioning is  $\pm 1$  metre in elevation and  $\pm 10$  metres in horizontal distance.

### 2.3 Gravity Data Acquisition

#### 2.3.1 Field Techniques and Measurements

The equipment used was:

2 Lacoste and Romberg G-Meters #387 and #442  
(Conversion Constants = 1.07105 and 1.04660)

The observed gravity at Government station #9549.59 (Norman Wells airport terminal) was tied to the field data. The further development of the field base network was accomplished by a "step-by-step" method, where each previously set base was used as the initial base for the next one. The gravity was observed along the seismic lines every 264 metres or every other shot point.

Table 2.8 summarizes the gravity measurements taken.

---

|                                                |                                |
|------------------------------------------------|--------------------------------|
| Gravity station interval                       | 264 metres (every second S.P.) |
| Number of independent readings at each station | 3                              |
| Meter setting                                  | On the ground                  |
| RMS accuracy of single gravity observation     | +/- 0.04 mgal                  |

---

Table 2.8 Gravity Measurements

---

### 2.3.2 Accuracy of Data

Elevation and co-ordinates of each shot point were provided by the seismic reflection survey group.

The absolute accuracy of the Bouguer gravity is affected by the accuracy of the:

|                               |                                                 |
|-------------------------------|-------------------------------------------------|
| Base network                  | ± 0.04 mgal                                     |
| Observed gravity              | ± 0.04 mgal                                     |
| Loop elevation                | +/- 0.55m or +/- 0.17 mgal<br>(@ 0.3086 mgal/m) |
| Positioning                   | Negligible                                      |
| Terrain and tidal corrections | ± 0.05 mgal                                     |

The total absolute accuracy is calculated as the square root of the sum of squares of all the above RMS accuracies.

## 2.4 Geophysical Data Processing

### 2.4.1 Seismic

The seismic data recorded were processed at Geophysical Services Incorporated. The following sequence was used:

1. Demultiplex: 2 msec Sample Rate
2. Trace Editing
3. Static Computations - Weathering Statics from First Break Analysis
4. True Amplitude Recovery - 7db/second from 0-3 seconds
5. First Break Noise Suppression
6. Deconvolution - Operator Length: 80 msec
  - Prewhitenning: 1%
  - Design Gates: 300-1600 msec near trace  
950-2250 msec far trace
7. Equalization

8. Residual Statics Analysis - Surface Consistent Automatic Statics plus Trim Statics
9. Relative Statics and Residual Statics Applications
10. Normal Moveout - Velocity Analysis from Velscans
11. Mean Datum Statics Application - Datum - 150 metres above sea level  
- Replacement Velocity - 3200 metres/sec
12. Stack Mute
13. CDP Stack - 12 fold
14. Migration - Wave Equation Migration  
Kirchoff F/K Domain  
Dip Limited
15. Time Variant Filter - 10/20 - 60/70 Hz.
16. Time Variant Scaling - (10 x 100), 200, 300, 500 msec Gates  
starting at zero
- \*17. Convert to Depth - Interval Velocities Supplied by PCR (see section  
3.3.3)
18. Display to Film -  
Time Sections Scale a) Horizontal: 24 traces/inch  
Vertical: 7.5 inches/sec - Normal Polarity  
b) Horizontal: 12 traces/inch  
Vertical: 10 inches/sec - Both Polarities  
Depth Sections Scale - Horizontal: 24 traces/inch  
Vertical: Approximately 3 km/sec

\* Lines 8511, 8513, 8519 and 8521 were converted to depth. Lines 8515 and 8517 were not.

#### 2.4.2 Gravity

Field processing was done by the contractor and included conversion of meter reading to milligals, plus drift and tidal corrections. The inner zone terrain correction was estimated by the operator in the field. In Calgary, the contractor sorted the field data by lines, rather than by daily loops, and calculated Bouguer gravity using a crustal density of 2.35 grams/cc. The outer zone terrain correction was calculated and, together with the inner zone corrections, were added to the Bouguer gravity. The data were then transcribed onto magnetic tape and delivered to the Gravity and Magnetic Group of Petro-Canada Inc. for final processing as follows:

- 1) Merging the line oriented data into the Merged Survey File (MSF).
- 2) Calculation of terrain corrections using a Fast Fourier Transform method.
- 3) Residual gravity data was created by the upward continuation method. This required the calculation of the field at an elevation of 2 km. above the survey plain minus the observed field. The data was then filtered with a bandpass of .035K sloping to .030K to .30K sloping to .35K where K is the wavenumber.
- 4) Plotting of the index map, Bouguer gravity and residual gravity maps.

## SECTION 3

### INTERPRETATION OF RESULTS

---

#### 3.1 Regional Geology

The Brackett Lake project was centered around Brackett Lake in the Franklin Mountains, 65 km east of Norman Wells in the Northwest Territories, Figure 3.1. Norman Wells is located near the well symbol 36X.

##### 3.1.1 Structural Geology

The survey area is located in an elongate northwesterly trending basin situated between the MacKay Range on the west and the St. Charles Range on the east, Figure 3.2. The valley proper is of low relief with prominent mountains at its boundaries, which appear surficially to be the result of thrust faulting.

During the Proterozoic, a massive sedimentary sequence thickening to the southwest was deposited. These units were uplifted and eroded prior to the deposition of Paleozoic sediments. Various uplifts and movements occurred during Phanerozoic time with major uplift and erosional cycles in post Devonian periods, including the Laramide Orogeny which is primarily responsible for present topography.

##### 3.1.2 Stratigraphy

The stratigraphic succession ranges in age from pre-Cambrian to Recent, Figure 3.3. Paleozoic sediments, based upon the limited well control in the vicinity, are representative of marine deposition. Various erosional cycles have truncated successively older rocks northward, so that Tertiary clastics are at surface in the southern portion of the survey area whereas Siluro - Ordovician carbonates are exposed in the north. Upper Cambrian material is evident in the western mountains.

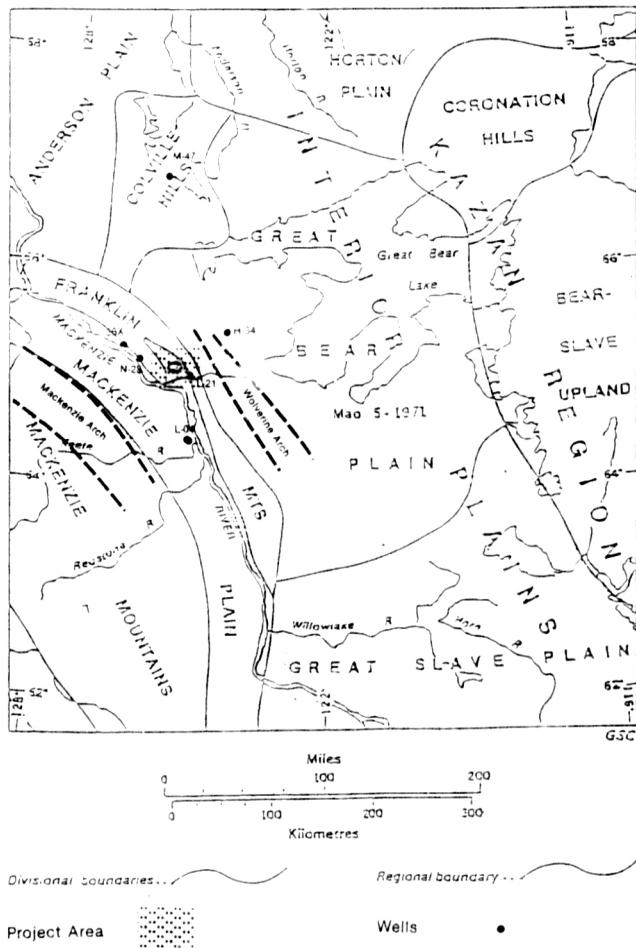



Figure 3.1 Map of major structural features and geological well control points for the Brackett Lake area (modified from Bostock, 1970).

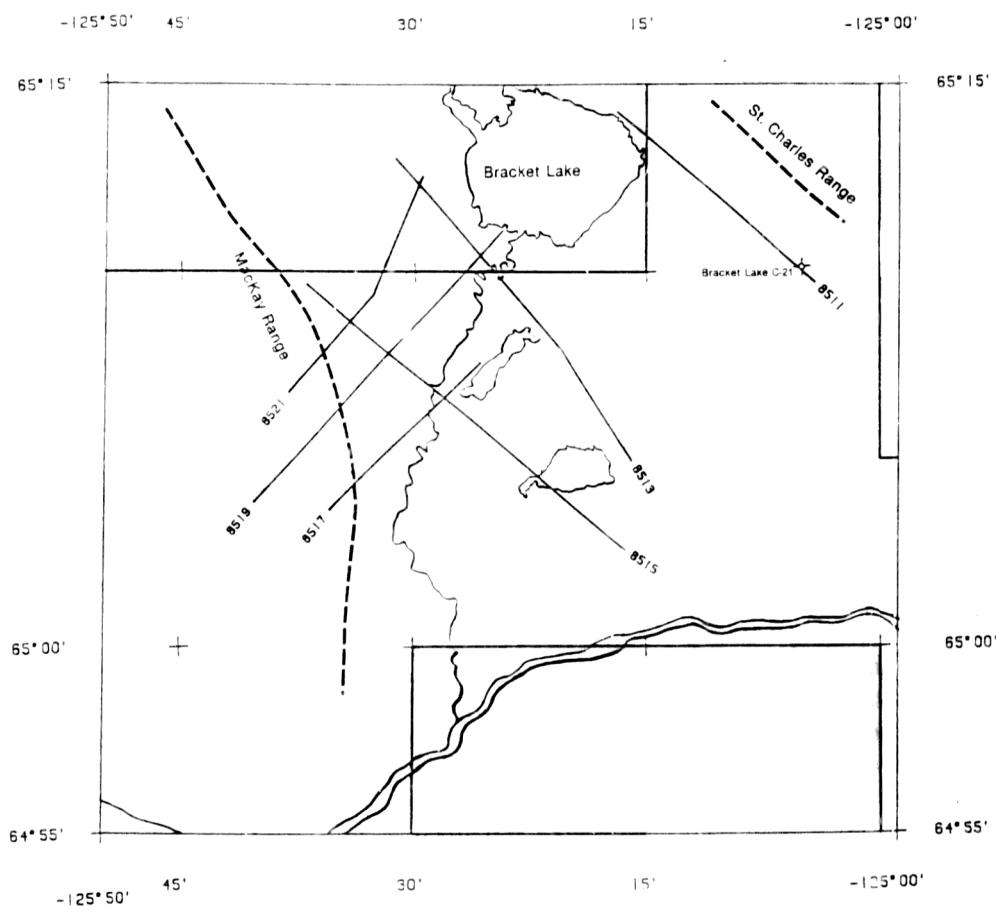



Figure 3.2 Location map of the 1984-85 geophysical program in the Brackett Lake area.

Lying unconformably on the Proterozoic strata is the basal Cambrian Mount Clark sandstone (Old Fort Island) derived primarily from the Canadian Shield, and possibly from the Wolverine Arch to the east, Figure 3.1. The Mount Clark Formation is succeeded conformably by the Mount Cap Formation, a unit expected to consist primarily of marine shales with interbedded sands and dolomite. Above the Mount Cap Formation is the Saline River Formation, which is composed mainly of evaporites (predominantly halite), with an upper shale and dolomite unit.

Siluro - Ordovician carbonates of the Franklin Mountain and Mount Kindle Formations cap the Saline River Formation. In the southeastern portion of the program area, around the Brackett Lake C-21 well, a limited basin of Devonian rocks is present. These rocks include the Bear Rock, Hume, Hare Indian, Kee Scarp (Ramparts) and Imperial Formations.

Unconformably above all units, and successively truncating older strata northward, lie Cretaceous and Tertiary clastics composed of shales and interbedded sands.

### 3.1.3 The Prospect

The primary hydrocarbon reservoir is in the Mount Clark sandstone. The absolute thickness of this unit is unknown; however, over 200 m are present at Cap Mountain below Keele River south of the survey area. The sands in this region are expected to be considerably less. Traps may be formed by blanket sands draped on structural highs.

Secondary targets in this area include sands within the Mount Cap Formation, porosity traps within the Franklin Mountain below the Cretaceous Unconformity and stratigraphic or structural Cretaceous sand plays.

Lying unconformably on the Proterozoic strata is the basal Cambrian Mount Clark sandstone (Old Fort Island) derived primarily from the Canadian Shield, and possibly from the Wolverine Arch to the east, Figure 3.1. The Mount Clark Formation is succeeded conformably by the Mount Cap Formation, a unit expected to consist primarily of marine shales with interbedded sands and dolomite. Above the Mount Cap Formation is the Saline River Formation, which is composed mainly of evaporites (predominantly halite), with an upper shale and dolomite unit.

Siluro - Ordovician carbonates of the Franklin Mountain and Mount Kindle Formations cap the Saline River Formation. In the southeastern portion of the program area, around the Brackett Lake C-21 well, a limited basin of Devonian rocks is present. These rocks include the Bear Rock, Hume, Hare Indian, Kee Scarp (Ramparts) and Imperial Formations.

Unconformably above all units, and possibly truncating older strata northward, lie Cretaceous and Tertiary clastics composed of shales and interbedded sands.

### 3.1.3 The Prospect

The primary hydrocarbon reservoir is in the Mount Clark sandstone. The absolute thickness of this unit is unknown; however, over 200 m are present at Cap Mountain below Keele River south of the survey area. The sands in this region are expected to be considerably less. Traps may be formed by blanket sands draped on structural highs.

Secondary targets in this area include sands within the Mount Cap Formation, porosity traps within the Franklin Mountain below the Cretaceous Unconformity and stratigraphic or structural Cretaceous sand plays.

|                           |                                                           |                                             |                 |
|---------------------------|-----------------------------------------------------------|---------------------------------------------|-----------------|
| UPPER CRETACEOUS          | Unnamed: shale                                            | ?                                           | Disconformity ? |
| LOWER CRETACEOUS          | Unnamed: sandstone                                        |                                             |                 |
| Regional Unconformity     |                                                           |                                             |                 |
| UPPER AND MIDDLE DEVONIAN | RAMPARTS FORMATION                                        |                                             |                 |
| MIDDLE DEVONIAN           | HARE INDIAN FORMATION (locally includes Cretaceous shale) |                                             |                 |
|                           | HUME FORMATION                                            |                                             |                 |
|                           | BEAR ROCK FORMATION                                       |                                             |                 |
| Regional Unconformity     |                                                           |                                             |                 |
| SILURIAN                  | MOUNT KINdle FORMATION                                    |                                             |                 |
| UPPER ORDOVICIAN          | Regional Unconformity                                     |                                             |                 |
| LOWER ORDOVICIAN          | Unnamed: dolomite with chert                              |                                             |                 |
| UPPER CAMBRIAN            | Unnamed: dolomite                                         |                                             |                 |
|                           | Unnamed: dolomite and shale                               |                                             |                 |
|                           | SALINE RIVER FORMATION                                    |                                             |                 |
| MIDDLE CAMBRIAN           | MOUNT CAP FORMATION                                       |                                             |                 |
|                           | OLD FORT ISLAND FORMATION                                 |                                             |                 |
| Regional Unconformity     |                                                           |                                             |                 |
| PROTEROZOIC               | DIABASE DYKES                                             |                                             |                 |
|                           | COPPERMINE RIVER SERIES                                   |                                             |                 |
|                           | Regional Unconformity                                     |                                             |                 |
|                           | DIABASE DYKES                                             |                                             |                 |
|                           | HORNEY BAY GROUP                                          | Unnamed: stromatolitic dolomite             |                 |
|                           |                                                           | Unnamed: sandstone, conglomerate, quartzite |                 |

Figure 3.3 Stratigraphic column for the Brackett Lake area.

### 3.2 Correlation of Geology to Geophysics

Line 8511 crossed the Brackett Lake C-21 well. Figure 3.4 shows the synthetic. All wells evaluated for the geophysical interpretation include:

|                            |                         |
|----------------------------|-------------------------|
| Keele River L-04           | 100 kilometres south    |
| Tweed Lake M-47            | 190 kilometres north    |
| Norman Wells 36X           | 65 kilometres west      |
| Vermillion Ridge No.1 N-28 | 40 kilometres west      |
| Whitefish River H-34       | 35 kilometres northeast |
| Brackett Lake C-21         | On line 8511            |

The location of these wells in relation to the program area are shown in Figure 3.1.

The Brackett Lake C-21 well penetrated to the Franklin Mountain. This only allowed the identification of the Cretaceous Unconformity, the Kee Scarp and the Hume Formations.

An event believed to be near the top of the Cambrian Salt is identified by its similarity in appearance to an event in the Tweed Lake M-47 area. The same applies for the events identified as near top of Mount Cap Formation and an intra Mount Cap Formation dolomite unit.

The top of the Proterozoic is identifiable by the truncation of reflected events at the pre-Paleozoic unconformity. This angularity is apparent over most of the region.

### 3.3 Presentation of Results

#### 3.3.1 Data Quality

Data quality is good to fair over the project area. The 1985 data is superior to the 1982 Petro-Canada data and to the 1972 Aquitaine data purchased by PCR in August 1984. The 1982 data was shot in a more geologically disturbed areas and consequently displays more seismic noise and reflection discontinuity. The 1972 data was shot on a thick Cretaceous section and is prone to multiple reflections.

#### 3.3.2 Seismic Maps

The PCI lines 79X and 71X of the 1982 survey, and the Aquitaine lines 21A, 23 and 25 were incorporated into the mapping. Figure 3.5 shows the seismic base map involved. The earlier data required adjustments to the new due to differences in processing.

The following maps were made at a 1:100,000 scale:

- 1) Top of Proterozoic Time Structure - Figure 3.6
- 2) Near Top of Salt Time Structure - Figure 3.7
- 3) Cretaceous Unconformity Time Structure - Figure 3.8
- 4) Near Top Mount Cap to Proterozoic Isochron - Figure 3.9
- 5) Near Top of Salt to Proterozoic Isochron - Figure 3.10
- 6) "Salt" Isochron - Figure 3.11
- 7) Cretaceous Unconformity to Near Top Salt Isochron - Figure 3.12
- 8) Cretaceous Unconformity to Proterozoic Isochron - Figure 3.13
- 9) Proterozoic Depth Structure - Figure 3.14

### 3.3.3 Depth Conversion

Because of the presence of rapidly varying topography and formation isopachs, it was felt that producing a Proterozoic depth structure map would provide a clearer and more accurate representation of the subsurface near the zone of interest.

The velocities used in the depth migration seismic sections were:

|                                   |          |
|-----------------------------------|----------|
| Cretaceous Interval               | 2400 m/s |
| Pre-Cretaceous to Salt Interval   | 5300 m/s |
| Salt Interval                     | 4400 m/s |
| Mount Cap to Proterozoic Interval | 4000 m/s |

The Cretaceous velocity was calculated from refraction data and sonic logs. The velocity of the pre-Cretaceous to Salt interval was taken from sonic logs and refraction data on the assumption that this zone was primarily carbonaceous as indicated by the nearest wells. The velocity of the salt was obtained from the Tweed Lake M-47 and Norman Wells 36X wells. The only well that would appear to provide a similar section of Mount Cap Formation was the Keele River L-04 well, thus the Mount Cap to Proterozoic velocity was obtained primarily from it. A slightly higher velocity was used than at L-04 on the belief that the Mount Cap in the survey area is less distal and more apt to contain carbonaceous material rather than predominately marine shale.

### 3.3.4 Gravity Data

The gravity survey index map for the Brackett Lake project is shown in Figure 3.15. The data from this survey was merged with the 1982 data in the vicinity to produce Bouguer and residual gravity maps, Figures 3.16 and 3.17.

### 3.4 Discussion of Results

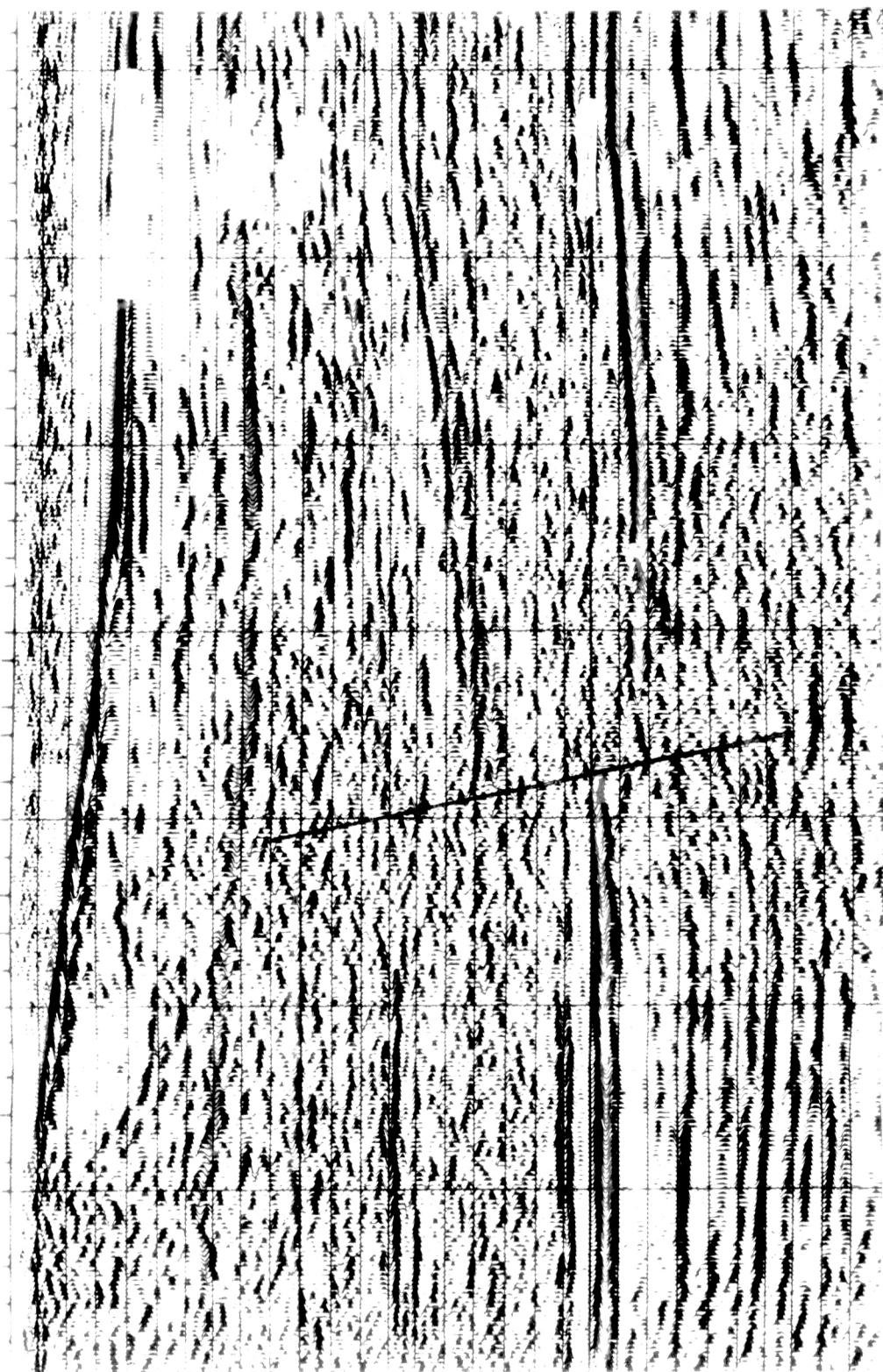
#### 3.4.1 Regional Structural Style

The Proterozoic time structure map, Figure 3.6, displays a high at Brackett Lake. Regional dip is to the south. The Top of Salt and Cretaceous time structure maps, Figures 3.7 and 3.8 show similar dip as all Paleozoic strata plunge beneath a thickening Cretaceous and Tertiary wedge. The Cretaceous section rises northward and is erosionally absent north of Brackett Lake.

The seismic data indicates that deformation is complex and that activity occurred frequently in geologic history. Two distinct zones of deformation are evident, the first being characterized by thrust faulting and the second by normal block faulting.

Thrust faults trend northwest-southeast, parallel to the mountains, and are a result of Laramide compression. The thrusting clearly occurs from a decollement in the salt, see Figure 3.18, penetrating through to surface bringing upper Cambrian strata to outcrop.

The normal faults observed are nearly perpendicular to the thrust faults. They appear to involve pre-salt strata only, Figure 3.19, however the ductile nature of salt precludes an absolute age dating. However, these faults clearly predate the Laramide Orogeny as the Cretaceous section is not involved.


#### 3.4.2 Geological History

The Brackett Lake area is interpreted to have been part of a major graben in Early Cambrian time centered between the Mackenzie Arch and the Wolverine Arch, Figure 3.1. A complex series of uplift and erosion then occurred through its history.

The northern extent of this trough is probably near Lac des Bois 160 km northeast. This graben would be an extension of a graben of similar age to the south in the Keele area where wells encountered very thick Cambrian sections.



NE



After the deposition of Middle Cambrian evaporites, the graben ceased subsiding and a normal marine carbonate shelf existed until Devonian time.

The Mount Cap to Proterozoic isochron map, Figure 3.9, indicates southward thickening. A subtle thin nose trends northeast to the southwest over the present day Proterozoic high suggesting the presence of a paleo-ridge.

The Salt to Proterozoic and Salt isochron maps, Figures 3.10 and 3.11, display a similar nose configuration with a dramatic increase in the salt thickness on the flanks by a factor of four.

The Cretaceous Unconformity to Salt isochron, and Cretaceous Unconformity to Proterozoic isochron maps, Figures 3.12 and 3.13, show the presence of a closed thin below Brackett Lake on the ancestral nose. The absence of any Devonian section and much of the Silurian section, makes it difficult to date this uplift absolutely, beyond that it is pre-Cretaceous. Inversion probably began to occur in the Middle Cambrian as evidenced by the block faulting and likely had a major pulse in the pre-Devonian similar to that which occurred in the Keele area.

A final stage of movement occurred during the Cretaceous. At this time, the Proterozoic high appears to have been displaced about two kilometres northward as the region began to uplift in the north and subside again in the south.

### 3.4.3 Gravity Interpretation

The lack of well control to positively identify the seismic reflectors in the survey area made the use of gravity data particularly important. One objective was to determine the lithology of the section believed to be the salt. The velocity of this interval and consequently the shape of the overall Proterozoic high could be vastly different if it consisted of carbonates as opposed to halite, for example.

The Bouguer gravity map, Figure 3.18, displays a high trend plunging to the southwest, analogous to but more dramatic than the Mount Cap to Proterozoic isochron map. The lows on the flanks correspond closely to the positions of assumed salt thicks and stacking of low density material from thrusting.

The residual gravity map, Figure 3.19, is similar to the Bouguer map but more complicated. The highest gravity values occur in the southwest on the positive trend rather than in the northeast possibly reflecting the presence of an up thrown block of Proterozoic material with a relatively thin overlying Paleozoic section.

#### 3.4.4 The Proterozoic Depth Structure

The Proterozoic time and depth structure maps, Figures 3.6 and 3.14, display a closed Proterozoic high with some fault dependent closure to the northwest. The shape and position of the prospect appear different on the two maps however. The presence of thickening salt on the northwest and southeast flanks, as well as the thick Cretaceous section in the south caused concern that artificial push down could create a time anomaly. Conversion to depth indicates that the closure is indeed valid. The removal of the "push down" effect has resulted in the actual structure being shifted southward, with its major portion being south of Brackett Lake rather than being beneath the lake.

The interval velocities used to convert to depth were varied within the geological ranges expected to examine the effect on the structure.