

780-1-4-5

Abstracted for
Geo-Science Data Index

Date _____

GEOLOGY OF THE
NORTH NAHANNI - ROOT RIVER AREA
ENCOMPASSING PERMITS
5504, 6918, 6919, 6922 and 6923

- by -

Peter C. McGill

Westcoast Petroleum Ltd.

ABSTRACT

This report covers the stratigraphic geology of an area that extends from the Nahanni Plateau to the Redstone River and follows the trend of the Rouge, Redstone, Dusky, Whittaker and Iverson Ranges. It also includes an account of the detailed structural geology of the Permits #5504, 6918, 6919, 6922 and 6923. The area was studied in the field from July to August, 1971.

The stratigraphic studies were directed to assess the reservoir and source potential of formations from Ordovician to Middle Devonian that lie within the permit areas. Significant reef trends of sucrosic dolomite were found in the Whittaker Formation and the Bear Rock Group. The relation of these trends to the permit areas was plotted and their potential assessed.

A photogeological study was made of each permit area. This was checked by aerial reconnaissance and on the ground. Detailed structural sections were made of three anticlines, one in each permit, to assess closure and their economic prospectiveness.

Recommendations for each permit area are appended.

TABLE OF CONTENTS

	Page
Summation and Recommendations	1
Operations and Personnel	4
Introduction	6
Stratigraphy	
Sunblood Formation	9
Wittaker Formation	10
Delorme Formation	12
Camsell Formation	13
Sombre Formation	14
Bear Rock Group	15
Landry Formation	18
Headless Formation	18
Nahanni Formation	19
Structure	
Structural Style of the Mackenzie Mountain Fold Belt	20
Permit 5504 Hollow Mountain Anticline	23
Permits 6918 and 6919 North Root River Anticline	25
Permits 6922 and 6923 Marten Creek Block	27
Bibliography	29

LIST OF FIGURES

	Following Page
Figure 1 Location map showing permit areas and principal topographic features	7
Figure 2 Generalized stratigraphic columns of the Ordovician to Devonian sequence studied	7
Figure 3 Cross section A-B, Lithofacies of the Whittaker and Delorme Formations	9
Figure 4 Lithofacies map of the Whittaker Formation	10
Figure 5 Isopach map of the Whittaker Formation	10
Figure 6 Lithofacies map of the Delorme Formation	12
Figure 7 Isopach map of the Delorme Formation	12
Figure 8 Lithofacies map of the Camsell Formation	13
Figure 9 Isopach map of the Camsell Formation	13
Figure 10 Isopach map of the Sombre Formation	14
Figure 11 Cross section C-D, Bear Rock Group facies differentiation	15
Figure 12 Lithofacies map of the Bear Rock Group	17
Figure 13 Isopach map of the Funeral Formation	17
Figure 14 Isopach map of the Arnica Formation	17
Figure 15 Simple decollement folding	20
Figure 16 Introduction of thrusting with continued gliding and oversteepening of the eastern limb of the anticline	20
Figure 17 Reverse thrust faulting and oversteepening of the western limb of the anticline	20
Figure 18 Continued erosion will result in broad synclines and narrow, sharply folded anticlines	20

List of Figures (continued)

Following Page

Figure 19	Relatively flat synclines and narrow, sharply folded anticlines are a function of a space problem in the syncline. The rocks of the syncline cannot bend down into the plane of gliding. By contrast pressure and shortening can be easily relieved by anticlinal folding	20
Figure 20	More intense pressure from gliding, probably with some basement thrusting results in a piston action with the decollement layer pushed up into the core of the anticline. This has apparently happened in the core of the North Root River Anticline (After de Sitter 1956)	20
Figure 21	Photogeology of Permit 5504, the Hollow Mountain Anticline	In Pocket
Figure 22	Structural cross section of the Hollow Mountain Anticline	24
Figure 23	Schematic diagrams to show progressive evolution of thrusting and reverse thrusting on the Hollow Mountain Anticline	24
Figure 24	Photogeology of Permits 6918 and 6919 and the North Root River Anticline	In Pocket
Figure 25	East-west structural cross section of the North Root River Anticline along the line of section of the Root River	24
Figure 26	North-south structural cross section North Root River Anticline	25
Figure 27	Structural evolution of the North Root River Anticline	25
Figure 28	Photogeology of Permits 6922 and 6923 Marten Creek Syncline	In Pocket
Figure 29	Structural cross section Anticline B	27

v

LIST OF ILLUSTRATIONS

	Page
Plate 1 Main reef body of sucrosic dolomites, Whittaker Formation	30
Plate 2 Reef mounds extending in front of the main reef body, Station 107.	30
Plate 3 Bear Rock reef front, Manetoe Formation. Looking south 1000+ feet of off reef shales lie to the right hand side and west two miles from this station	31
Plate 4 Station 29, North Nahanni Gorge showing an Arnica step overlain by Funeral shales	31
Plate 5 Station 104, North Nahanni Gorge. Back reef Arnica dolomites overlain by Manetoe reef facies of the Bear Rock Group	32
Plate 6 Unconformity within back reef facies of the Arnica Formation, Bear Rock Group Station 18	32
Plate 7 Unconformity at top of Funeral Formation, east of Station 13, north Nahanni Plateau area	33
Plate 8 Unconformity at top of Funeral Formation, further view along same range as in Plate 7	33
Plate 9 Shale-out of Nahanni Formation Corridor Creek, northern Nahanni Plateau area	34
Plate 10 View looking north of the western flank and crest of the Hollow Mountain Anticline. Nahanni limestones overly Headless shales, vestigial Landry and subjacent Funeral shales	34
Plate 11 View north, from north of Root River, of the crest of the North Root River Anticline. The light buff limestones are the Camsell Formation. In the middle distance the crest interacts with the east flank of the Dusky Anticline. A syncline is overthrust over the Dusky Anticline in the top left hand corner	35

SUMMATION AND RECOMMENDATIONS

I. PERMIT #5504

Hollow Mountain Anticline - 50% Westcoast Petroleum, 50% Mesa Petroleum

The Hollow Mountain Anticline is a box fold that formed as a result of decollement folding in the Laramide Orogeny. It is thrust to the east. Continued compression from the west caused oversteepening of the western limb and a reverse thrusting to the west. The anticline is 12 miles long and has a maximum width of 1 1/2 miles. It has 1000+ feet of effective closure. The bituminous dolomites of the Bear Rock Group are the prospective target. A 600+ foot reefal step could mark the reef to off reef transition of these dolomites with basinal shales over the crest of the anticline. An estimated 1400 feet of impervious Funeral shales overly and cap the Bear Rock dolomites. The facies boundary from shale to dolomite should provide an excellent velocity contrast for seismic differentiation of a potential reef edge in the Bear Rock Group.

An alternate reservoir could exist in the Sombre Formation. The sharpness and angularity of the box folding must have placed great compressional stress on the competent dolomites of the Sombre Formation. Intense brecciation and good fracture porosity could be expected in the core of this anticline. Drilling depth to the Bear Rock Group would be 1400+ feet and 2000+ feet to the Sombre Formation.

Negative Features

The Bear Rock reef trend (Manetoe Formation) sweeps in an accurate line east of the permit area. A potential reef step was observed in front of

this major reef front in the North Nahanni Gorge.

Several alternate possibilities for a reef step in the crest of the anticline exist:

- a) Any and all Bear Rock reef steps lie to the east of the permit area.
- b) The main reef was localized throughout all Bear Rock time and the dolomites encountered at Texaco Ram Plateau N-44 and Texaco North Nahanni N-42 would remain basinal dolomites to the base of the formation.

Recommendation

It is recommended that Westcoast and Mesa run a seismic line from the syncline to the east across the crest of the anticline to delineate a possible reefal step in the Bear Rock Group. Just north of the crestal culmination a stream has breached the anticline and would provide ready access for this traverse line.

The eastern limb of the syncline dips sharply to a faulted axis. This limb should be included in the seismic coverage since it would provide a suitable trap for a porosity pinchout of reef to off reef.

II. PERMITS #6918 and 6919

North Root River Anticline - Westcoast 100%.

These permits are dominated by the North Root River Anticline. This anticline is over 17 miles long and 4 miles wide. The crest follows a sinuous course and dips gently to the south for almost sixteen miles. North of the crestal culmination, the northward nose of the anticline is thrust faulted and lacks effective closure.

A Whittaker reef trend of sucrosic dolomite is estimated to pass across the crestal culmination of the anticline. However, biostromal reef fingers could bleed off any potential reservoir to the northern thrust contact with the Dusky Anticline.

The possibility does exist for an updip pinchout of a Whittaker reef along the south plunging nose of the anticline. Delineation of such a reef seismically would be difficult for two reasons: 1) the crestal terrain of the south plunging nose is so rough that it would not be possible to move conventional seismic equipment along it; 2) the velocity contrast between reef and enclosing dolomites would be negligible.

Recommendation

It is recommended that Westcoast Petroleum drop these two permits upon the expiry of the current work bonus.

III. PERMITS #6922 and 6923

Marten Creek Block

All anticlines inspected in these two permit blocks were either breached, lacked effective closure or were surficial flexures.

Recommendations

It is recommended that Westcoast Petroleum terminate these two permits upon expiry of the current work bonus.

OPERATIONS

A geological field party was sent into the general North Nahanni River, Root River-Redstone River area (Fig. 1) by Westcoast Petroleum Ltd. from July 6 to August 6 to evaluate Permits #5504, 6918, 6919, 6922 and 6923. The field work was in two parts. It was intended to establish a base camp at Iverson Lake for the period July 6 to July 21 to evaluate Permit #5504 and then move to Slim Lake for the balance of the period to evaluate Permits 6918, 6919, 6922 and 6923. These arrangements were made in anticipation that the weather would remain fine and without recognition of the vicissitudes of Okanagan's Bell helicopter 47G3B-1. However, these two factors profoundly modified the plans of the party in the field.

A base camp was established at Iverson Lake July 6 and geological reconnaissance commenced July 7. Discovery of damage to the right side of the rear elevator of the helicopter July 8 necessitated repairs in Norman Wells. Further engine defects were found that kept this machine in Norman Wells until July 13. A replacement helicopter came in July 12 and broke down the same evening at the head of English Chief River. This machine was operative again July 12. Altogether seven and one half days were lost from down time on Okanagan's machine. Five full days and four half days were lost because of weather.

Continuous rainstorms from July 20 to July 23 delayed the camp move from Iverson Lake to Slim Lake until July 24. The northern part of the operation ran very smoothly until the helicopter again broke down August 2 and remained inoperative until the close of the field party August 6.

PERSONNEL

Westcoast Petroleum's field party consisted of the following personnel:

Peter McGill	Westcoast - Party Chief
Riaz Chaudhry	Westcoast - Geologist
Gabriele Foschi	Temporary - Geologist
Glenn Mossop	Temporary - Assistant
Jim Fisher	Cook - supplied by Canfield Services
Pat Rorison	Pilot - Okanagan Helicopters
Ken Knopp	Mechanic's Assistant July 6-24 - Okanagan Helicopters
Barry Stone	Licenced Mechanic July 24-August 6 - Okanagan Helicopters

The personnel were extremely pleasant and willing. They unquestionably contributed to the success of the party in the face of rather adverse conditions.

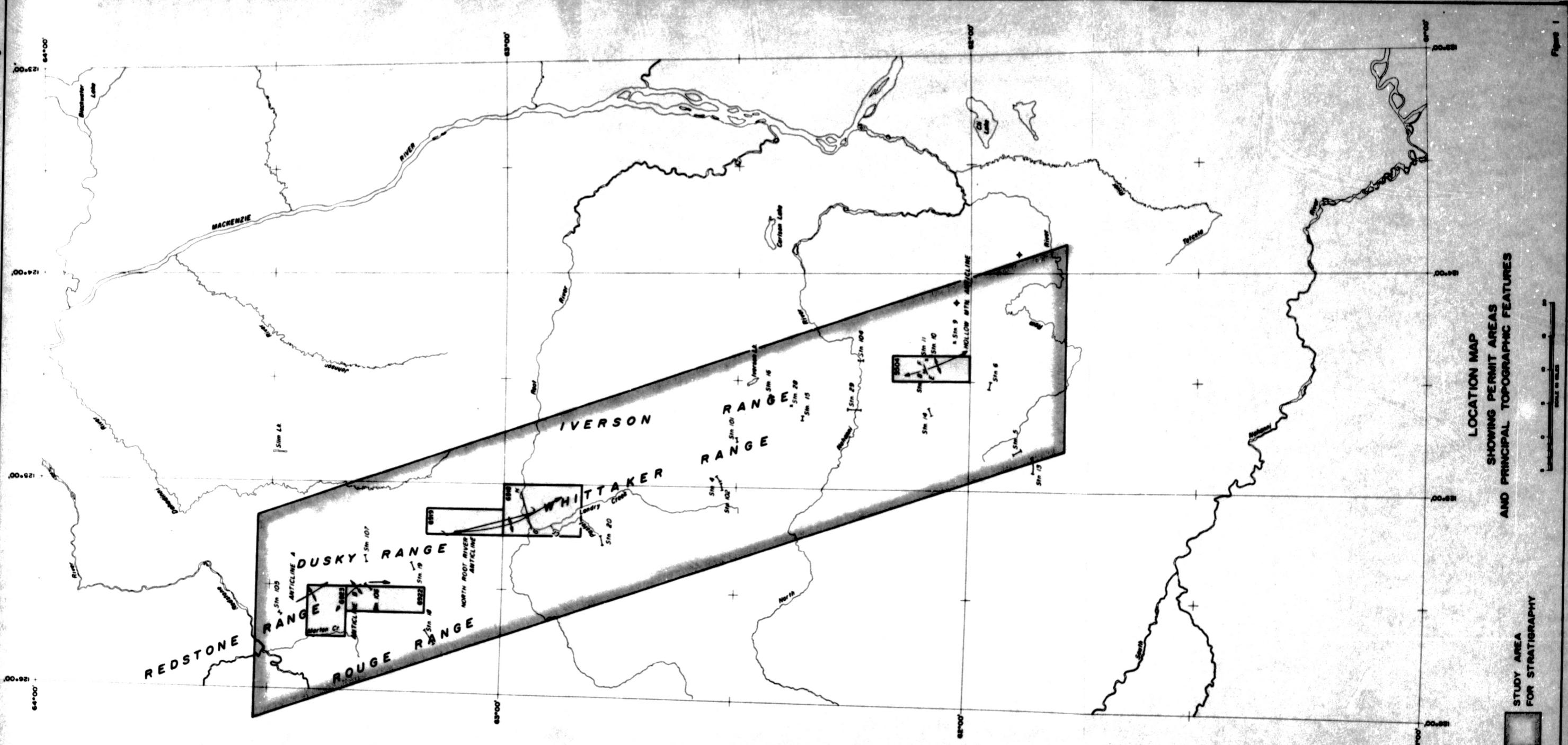
TRANSPORTATION

Okanagan supplied one Bell 47G3B-1 helicopter. As already detailed, the mechanical deficiencies of this machine (7 1/2 days of down time) restricted the scope of this survey despite the excellence and technical competence of the staff supplied.

Gas, personnel and supplies were hauled by various Otter aircraft and pilots from Northward Aviation. All arrangements with Northward worked smoothly.

INTRODUCTION

The function of Westcoast Petroleum's field party was to explore the petroleum potential of three permit blocks in the general North Nahanni-Root River area (Fig. 1). Exploration was directed towards finding favorable combinations of structure and stratigraphy for entrapment of hydrocarbons. The area is characterized by sharply folded anticlines and broad synclines, a function of décollement folding and a reflection of the structural style of this portion of the Mackenzie Mountain Fold Belt. The prospective formations in these structures are entirely Paleozoic and range in age from Ordovician to Middle Devonian. Predominantly it is a carbonate sequence and within the interfingering tongues of carbonate there are lateral lithologic variations from back reef carbonates to reefal sucrosic dolomites and basinal shales and limestones.


The photogeology of each permit area was prepared by J. Bakhoven prior to the departure of the field party. From this work, the major structures were known. It remained for the field party to check the photogeologic interpretation, collect dips and strikes and assess the structural closure of each anticline. Stratigraphic sections were measured and lithologies studied with two things in mind. One, to assess the porosity potential of a given formation within a structure. Two, lithofacies were studied in order to delineate reef trends and assess their prospectiveness within the permit area.

Three Geological Survey of Canada papers by Douglas and Norris (1960 1961 and 1963) ably described the geology of the area. These papers were referred to constantly. The G.S.C. work in this area was reconnaissance geology. The lithofacies studies were entirely the product of Westcoast geologists.

In this report it is proposed to describe the lithology of successive formations from Ordovician to Middle Devonian. Following some discussion of the mechanics of décollement folding and the structural style of this part of the Mackenzie Mountain Fold Belt, significant anticlines in each permit area will be discussed separately. A summation and recommendations are given at the beginning of the report.

LOCATION MAP
SHOWING PERMIT AREAS
AND PRINCIPAL TOPOGRAPHIC FEATURES

STUDY AREA
FOR STRATIGRAPHY

WHITTAKER AND
IVERSON RANGES

ROUGE, REDSTONE AND
DUSKY RANGES

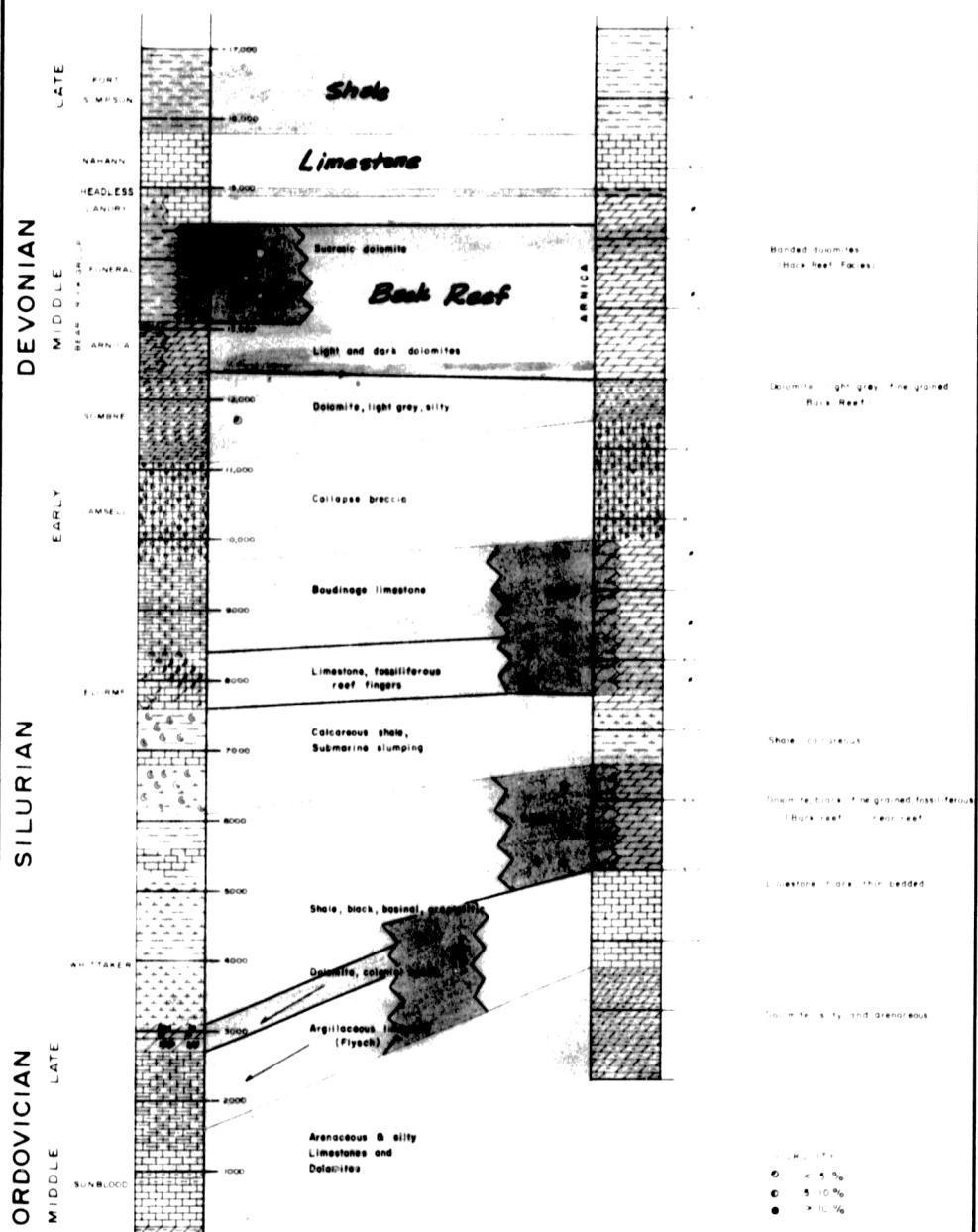


FIGURE 2

GENERALIZED STRATIGRAPHIC COLUMNS OF THE ORDOVICIAN TO
DEVONIAN SEQUENCE FOR AREA STUDIED

STRATIGRAPHY

INTRODUCTION

The area covered by stratigraphic field work follows the strike of the Redstone, Rouge, Whittaker and Delorme Ranges (Fig. 1). From Ordovician until Middle Devonian time the hingeline between the stable platform (craton) to the east and the basinal sediments to the west lay along the same trend except that north of the Root River it swings more to the northwest. Both in a vertical and a lateral sense the sediments in this area are highly variable in response to migrating positions of the hingeline.

Two generalized lithologic columns have been drawn to show the lithologic succession and the contrasting lithologies between the stable shelf to the north in the Rouge, Redstone and Dusky Ranges and the more basinal sediments to the south in the Whittaker and Iverson Ranges (Fig. 2). Altogether there are some 15,000+ feet of sediments from the Middle Ordovician to the top of the Middle Devonian.

The lowest sediments exposed in this area are green shales but they are not in stratigraphic contact with adjacent strata. They have been caught up in thrusts on the Delorme and Whittaker Range and have then acted diapirically. The green shale is believed to equate with the evaporitic sequence of the Saline River Formation of Cambrian age.

The lowest formation exposed in this area is the Sunblood. It is a variably silty to arenaceous dolomite. It is overlain by the Whittaker Formation. To the north in the Rouge, Redstone and Dusky Ranges this formation is either reef or near reef dolomites. In contrast to the south it consists of cyclic deposits of argillaceous limestone and shale and black graptolitic shales. The

overlying Delorme is a fine grained dolomite in the north but to the south it is either epigenetic slumped shales or boudinage limestones.

The Camsell Formation is remarkably uniform over the whole area. It consists of a limestone collapse breccia. It only loses its lithologic character to the south at Tundra Ridge Station 13 (Fig. 1).

The Sombre Formation thins to zero in the north at the Redstone River on the Redstone Range. To the south and west it thickens dramatically. The overlying Bear Rock Group has a diverse number of lithofacies that reflect the varying environment of deposition. The Arnica Formation is a back reef dolomite. The Manetoe is a reefal, sucrosic dolomite facies while the Funeral shales are the basinal equivalents of these same formations. The Landry Formation is a separate event with a reef trend distinct from the underlying Bear Rock Group.

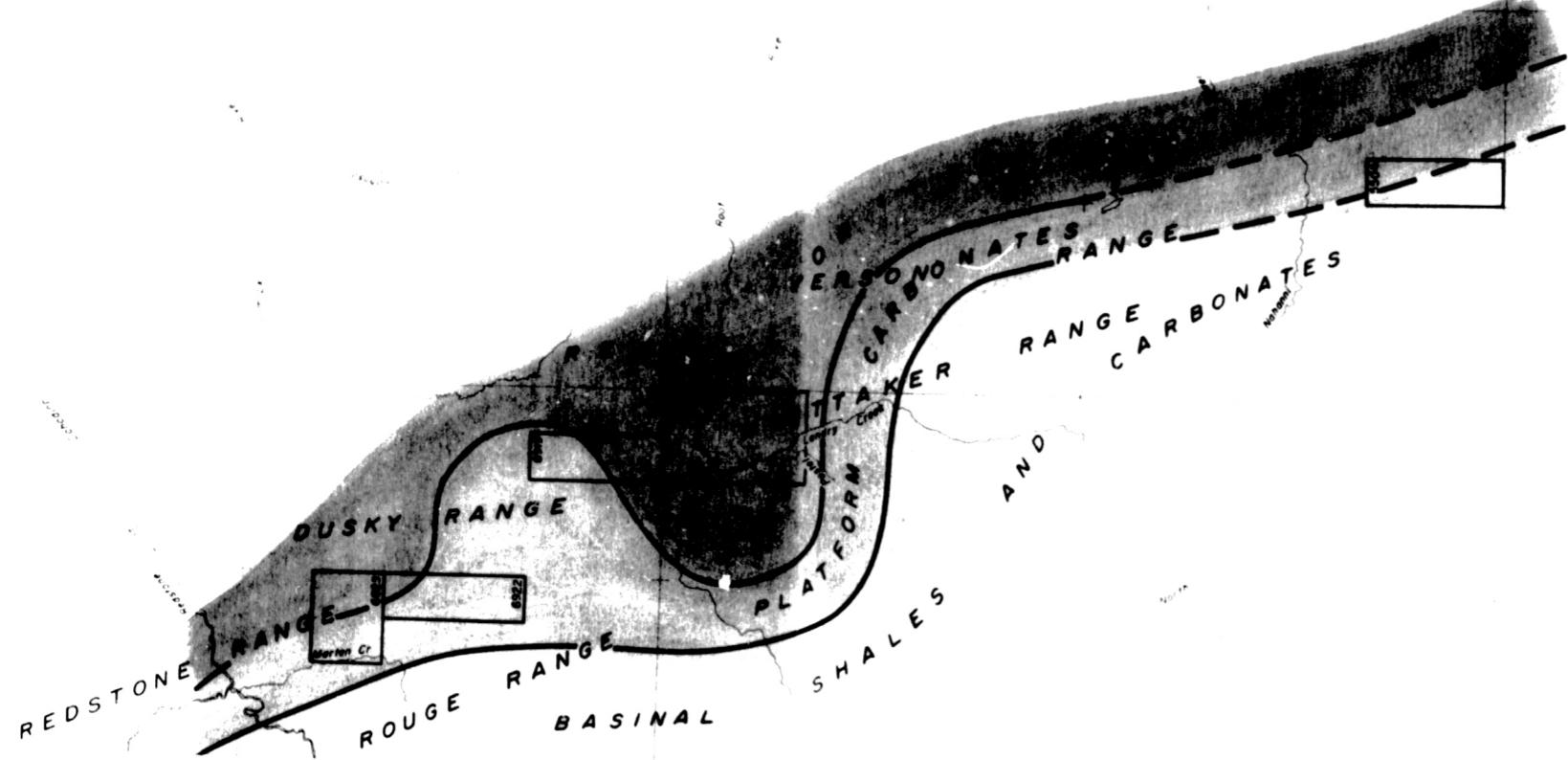
Throughout the study area the Headless Formation is an interbedded shale and calcareous shale overlain by the Nahanni Formation. The shale out edge of this latter formation, a micritic-skeletal limestone, was observed in the Nahanni Plateau but generally lies to the west of the study area.

Some intergranular porosity was found in the sucrosic dolomites of the Whittaker and Bear Rock reefs. Normally poor, leached, vuggy porosity was found in the reef facies of the Delorme Formation and in the back reef facies of the Delorme and Arnica Formations.

SUNBLOOD FORMATION

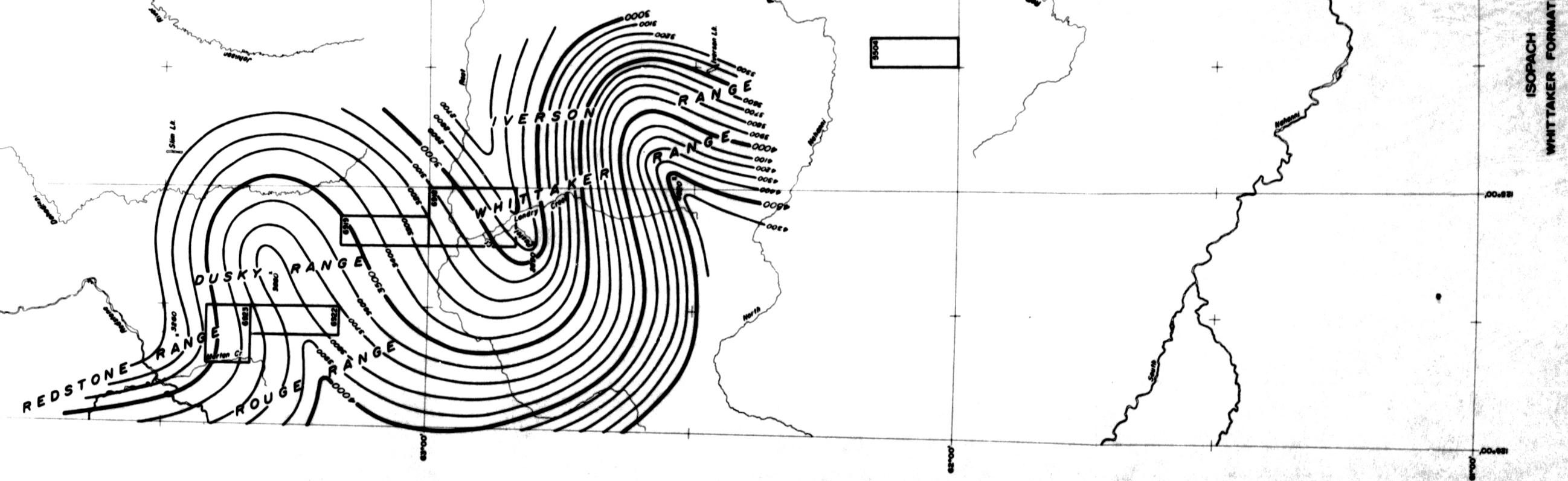
In this study the Sunblood Formation was only examined at two localities, on the east flank of the Whittaker Range and at Pastel Creek. The formation is orange to rusty weathering. It is very distinctive in the field.

On the Whittaker Range 1,615 feet are exposed (Douglas and Norris, 1961). Sediments vary from argillaceous limestones to silty limestones and dolomites and dolomitic sandstones. At Pastel Creek (Station 20) sediments consisted of silty and sandy dolomites with some sandstones, fine to coarse grained and cross bedded. There is a fault contact on both sides of this section.


A detailed examination of the Sunblood Formation was not attempted due to lack of time and operational problems. A cursory field inspection showed the formation, tight, well lithified, at times silicified and generally unfavorable for reservoir development.

WHITTAKER FORMATION

Reef and off reef facies can be observed in the Whittaker Formation. The reef facies is a sucrosic dolomite. In the subsurface it would be a highly desirable prospect with good reservoir potential. The shelf or platform facies of the Whittaker Formation is highly bituminous and can be regarded as an excellent source rock.


The Whittaker Formation has a wide range of lithologies associated with the transition of carbonate sediments from shelf to basinal facies. A line of section A-B (Fig. 3) has been drawn to show the facies variation in the Whittaker Formation from shelf margin to basinal sediments.

At Blue Lake, Station 105, a median unit of fine to medium grained dolomite has abundant relict remains of colonial corals, Halysites, Favosites, along with horn corals, Amphipora and finger Stromatopora. Immediately south from Blue Lake the upper part of this unit contains patch reefs of structureless light colored sucrosic dolomite. These reefs contrast with the enclosing black bedded dolomites of the platform. From this evidence it is thought that a barrier

REEF SUCCESIVE CARBONATES
PLATFORM DOLOMITES
BASINAL SHALEES

REEF DEVELOPMENT
MIDDLE AND UPPER WHITTAKER FORMATION

reef probably exists to the west of Blue Lake.

A good exposure of reefal sucrosic dolomites is found in the middle part of the section at Station 107 (Plates 1 & 2) and its "shale out" can be followed some miles to the south of this station along the crest of the Dusky Range. A massive reef body was found in the upper part of the Whittaker Formation immediately to the north of Station 20 in the Delorme Range. From this station, the passage to the basinal sediments of Station 4 on the west flank of the Whittaker Anticline is really dramatic. At this latter station the basal 1400 feet consists of flysch type argillaceous limestones and shales. A median unit of platform type dolomites with some colonial corals, highly silicified is followed by some 2900 feet of black, calcareous, graptolitic shales.

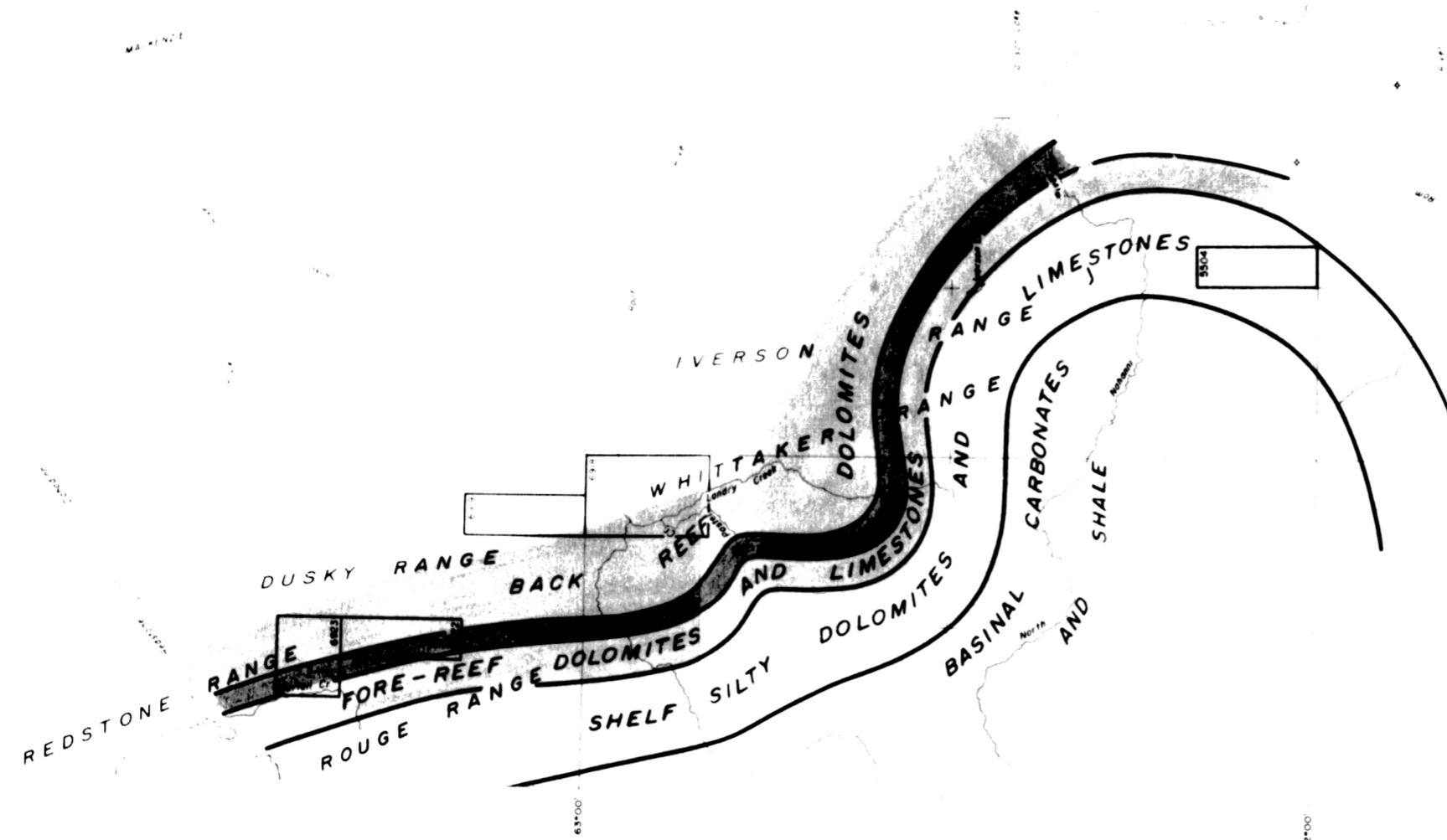
The dominant facies distribution of the sediments is shown (Fig. 4). The reefs trend generally northwest but with a large lobe extending through the Root River permit block and crossing the crest of the Root River Anticline. The prospects here and in the Marten Creek permit block will be discussed under the structural section.

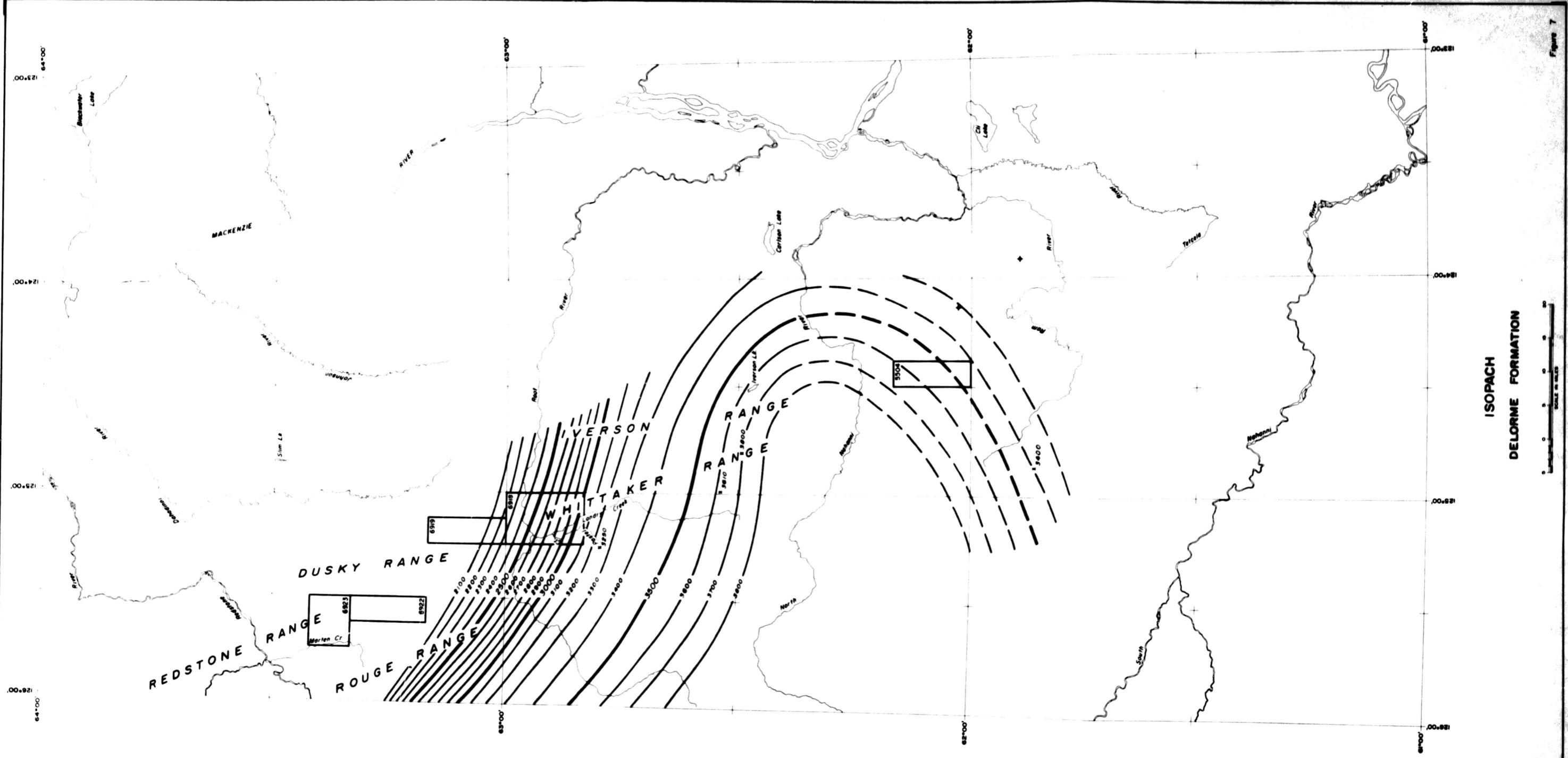
The isopach map (Fig. 5) shows basinal development to the west and southwest. The strong re-entrant to the north of the North Nahanni River and a more positive feature to the west of Pastel Creek continue to assert themselves up to the close of Bear Rock time.

The reefal facies of the Whittaker Formation is a medium grained sucrosic dolomite. In outcrop it has generally poor pinpoint and leached vuggy porosity. Some intergranular porosity is present. The platform facies are tight.

DELORME FORMATION

The shelf facies of the Delorme Formation is characteristically a light grey, fine grained dolomite, mostly tight, but with some scattered, leached, vuggy porosity. Disseminated pyrite crystals impart either a buff or reddish weathering color to the formation. This character makes it easy to recognize and follow in the field.

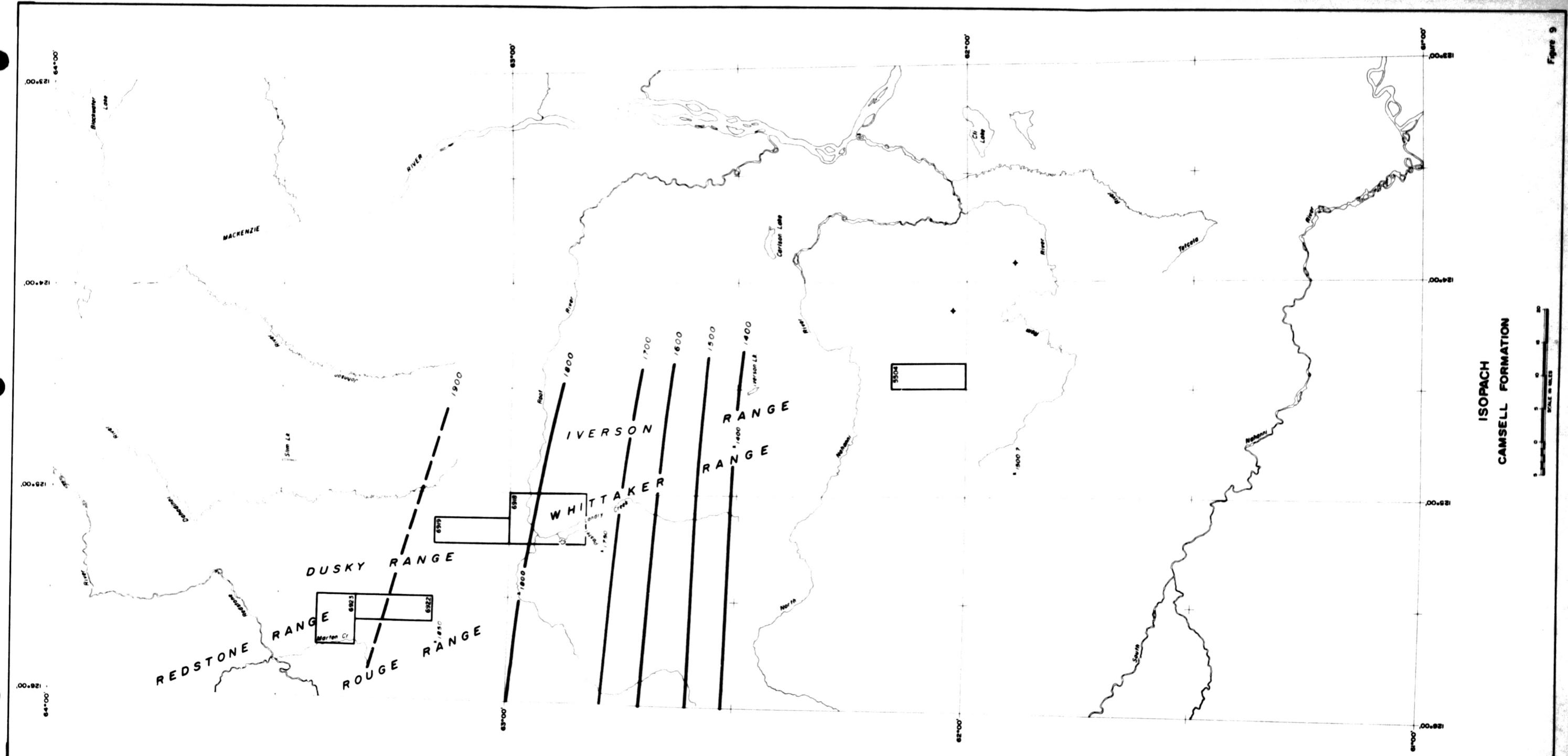

A reef facies was found two miles north of Station 102 at the headwaters of Landry River. Mechanical troubles with the helicopter forced postponement of a visit to this locality. In a fore reef position at Station 102 (Fig. 4), at the headwaters of the English Chief River, the lower 1500 feet consists of submarine slumped, calcareous shales. This is overlain by 700 feet of interbedded skeletal micritic or micritic skeletal limestones with up to 80% Amphipora in certain beds. These reefoid fingers can be traced back to the main reef front at the head of Landry River. From this it is assumed that the Delorme was deposited in a very shallow sea and organic structures are biostromal rather than biohermal. At Station 102 the overlying 1400 feet consisted of boudinage limestones. The same interval at the head of the Landry River consisted of massive dolomites that appear reefal.


A very near reef or reefal section of the Delorme Formation was inspected at Station 21. Here the dolomite was massive, light grey, fine to coarse grained with poor intergranular and poor pinpoint and leached vuggy porosity. Relict structures at times suggested Stromatopora and corals. There were interbeds of dolomitized lime mud.


With two control points that show reefing (Station 21 and Station 22) and with aerial reconnaissance of basinal sediments to the south it is possible

DELORME FORMATION

DELORME FORMATION


to draw a lithofacies map (Fig. 6). The reef margin can be traced from the north and it swings to the east around a basinal reentrant south of Root River.

The isopach map for the Delorme Formation (Fig. 7) shows a basin to the south and southwest of the Root River. Where the reef margin is controlled it seems to roughly follow the 3000 to 3600 foot contour lines. This suggests that the reef trend should be projected from Station 20 to the northwest. However at Station 18, the lower 1600 feet of dolomites are regarded as fore reef platform facies. The uppermost 500 feet of limestones are boudinage in type. For this reason the reef trend is shown lying to the east of Station 18.

The reef facies with some intergranular and leached vuggy porosity is the only potential reservoir in this formation. The source potential of the formation appears poor in comparison with the Whittaker Formation.

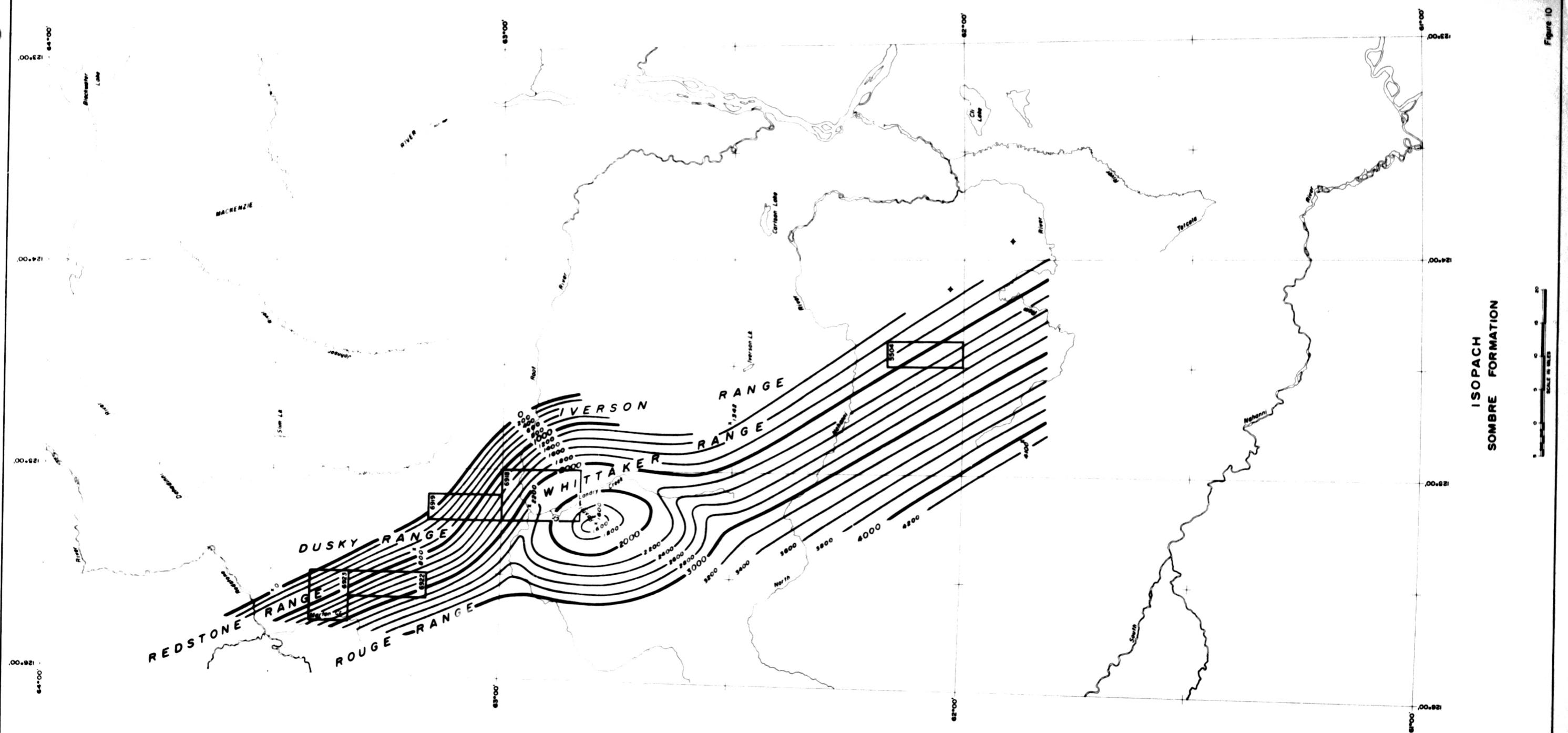
CAMSELL FORMATION

Throughout the study area the Camsell Formation remains remarkably uniform in both lithology and thickness. The dominant lithologic character is a collapse breccia of light grey or cream, micritic limestone with red shale inclusions. The Camsell Formation was examined in detail at four localities. At three, Stations 18, 20 and 101 (see Appendix) both micro- and mega-brecciation was observed. The microbrecciation could have been caused by syngenetic solution of evaporites and brecciation of marginal carbonates in a sabkha environment. The mega- phase may have resulted from solution of the evaporites and massive collapse of the carbonates after burial following some epeirogenic event, say an unconformity at the top of the Camsell. In any

event the carbonates are extremely well cemented and now form a tough, resistant formation.

At Station 13 (see Appendix) Tundra Ridge, the interval is represented by a very fine grained dolomite, alternately light and dark colored. The light bands are algal mat. The dark bands have a relict, micritic skeletal texture. The dolomites are interbedded with 10-15% siltstone and sandstone, fine grained, subangular and tight. An arbitrary division has to be made between the Camsell and the underlying Delorme Formation from which it is indistinguishable lithologically at this station.

Figure 8 shows the gross lithologies. Reefing, if it does exist, lies to the west and south of the present area of study. The isopach map (Fig. 9) shows very gradual thickening of the Camsell Formation to the north. This is in the opposite sense to the normal direction of basin thickening to the south and west in the Lower and Middle Paleozoic. It could be a function of pre-Sombre erosion or it may be caused by a very slight collapse of a positive feature north of the Root River. The real cause is unknown.

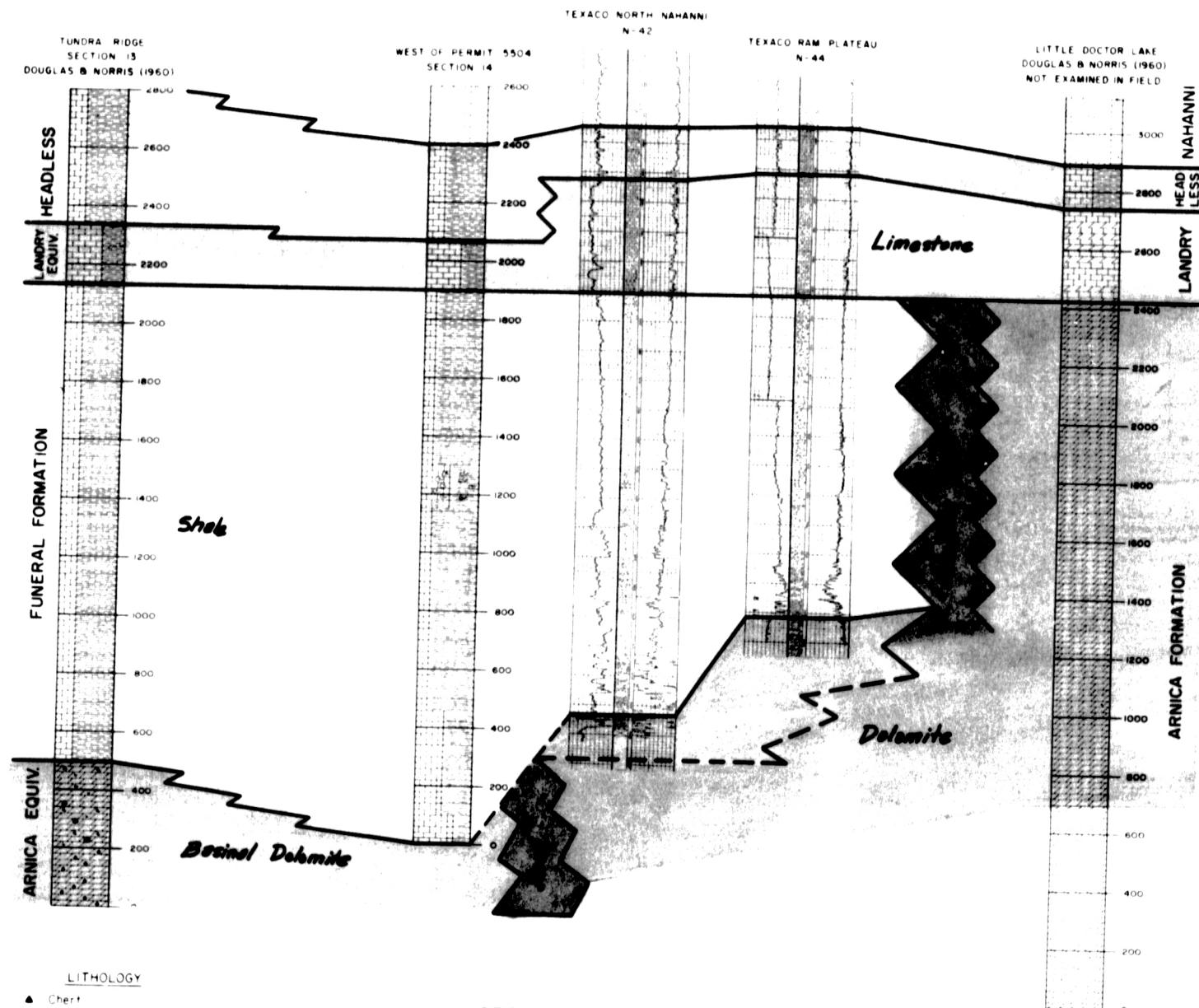

SOMBRE FORMATION

Throughout the area examined the Sombre Formation is dominantly a light or dark grey dolomite, crypto- or very fine grained. There is some scattered leached, vuggy porosity, but its reservoir potential is minor. It is not regarded as prospective in any of Westcoast's permit areas.

The relict texture of these very fine grained dolomites is frequently either algal mat or mud mounds. The mud mounds are quite often particularly well preserved. This type of evidence certainly suggests a very shallow water

ISOPACH SOMBRE FORMATION

Figure 10


near shore deposition. Ebanks (private communication) has described mud mounds on the Florida coast in a back reef, near shore location. This interpretation is supported by the presence of a short interval (300') of collapse breccia near the middle of the Sombre Formation at Station 18. At this locality for a short period a sabkha type environment prevailed.

The isopach map (Fig. 10) shows a very profound thickening of the Sombre Formation from zero in the Redstone Range south of the Redstone River to a maximum of 4100 feet at Station 13 on Tundra Ridge. An anomalous thin at Station 20 interrupts the otherwise uniform thickening of the Sombre Formation to the southwest. The truncation to the east, may be a function of pre-Arnica erosion (Douglas and Norris 1961, 1962). However, there is no field evidence of a pronounced unconformity and certainly the facies are back reef-nearshore and rarely sabkha. It could be that this rapid thickening to the west is merely a function of deposition. The anomalous thinning at Station 20 is most likely the result of diapiric action of the Saline River evaporites initiated in Sombre time. Penecontemporaneous erosion thinned the formation at this station. Further evidence of diapiric action of Cambrian evaporites is cited in the Arnica Formation (Plate 6) and the Funeral shales (Plates 7 and 8).

BEAR ROCK GROUP

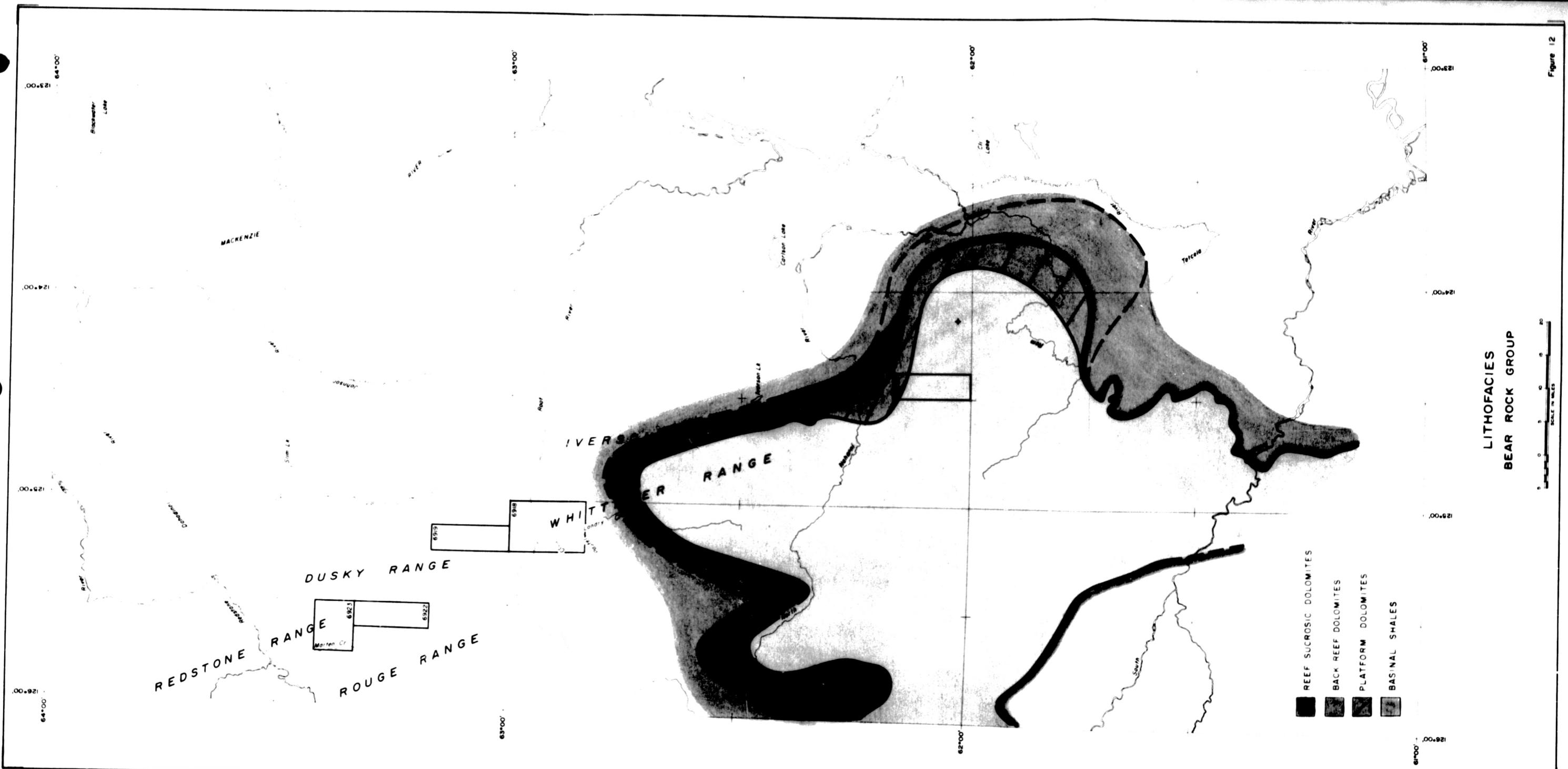
The Bear Rock reef facies (Manetoe Formation) has the best reservoir characteristics of any sediments examined in the Paleozoic sequence. Unfortunately coincidence with favorable structures and depth of burial are the limiting factors in the prospectiveness of this formation. At its best the reef is a coarse sucrosic dolomite with good intergranular porosity. Two

C

D

growth situations exist. One, the reef formed a barrier up to a 1000 feet high. Such reefs are found at Stations 15 and 28 (Plate 3 and Appendix for Station 15). In contrast, a series of reefal steps could delineate the transgressive onlap of the Bear Rock sea onto the stable shelf. In the North Nahanni gorge at Station 29 (Plate 4) a step about 200 feet high was observed in the Arnica Formation of the Bear Rock Group. There was a corresponding thinning of the Funeral shale facies over this step.

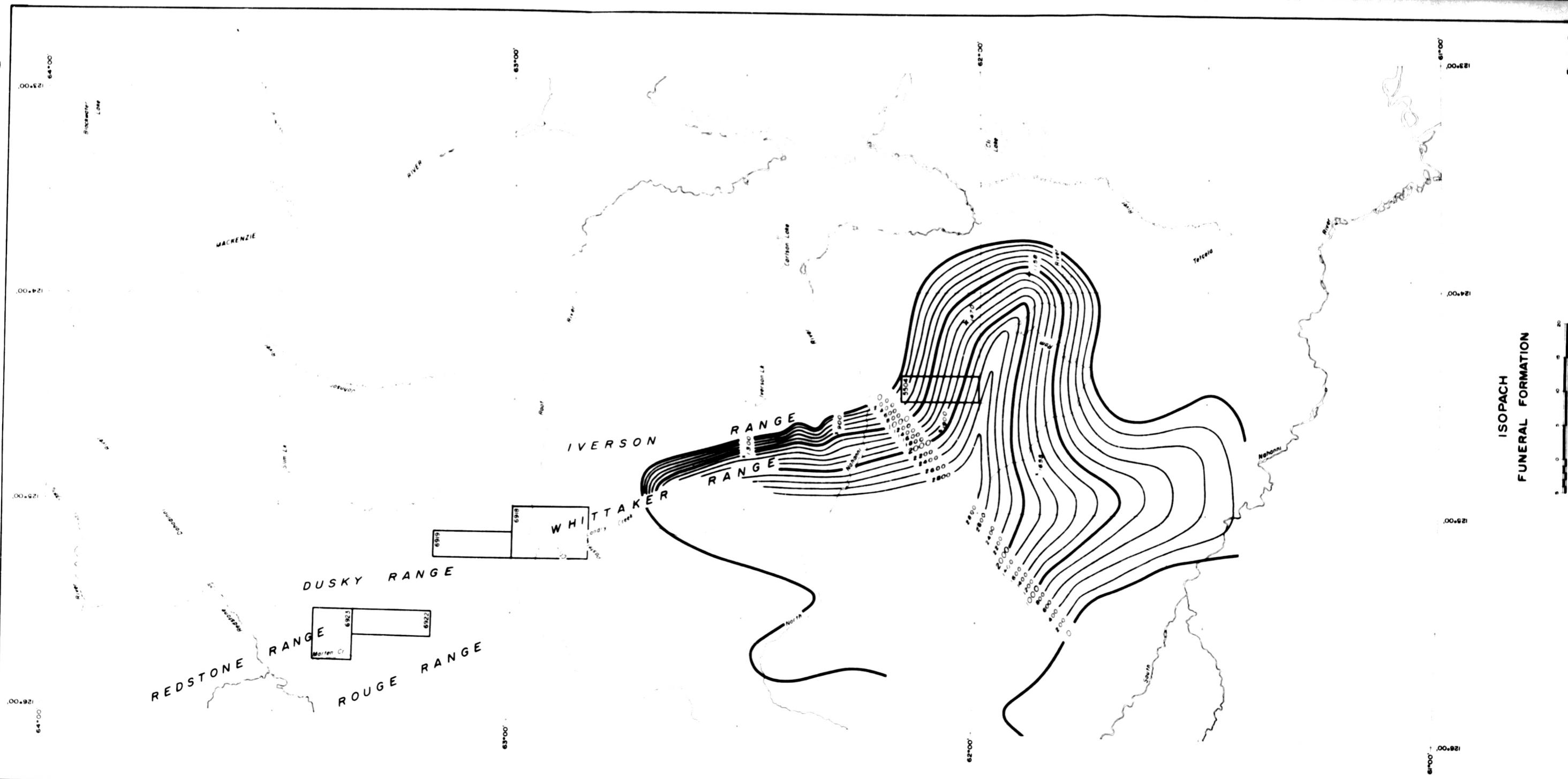
The back reef to fore reef facies relationships of the Bear Rock Group are shown on a line of cross section C-D (Fig. 11). There is a back reef dolomite facies, the Arnica Formation, a reef front of sucrosic dolomite, the Manetoe Formation, inferred in this cross section and fore reef basinal shales of the Funeral Formation. These shales thicken rapidly to the west from 1090 feet at Texaco Ram Plateau N-44 to 2300 feet at Tundra Ridge Station 13.


The Arnica Formation was examined at Stations 107, 18, and 19. At Station 107, North Nahanni Gorge (Plate 5) the upper half of the Arnica Formation was found to consist of interbedded light and dark grey, fine grained dolomite. The dark bands are fossiliferous with occasionally up to 30% Amphipora and some leached vuggy porosity. The light bands were non fossiliferous and tight. A similar back reef type of environment could be ascribed to the Arnica at Station 18. Here the dark grey dolomites, very fine to fine grained, were bituminous and the relict texture micritic-skeletal with Amphipora sp., finger Stromatopora and crinoid ossicles. In these beds there was periodically up to 20% plugged, leached, vuggy porosity. The Arnica is not a simple formation or a single event. At Station 18 a pronounced unconformity (Plate 6) was found midway through the formation (see Appendix for lithology).

In the time available it was not possible to follow this unconformable surface further. It was noted, however, at both Stations 18 and 19 that there was a band of leached vuggy porosity now plugged by white dolomite about midway through the Arnica Formation. An unconformity was also noted at the top of the Funeral Formation east of Station 13 in the Nahanni Plateau area (Plate 7 and 8). This suggests that during periods of mild orogeny in the Middle Devonian, the Saline River evaporites were mobilized and doming of the overlying sediments took place.

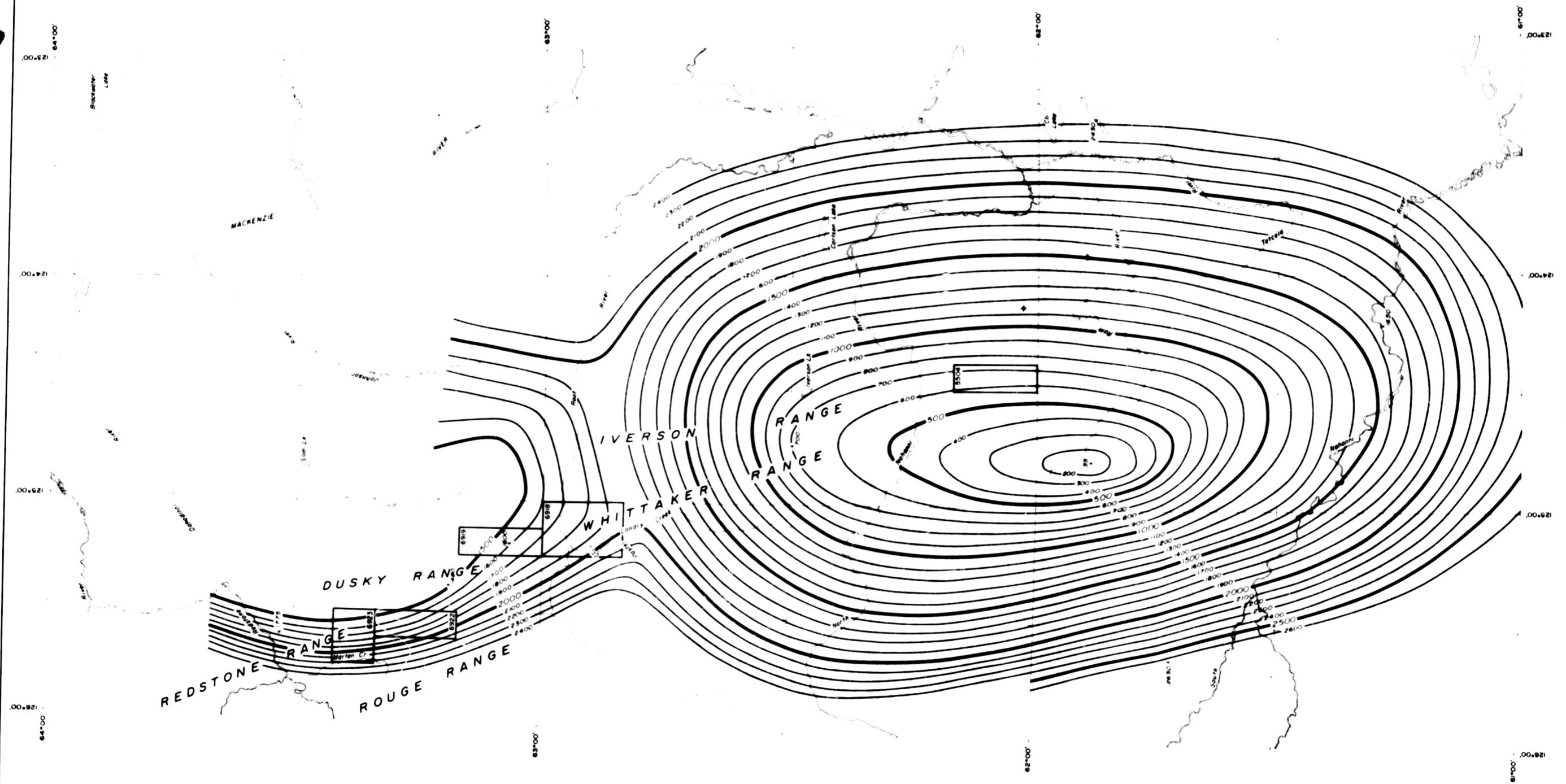
The Manetoe reef facies of the Bear Rock Group was examined at Station 16 immediately west of Iverson Lake. At this locality the reef was massive and structureless and along the line of section at Station 16 was found to consist mostly of a coarse white replacement dolomite. Only the uppermost 75 feet had leached vuggy porosity and good intergranular porosity. Less than a 1/4 mile to the north, good intergranular porosity was observed down from the top of the formation for several hundred feet. In fact it was so friable that it could be readily kicked apart like coarse sand.

At Station 15 it was estimated that there were $1000\pm$ feet of Funeral shales two miles from the time equivalent the Manetoe reef facies (Plate 3) at Station 28. At this latter locality an estimate of a $1000\pm$ feet for the height of the reef would be reasonable. The off reef equivalent of the Manetoe and Arnica Formations, the Funeral Formation consists mostly of fissile, black, calcareous shales.


The Funeral Formation is overlain by the Landry Formation (Fig. 11). With the shale out of the Landry, the Funeral Formation merges with the overlying Headless Formation. In the western part of the Nahanni Plateau it becomes very difficult to pick the top of the Funeral Formation from the

BEAR ROCK GROUP

ISOPACH FUNERAL FORMATION


Figure 13

ARNICA FORMATION AND PLATFORM EQUIVALENTS

ISOPACH

Figure 14

overlying Headless Formation.

Douglas and Norris (1960, 1961) have placed the black argillaceous limestones at the base of the Funeral Formation in the Arnica Formation. These limestones are basinal and lithologically distinct from the back reef Arnica dolomites. In this report they are included in the Funeral Formation.

The lithofacies map of the Bear Rock Group (Fig. 12) shows a lobate subbasin enclosed by a fringing reef. The information for this reef trend was derived from Douglas and Norris (1960, 1961) and field observation in the study area. The isopach map for the Funeral Formation (Fig. 13) delineates the area of maximum fill and the form of the basin. The isopach map for the Arnica Formation (Fig. 14) is the complement of the Funeral Formation. It shows thick shelf sediments thinning to the basin centre.

LANDRY FORMATION

No formal study of the Landry Formation was undertaken. It can be seen from cross section C-D (Fig. 11) that it thins westward and is progressively replaced by the Headless shales. In a shelf position it is primarily a lime mud (for example at Stations 18, 19 and 106). At the shale out edge, Station 14, it was a very argillaceous, bioclastic limestone with abundant brachiopods. At Tundra Ridge, Station 13, it has been completely replaced by the Headless shales.

HEADLESS FORMATION

The Headless Formation was not studied in this area. Where it overlies shelf sediments of the Landry Formation and underlies similar sediments of Nahanni Formation it is normally 200-300 feet thick. It thickens to the west (Fig. 11) at the expense of the Landry and Nahanni Formations as these

formations shale out. On the shelf it is interbedded, very argillaceous limestone and very calcareous shale. With the shale out of the Landry and Nahanni Formations it becomes progressively more argillaceous.

NAHANNI FORMATION

The Nahanni Formation was measured only to assist in the construction of structural cross sections. Its exposure on the flanks of the three suitable anticlines ruled it out as a potential prospect.

At Stations 8 and 106 it is an interbedded micritic and micritic-skeletal limestone. The skeletal portion includes brachiopods, solitary corals and some crinoids. The Nahanni Formation shales out fairly abruptly on the western edge of the Nahanni Plateau area (Plate 9). This lateral change to Headless shales has been plotted by Douglas and Norris (1960).

STRUCTURE

INTRODUCTION

STRUCTURAL STYLE MACKENZIE MOUNTAIN FOLD BELT

The structural style of the Mackenzie Mountain Fold Belt is significantly different from the southern Rocky Mountains. There is little duplication of plates in the Mackenzie Mountain Fold Belt unlike the multiple plates of the southern Rocky Mountains.

Décollement folding is dominant in the Dahadinni and Root River areas. Several observations support this proposition. First, steeply folded anticlines are separated by broad synclines. Mechanically this sequence would be unlikely in an intensely thrust system. The sequence is also unlikely to be draped on thrust basement blocks. Second, green shale masses have been found thrusting diapirically along the more westerly thrust planes examined.

Diapirs were found north of Station 20 on the Delorme Thrust and on the west flank of the Dusky Range. Their emplacement is accompanied by massive brecciation of the country rock. As noted already, the green shale has to be older than Middle Ordovician. Lithologically it is similar to the green shales of the Middle Cambrian Mt. Cap and Saline River Formations. The green shale and the now leached evaporites form a breccia. In the subsurface it would form the plane of gliding for décollement folding.

Décollement folding dates back to Buxtorf (1910) who observed that the Mesozoic folds of the Jura were folded independently of the crystalline basement and glided on the very incompetent layers of Triassic anhydrite. The principles of decollement folding are well summarized by de Sitter (1956).

WEST

EAST

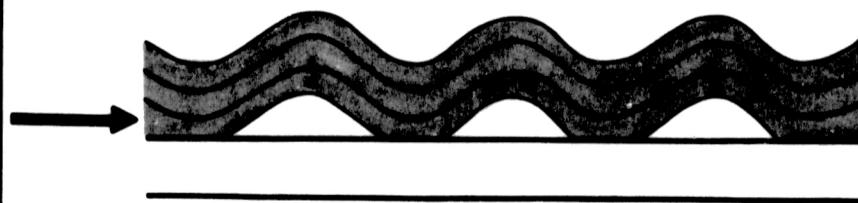


FIGURE 15

Simple Décollement Folding

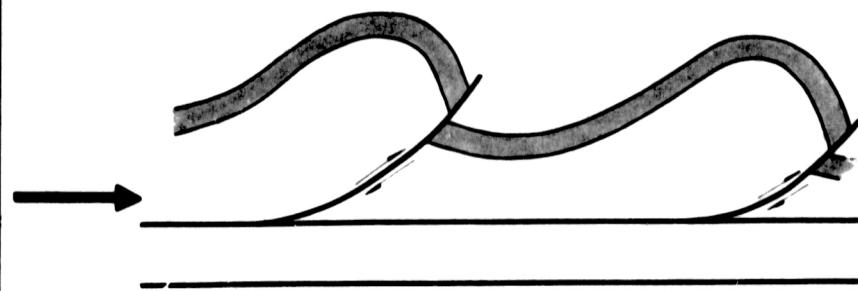


FIGURE 16

Introduction of thrusting with continued
gliding and over steepening of the eastern limb of the anticline

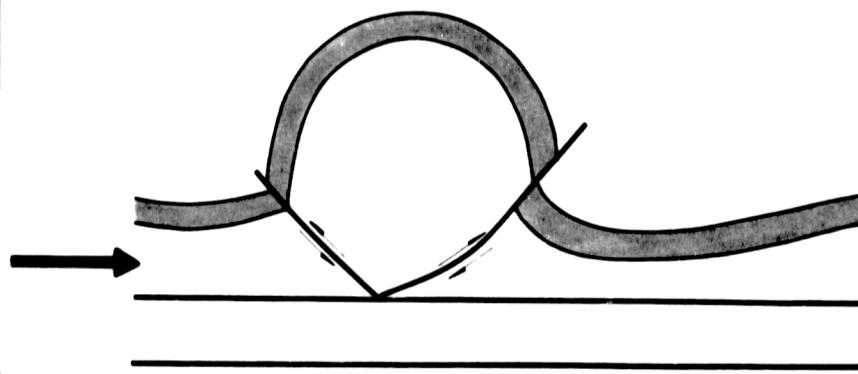


FIGURE 17

Reverse thrust faulting and oversteepening
of the western limb of the anticline

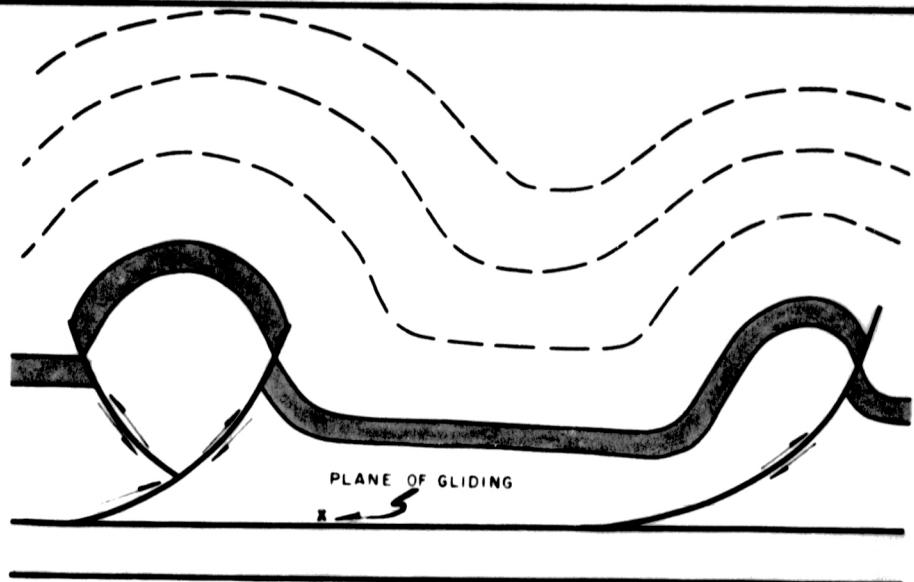


FIGURE 18

Continued erosion will result in broad synclines and narrow, sharply folded anticlines

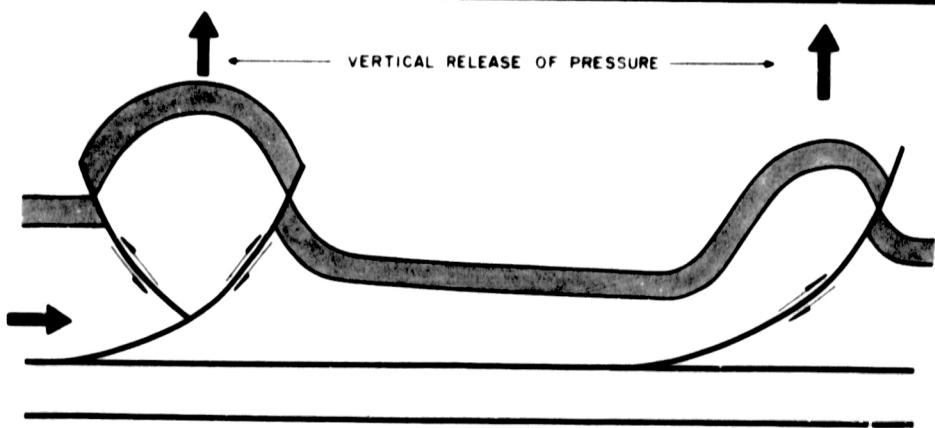


FIGURE 19

Relatively flat synclines and narrow, sharply folded anticlines are a function of a space problem in the syncline. The rocks of the syncline cannot bend down into the plane of gliding. By contrast pressure and shortening can be easily relieved by anticlinal folding.

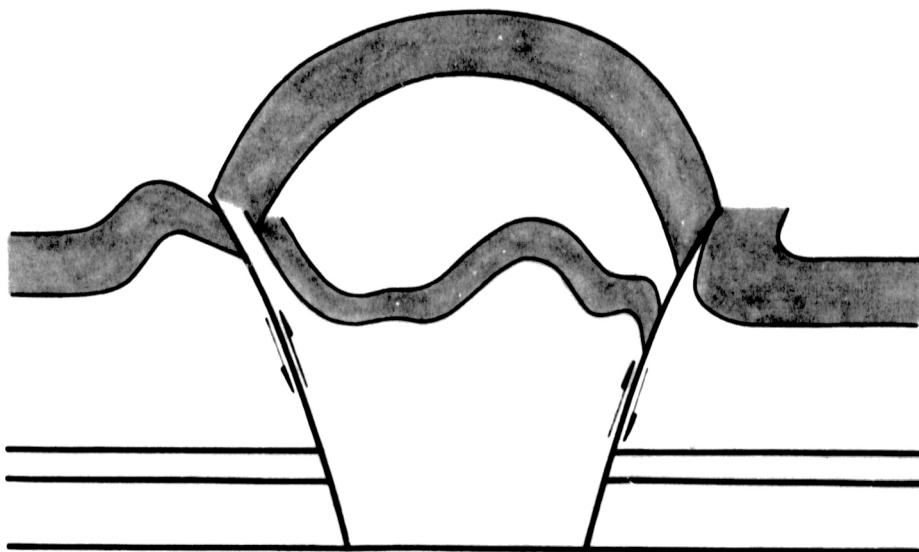


FIGURE 20

More intense pressure from gliding, probably with some basement thrusting results in a piston action with the décollement layer pushed up into the core of the anticline. This has apparently happened in the core of the Root River anticline. (After de Sitter - 1956)

The sequence of development of steeply folded anticlines, thrust to the east and reverse thrust to the west, along with broad synclines is outlined (Fig. 15-19). The initial stage is simple décollement folding (Fig. 15) with gliding from west to east. Oversteeping of the eastern limb (Fig. 16) and continued gliding brings relief of pressure by overthrusting of the anticline over the syncline. Further pressure from the plate sliding behind the anticline will steepen the west limb and lead to reverse thrusting (Fig. 17), to form a typical box shaped anticline.

De Sitter (1956, p. 177-79) points out whether there are broad anticlines or broad synclines is a function of the depth of erosion (Fig. 18). With deep erosion the synclines are broad and flat and the anticline narrow and sharply folded. The synclines are flat because the folded sediments cannot be depressed into the plane of gliding.

In the Root River area on the Delorme thrust and on the western flank of the Dusky Range, the pressures involved in décollement folding have become more intense. It is just possible that thrust basement blocks may have become involved. Any case with more intense pressure, the décollement layer is mobilized and acts as a diapiric piston thrusting up through the overlying rock (Fig. 20). The latter type of anticline is usually a much broader structure than those described above as box folds.

There are regional trends for the different types of décollement folds. The simple asymmetrically thrust folds are located along the Camsell and Nahanni Ranges. The box folds occur in the next set of ranges to the west, the Iverson and Dahadinni Ranges. The Dusky and Delorme Ranges are more typical of the diapiric extrusion form of anticline.

IMPORTANT POINTS IN STRUCTURE ASSESSMENT

1. The displacement or foreshortening by décollement folding and thrusting is not great quantitatively.
2. It follows that in this type of folding multiple plates will not develop. Although not specifically developed in the foregoing, the following are also pertinent.
3. In the Mackenzie Mountains in the zone of more intense dia-
piric action, the folds are either thrust across the crest or are now very deeply eroded so are no longer favorable structural prospects.
4. Organic reefs in the Ordovician, Silurian and Devonian sediments are only viable prospects where they occur in zones of asymmetrical folds or box folds.

PHOTOGEOLOGY

The photogeology for the permit areas of this report (Fig. 1) was very ably undertaken by J. Bakhoven. The photomosaics (Figs. 21, 24 and 28) are included in the structural discussion of each permit area.

PERMIT #5504 HOLLOW MOUNTAIN ANTICLINESTRUCTURE

The photogeology shows that the permit area (Fig. 21) is dominated by the Hollow Mountain Anticline.

The Hollow Mountain Anticline lies en echelon with the Iverson Anticline to the north and is flanked on the southwest by a gently dipping northern extension of the Nahanni Plateau. In its present morphological form the Fort Simpson shales have been stripped from the crest of the anticline and Nahanni carbonates exposed. Topographically the crest is over 4,000 feet high. Stream erosion has breached the anticline north of the crestal culmination and exposed the top of the Funeral Formation. This anticline is one and one half miles wide and over twelve miles long. It plunges gently to the northwest and southeast. It has over 1000+ feet of closure and is free of crestal faults.

The Hollow Mountain Anticline is a box fold (Plate 10) (Fig. 22) thrust to the east and reverse thrust to the west. On the eastern flank at Station 10, Nahanni limestones are thrust over Fort Simpson shales. Oversteepening of the eastern limb (Fig. 23) was followed by thrusting. Further pressure from the west oversteepened the western limb and reverse thrust the anticline over the western synclinal plate (Fig. 23). Field evidence of this thrust was observed in the stream eroding down dip on the western flank where Nahanni limestones rest on Fort Simpson shales. The eastern and western flanks of this box fold are tightly folded. Maximum dips of 50° to 55° were measured on both flanks.

STRATIGRAPHY

The carbonates of Bear Rock Group could be prospective in this anticline. As shown in a lithofacies map of the Bear Rock Formation (Fig.12) the Manetoe reef front passes in an arcuate sweep to the east of the permit area. At this locality Bear Rock carbonates would be overlain by approximately 1400 feet of Funeral shales. Immediately to the west of Station 14 (Fig. 1) 1900 feet of Funeral shales were measured in an incomplete section without a base. The possibility exists of a 600 foot reefal step in the Bear Rock Group. It would be possible to run a seismic line across the crest following the line of the transverse stream erosion. The shale to carbonate would provide a good velocity contrast that could prove or disprove this hypothesis. The risk of this prospect is the possible lack of an adequate cover. The Sombre does have poor leached vuggy porosity at Station 20 to the southwest but it is not considered a desirab target in this prospect. The core of the anticline is very tightly folded. It is quite possible that the competent Sombre Formation could have been extensively brecciated by this extremely tight flexuring. Fracture porosity would provide an adequate reservoir in this case.

STRUCTURAL SECTION ACROSS THE HOLLOW MOUNTAIN ANTICLINE

PERMIT 5504

WEST

EAST

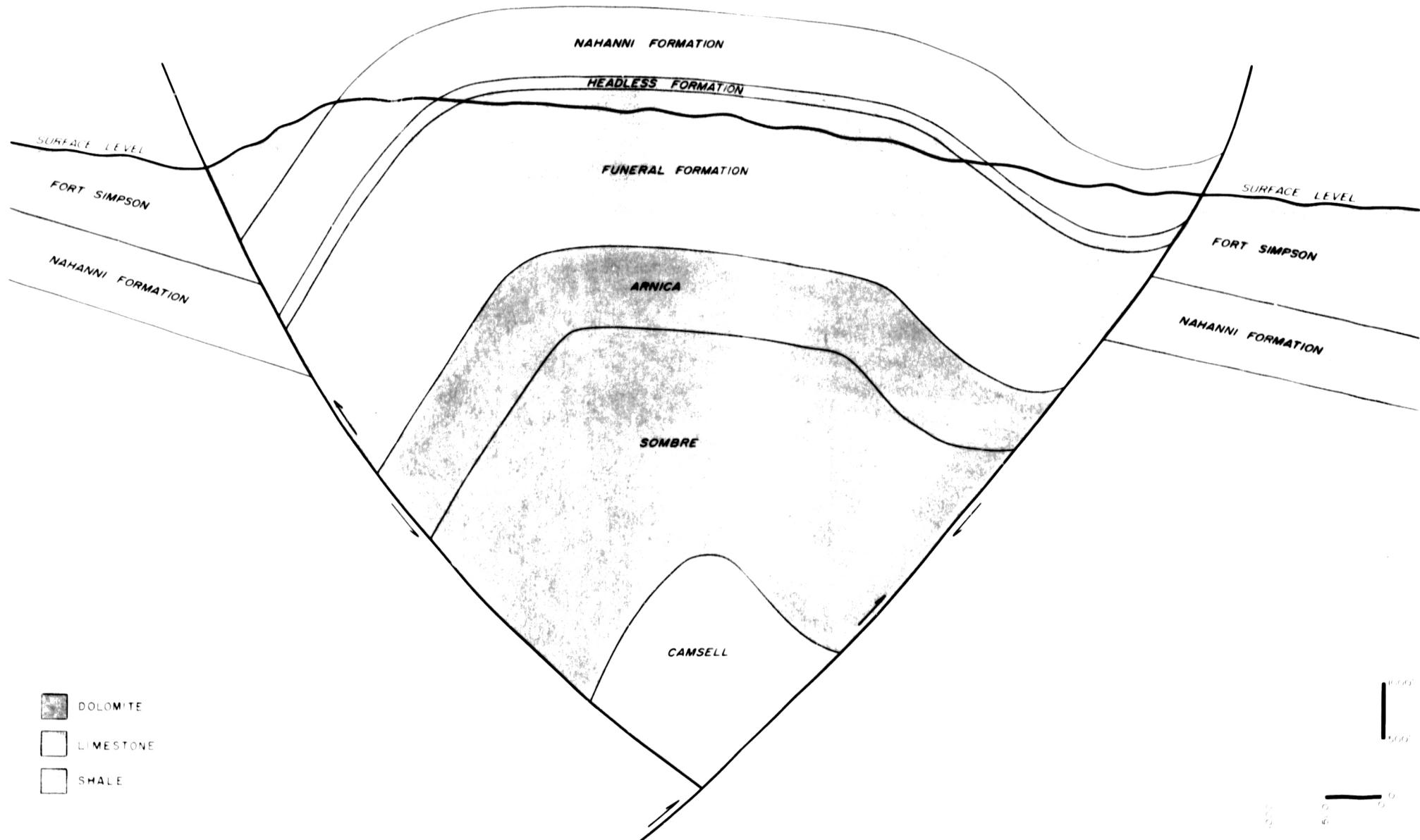


Figure 22

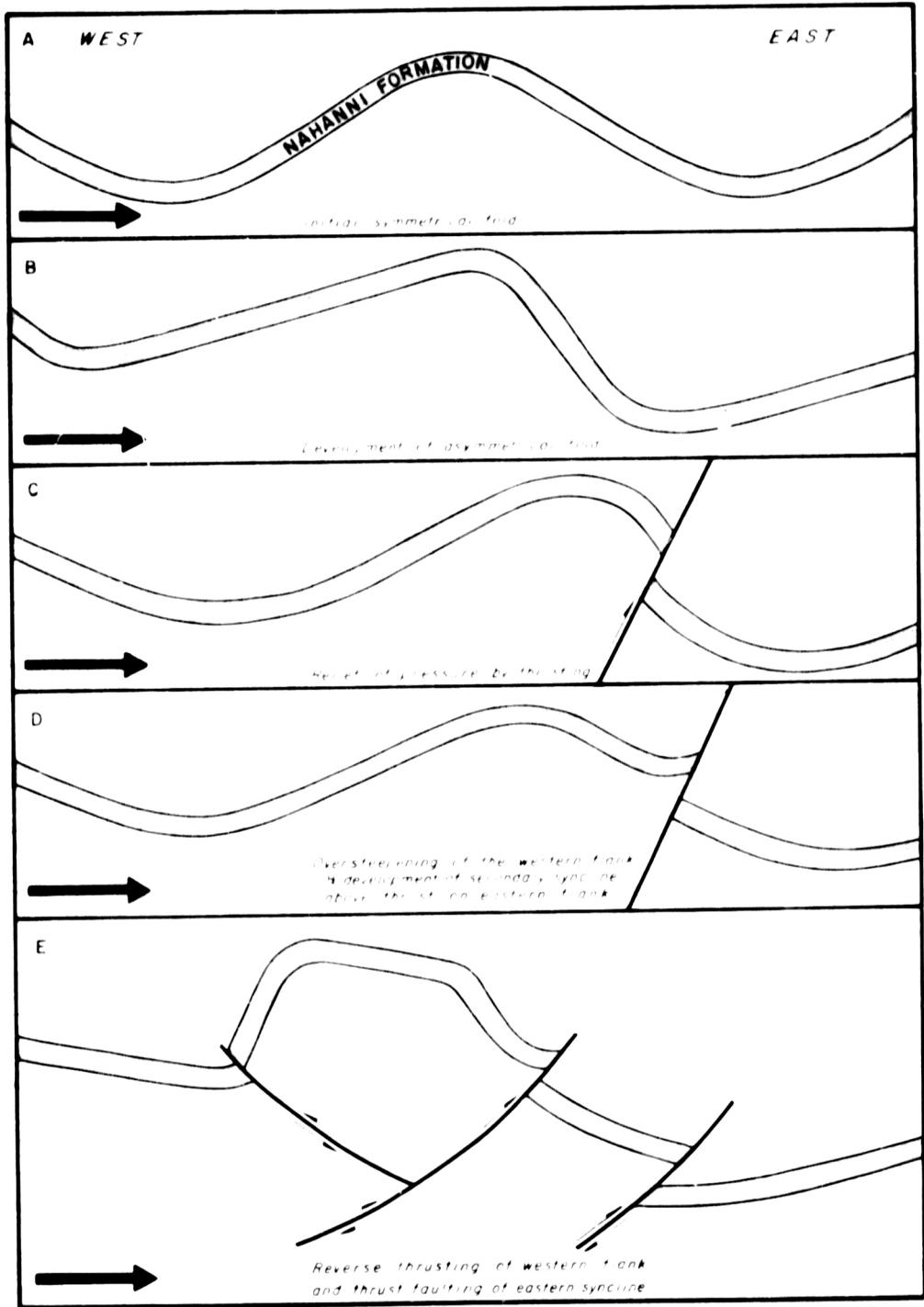


FIGURE 23

STRUCTURAL SECTION OF NORTH ROOT RIVER ANTICLINE

WEST

EAST

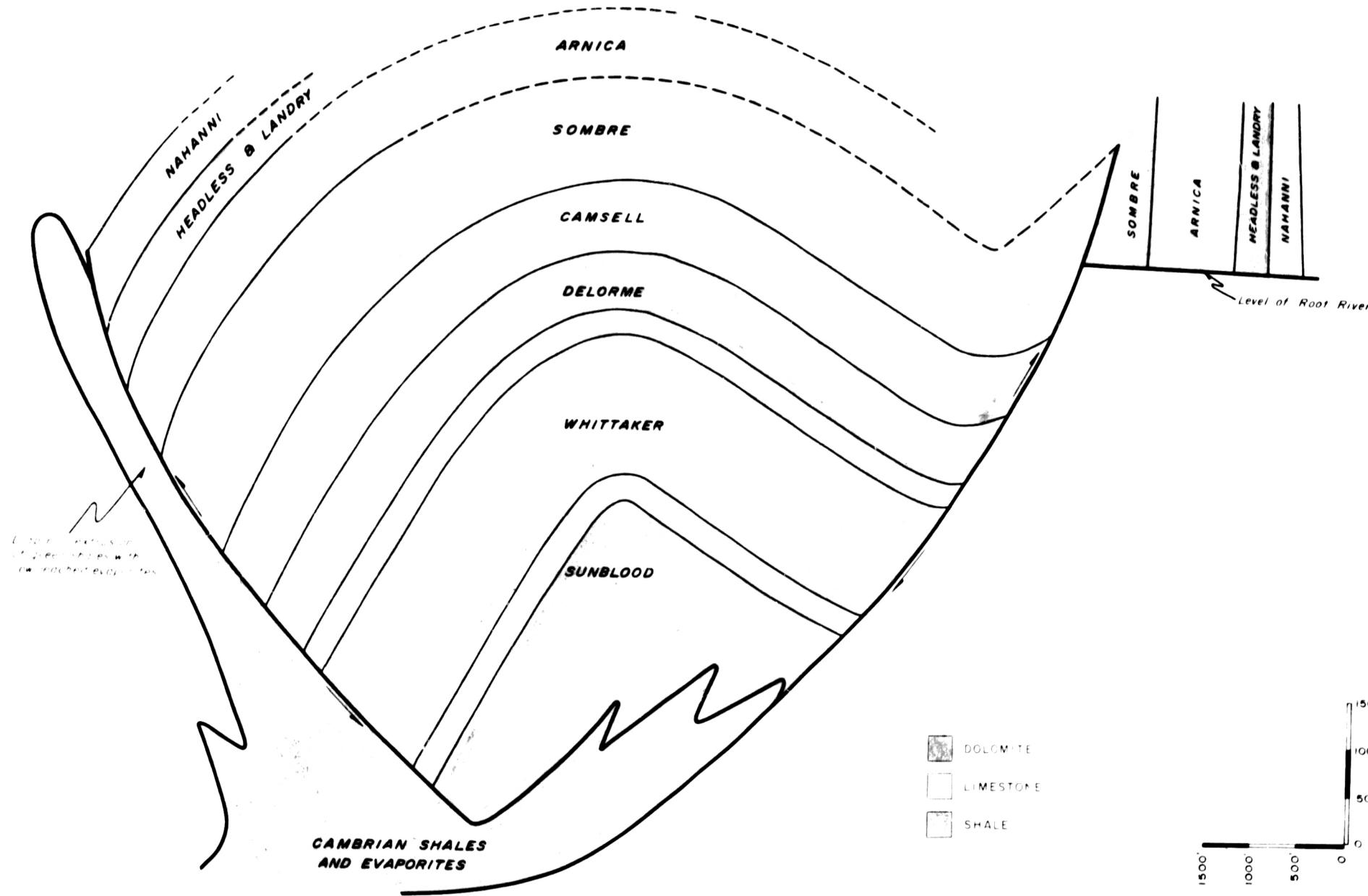


Figure 25

PERMITS 6918 AND 6919 NORTH ROOT RIVER ANTICLINE

The photogeology of permits 6918 and 6919 (Fig. 24) shows a structurally complex area dominated by the North Root River Anticline. This anticline is over 17 miles long and 4 miles wide. It lies en echelon and on the same structural trend as the Dusky Anticline to the north (Plate 11). It has been subject to multiple thrusts on the eastern flank and to reverse thrusting on the west with diapiric penetration along this thrust. From its crestal culmination near its northern end, the anticline plunges gently to the southeast along a sinuous course for nearly 16 miles. To the north it plunges from 0° to 5° for 1 1/2 miles. The northern termination is in the thrust contact with the more northerly Dusky Anticline. The North Root River Anticline does not appear to have effective closure.

An east-west section (Fig. 25) shows 2000+ feet of closure with the Whittaker Formation as the prime exploration target. However this closure is illusionary. A north-south structural section (Fig. 26) demonstrates that there is virtually no closure to the north. The slight closure visible on the surface would quickly be eliminated at depth by the southeast dipping thrust.

STRATIGRAPHIC PROSPECTS

The lithofacies map for the Whittaker Formation (Fig. 4) shows that a middle to upper Whittaker reef trend could cross the crestal culmination of the North Root River Anticline. With the absence of effective closure to the north, a prospect could still exist at the updip pinchout of the Whittaker sucrosic dolomite reef facies. The Whittaker was most likely biostromal rather than biohermal. A fingering has been observed south of Station 107 to

NORTHWEST - SOUTHEAST SECTION ALONG CREST OF NORTH ROOT RIVER ANTICLINE

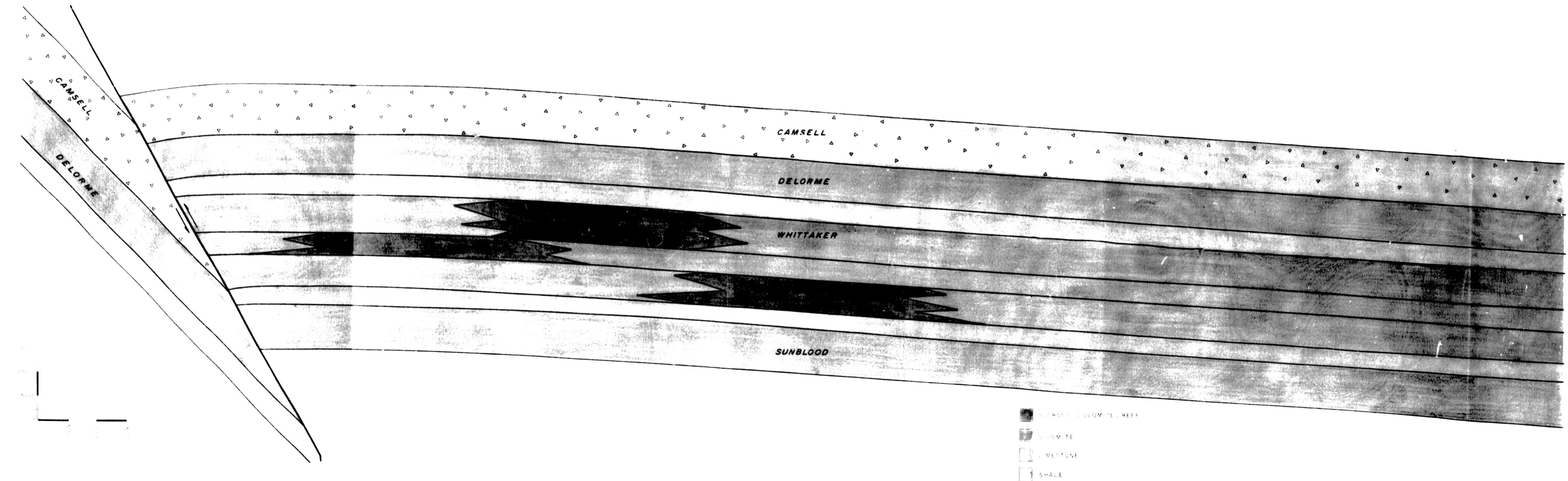


FIGURE 27 a

Initial decollement sliding formed the Dusky and North Root River anticlines.

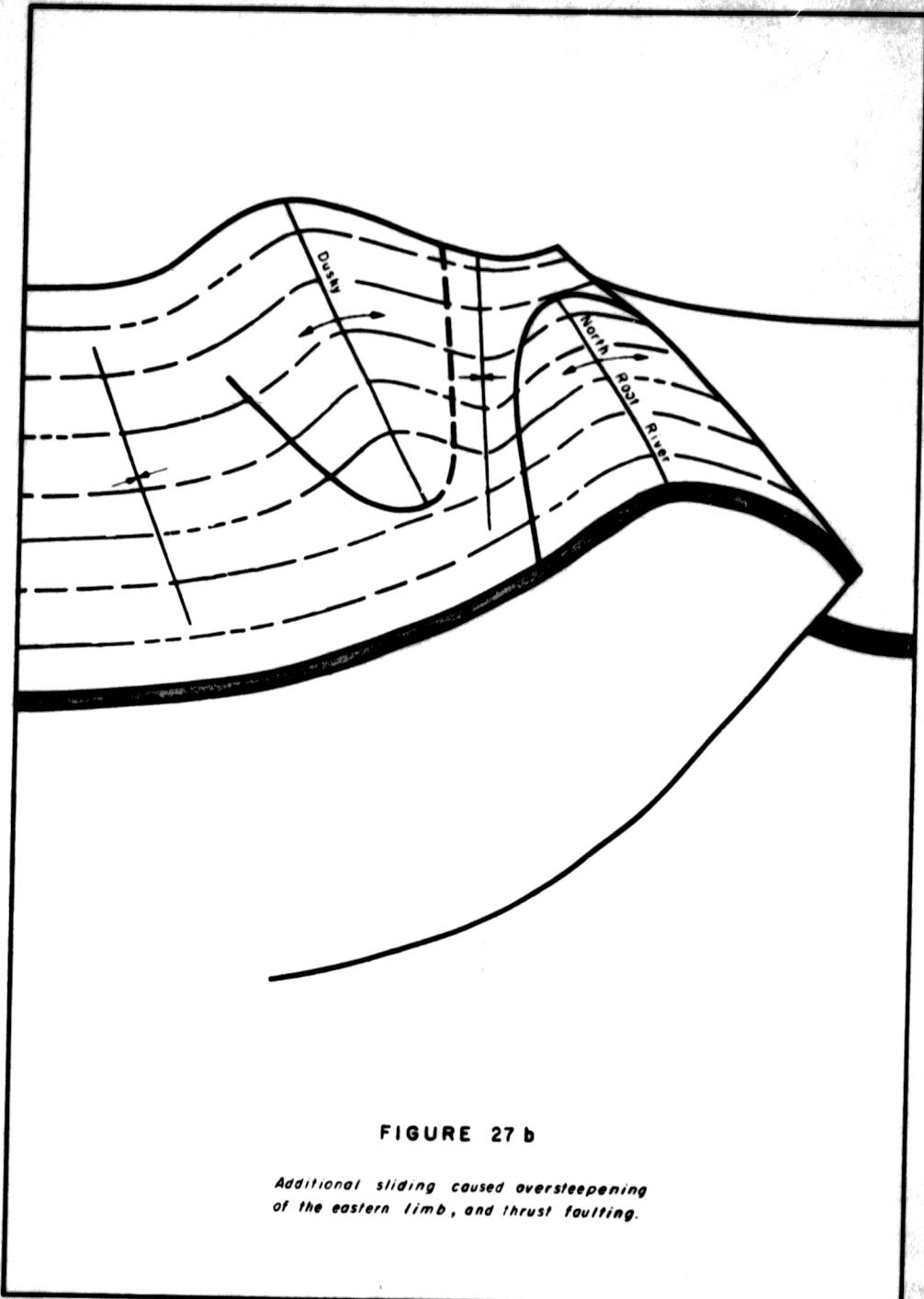


FIGURE 27 b

*Additional sliding caused oversteepening
of the eastern limb, and thrust faulting.*

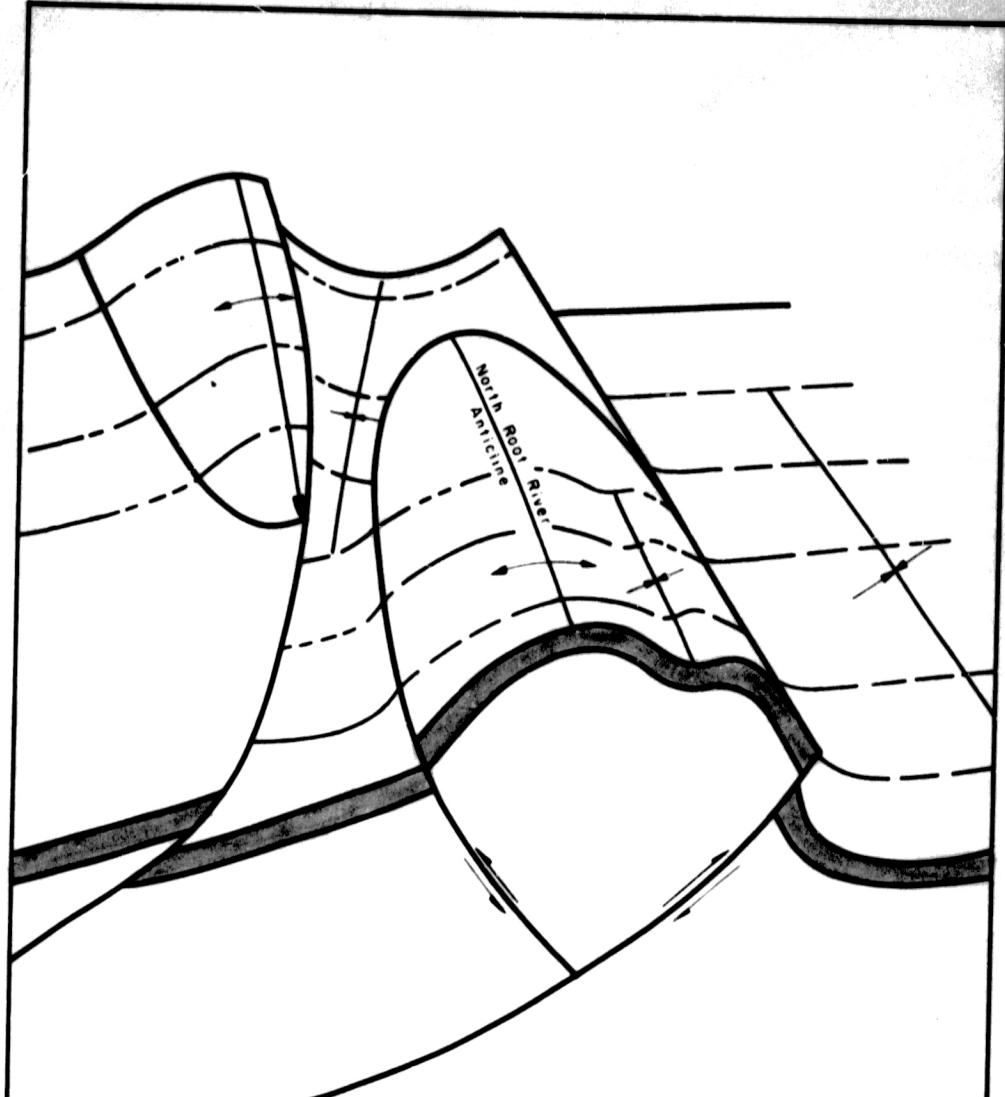


FIGURE 27c

Thrusting of the western limb of the North Root River anticline followed along with compressional flexing of the eastern limb. The Dusty anticline was also thrust faulted.

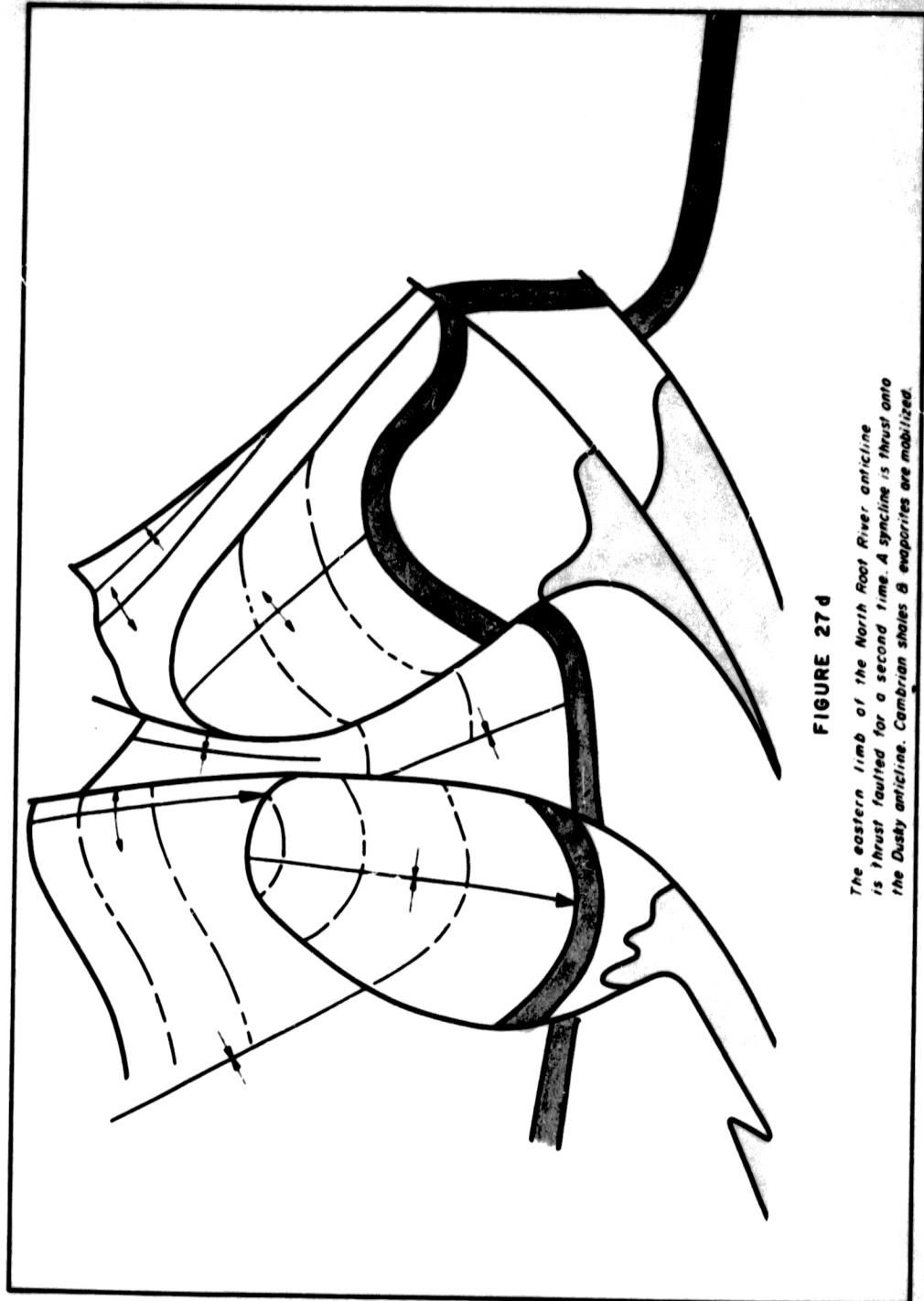


FIGURE 27d

The eastern limb of the North Root River anticline is thrust faulted for a second time. A syncline is thrust onto the Dusky anticline. Cambrian shales & evaporites are mobilized.

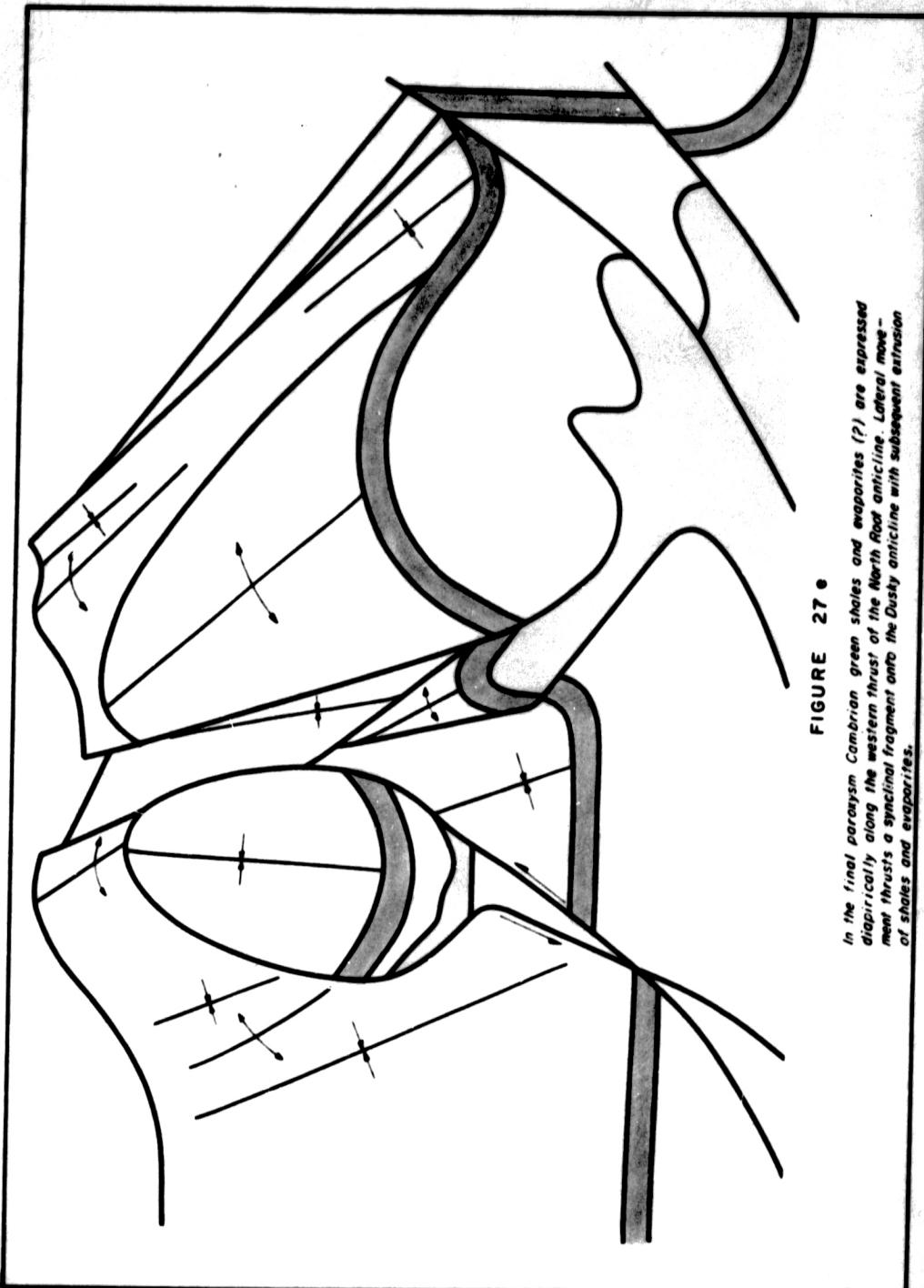


FIGURE 27e

In the final paroxysm Cambrian green shales and evaporites (?) are expressed diapirically along the western thrusts of the North Root anticline. Lateral movement thrusts a synclinal fragment onto the Dusty anticline with subsequent extrusion of shales and evaporites.

extend for over a mile. Any reef within the Whittaker Formation and near the crestal culmination could be bled off by these reef fingers extending updip from the main reef body.

There are several problems seismically in delineating such a reef body. First, the terrain is extremely broken and would not be accessible for normal tracked vehicles. Second, it is doubtful if the reef body could be delineated in the enclosing carbonates. It is extremely unlikely that there would be a sufficient velocity contrast to identify the reef body.

STRUCTURAL EVOLUTION OF THE NORTH ROOT RIVER ANTICLINE

The structural evolution of the North Root River Anticline is given to assist any further evaluation of this anticline and its complex history. All structural complications are a function of sliding in the Laramide orogeny.

Initial sliding generated the Dusky and North Root River Anticlines en echelon (Fig. 27a). Further sliding led to oversteepening of the eastern limb and thrust faulting of this limb (Fig. 27b). Oversteepening and reversed thrust faulting of the western limb followed along with superficial flexuring of the eastern limb (Fig. 27c). As synclinal flexuring of the eastern limb (Fig. 27d) became more pronounced it thrust faulted this syncline and pushed the remnant limb of the anticline into a vertical position. At the same time (Fig. 27e) green shales were expressed diapirically along the western reverse thrust and caused an anticline and syncline at the base of the western limb. Late phase transverse faulting carried a section of the Delorme syncline and thrust it along with diapiric green shales across the plunging nose of the Dusky Anticline.

PERMITS 6922 AND 6923 MARTEN CREEK BLOCK

The permits 6922 and 6923 straddle the Marten Creek Syncline. They are flanked to the east by the Redstone and Dusky Ranges and to the west by the structurally complex Rouge Range.

The two principal anticlines in this permit area are identified as Anticline A and Anticline B (Fig. 28). The area encompassing the northeast corner of the permit is structurally complex as the Redstone Range interacts with the Dusky Range.

Anticline A plunges to the southeast and is thrust faulted at its up-dip edge onto the Redstone Range. All beds from Whittaker up to Nahanni are exposed at this fault contact and have now weathered back, exposing the core of the anticline. This anticline is not a drilling prospect. Some small synclines and anticlines in the northeastern corner of the permit are superficial and not of economic structural importance.

Anticline B is an asymmetrical, tightly folded anticline, 1 1/2 miles wide and 7 miles long. It plunges rapidly to the southeast, but only slightly (1° to 3°) to the northwest. Its northern prolongation eventually dies out as a minor fold on the flank of Anticline A. Effective closure to the north is one of the problems associated with the prospectiveness of this anticline. The southeastern plunge of the anticline steps laterally sideways to the southwest as the southern end of the anticline interacts with the western flank of the Dusky Anticline. This lateral shift of the crest in no way impairs the closure at this end.

A cross section of Anticline B (Fig. 29) has been drawn transverse to the crestal axis, following a stream crossing (Fig. 28) within the southern

STRUCTURAL CROSS SECTION

WEST

ANTICLINE B

EAST

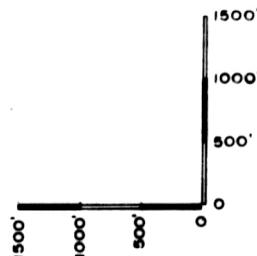
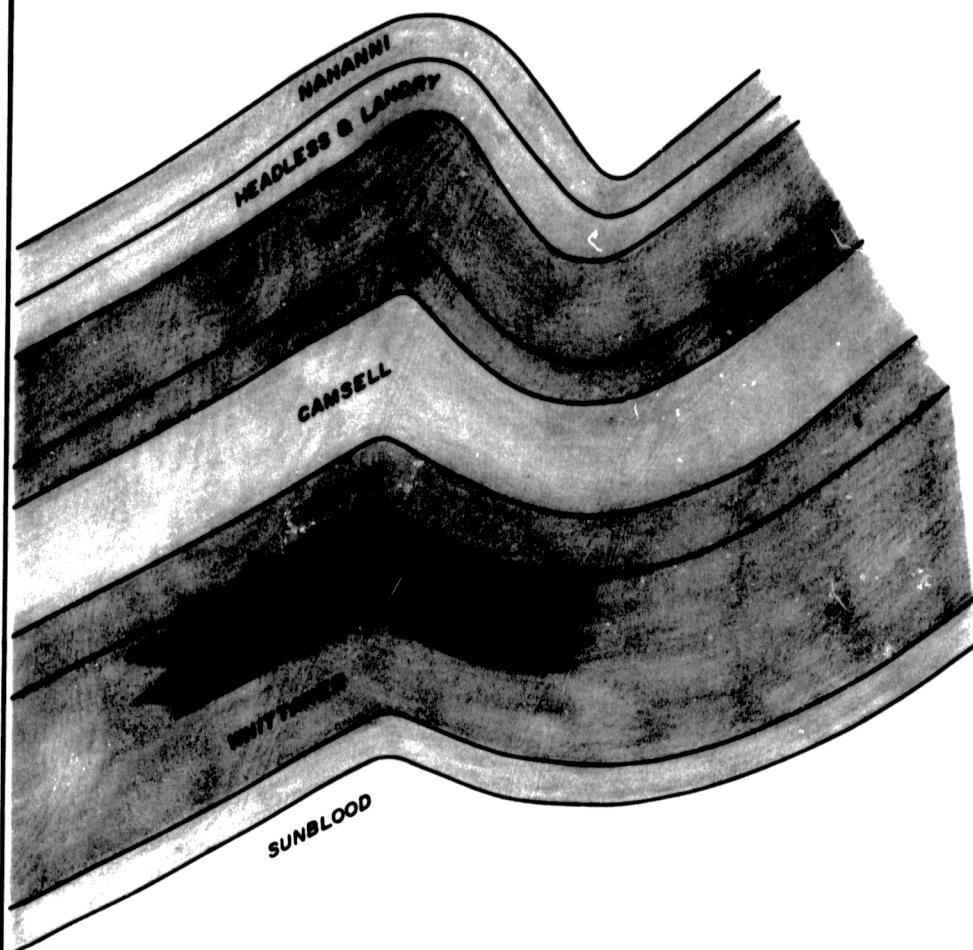



Figure 29

half of the anticline. This section shows that the anticline is progressively eliminated with depth. At 9000 feet the anticline would be approximately 3000 feet wide with 800+ feet of closure.

The stratigraphic objective would be the sucrosic dolomite of a Whittaker reef. It would be difficult to seismically identify such a reef because of the absence of a velocity contrast between the reef and the enclosing dolomites.

Further features that detract from the prospectiveness of this anticline are:

1. All formations are exposed in the Dusky Range at higher elevation to the east. The hydraulic head of fresh water could be sufficient to flush all formations in the anticline.
2. The northern plunge is inadequate for effective closure.
This is not a suitable drilling prospect.

BIBLIOGRAPHY

Buxtorf, A. (1910): "Geologische Beschreibung des Weissenstein-tunnels and seiner Umgebung," Mater. crt. geol. Suisse 21 (not seen by author).

de Sitter, L.U. (1956): "Structural Geology," McGraw-Hill Book Company, pp. 1-551.

Douglas, R.J.W. and D.K. Norris (1960): "Virginia Falls and Sibbeston Lake Map Areas, Northwest Territories 95F and 95G," G.S.C. Paper 60-19, pp. 1-26.

Douglas, R.J.W. and D.K. Norris (1961): "Camsell Bend and Root River Map Areas, District of Mackenzie, Northwest Territories 95J and 95K," G.S.C. Paper 61-13, pp. 1-36.

Douglas, R.J.W. and D.K. Norris (1963): "Dahadinni and Wrigley Map Areas, District of Mackenzie, Northwest Territories 95N and 95O," G.S.C. Paper 62-33, pp. 1-34.

PLATES

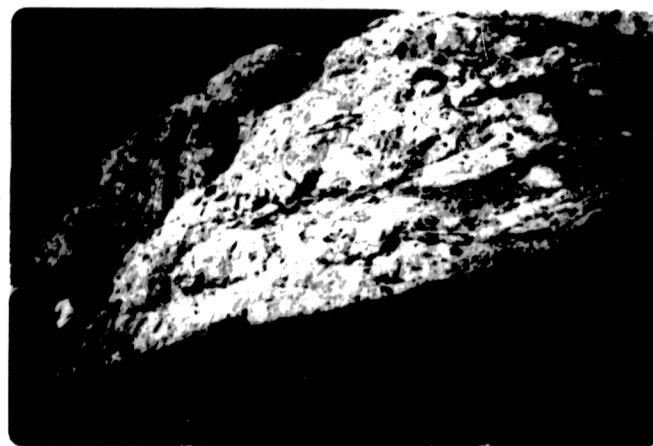


PLATE 1. Main reef body of sucrosic dolomites, Whittaker Formation, Station 107.



PLATE 2. Reef mounds extending in front of the main reef body, Station 107.

PLATE 3. Bear Rock reef front, Manetoe Formation. Looking south--1000+ feet of off reef shales lie to the right hand side and west two miles from this station.

PLATE 4. Station 29, North Nahanni Gorge, showing an Arnica step overlain by Funeral shales.

PLATE 5. Station 104, North Nahanni Gorge. Back reef Arnica dolomites overlain by Manetoe reef facies of the Bear Rock Group.



PLATE 6. Unconformity within back reef facies of the Arnica Formation, Bear Rock Group, Station 18.



PLATE 7. Unconformity at the top of Funeral Formation,
east of Station 13, northern Nahanni Plateau area.

PLATE 8. Unconformity at the top of the Funeral Formation;
further view along same range as in Plate 7.

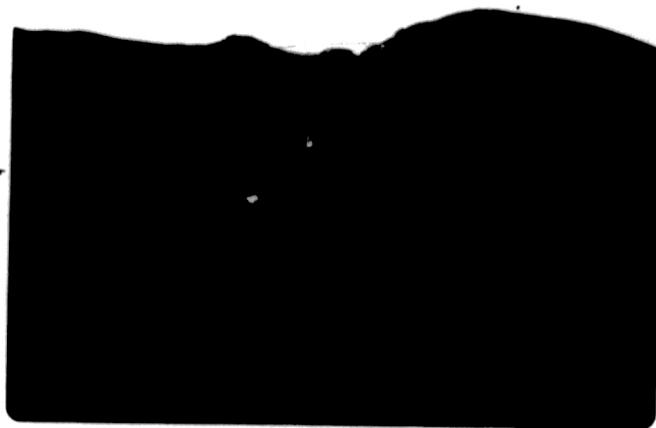


PLATE 9. Shale out of Nahanni Formation Corridor Creek, northern Nahanni Plateau area.

PLATE 10. View looking north of the western flank and crest of the Hollow Mountain anticline. Nahanni limestones overly Headless shales, vestigial Landry and subjacent Funeral shales.

PLATE 11. View north from north of the Root River of the crest of the North Root River Anticline. The light buff limestone are the Camsell Formation. In the middle distance the crest interacts with the east flank of the Dusky Anticline. A syncline is overthrust over the Dusky Anticline in the top left hand corner.

STRATIGRAPHIC SECTION

NTS:

		TOP		BASE		OUTCROP SECTION	
LOCATION		LAT.	63° 18'	LONG.	63° 17'	STATION № 106	
FIELD DESCRIPTION BY:		PALEONTOLOGY BY:				ANTICLINE B	
TOTAL THICKNESS:		2440'				DATE: JULY 27, 1971	
NOTE: Measured by tape and Brunton along stream bed on west flank of anticline B.							

LEGEND		SUMMARY			
FORMATION	THICKNESS	LITHOLOGY	FORMATION	THICKNESS	LITHOLOGY
HORN RIVER	220'				
NAHANNI	760'				
HEADLESS	130'				
LANDRY	740'				
ARNICA	590'				

1 — FAULT

1 — 1 FAULT

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

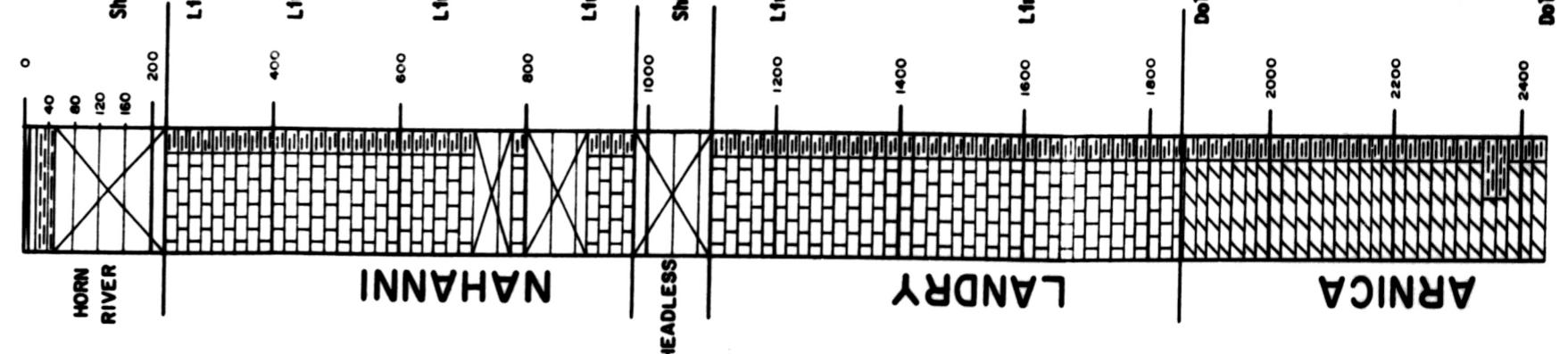
1

1

1

1

1


1

1

1

1

1

HORN RIVER

Shale, dark grey, silty.

200

Limestone, dark grey, micritic-skeletal, brachiopods, trilobites.

400

Limestone, dark grey, massive, micritic-skeletal.

600

Shale, very calcareous.

800

Limestone, dark grey, micritic.

1000

Shale, very calcareous.

1200

Limestone, dark grey, micritic, arenaceous.

1400

Dolomite, medium grey, very fine grained.

1600

Limestone, dark grey, micritic, fine and.

1800

Dolomite, medium grey, argillaceous (20%).

2000

Dolomite, medium grey, argillaceous.

2200

Dolomite, medium grey, argillaceous.

2400

Dolomite, medium grey, argillaceous (20%).

2600

Dolomite, medium grey, argillaceous.

2800

Dolomite, medium grey, argillaceous.

3000

Dolomite, medium grey, argillaceous.

3200

Dolomite, medium grey, argillaceous.

3400

Dolomite, medium grey, argillaceous.

3600

Dolomite, medium grey, argillaceous.

3800

Dolomite, medium grey, argillaceous.

4000

Dolomite, medium grey, argillaceous.

4200

Dolomite, medium grey, argillaceous.

4400

Dolomite, medium grey, argillaceous.

4600

Dolomite, medium grey, argillaceous.

4800

Dolomite, medium grey, argillaceous.

5000

Dolomite, medium grey, argillaceous.

5200

Dolomite, medium grey, argillaceous.

5400

Dolomite, medium grey, argillaceous.

5600

Dolomite, medium grey, argillaceous.

5800

Dolomite, medium grey, argillaceous.

6000

Dolomite, medium grey, argillaceous.

6200

Dolomite, medium grey, argillaceous.

6400

Dolomite, medium grey, argillaceous.

6600

Dolomite, medium grey, argillaceous.

6800

Dolomite, medium grey, argillaceous.

7000

Dolomite, medium grey, argillaceous.

7200

Dolomite, medium grey, argillaceous.

7400

Dolomite, medium grey, argillaceous.

7600

Dolomite, medium grey, argillaceous.

7800

Dolomite, medium grey, argillaceous.

8000

Dolomite, medium grey, argillaceous.

8200

Dolomite, medium grey, argillaceous.

8400

Dolomite, medium grey, argillaceous.

8600

Dolomite, medium grey, argillaceous.

8800

Dolomite, medium grey, argillaceous.

9000

Dolomite, medium grey, argillaceous.

9200

Dolomite, medium grey, argillaceous.

9400

Dolomite, medium grey, argillaceous.

9600

Dolomite, medium grey, argillaceous.

9800

Dolomite, medium grey, argillaceous.

10000

Dolomite, medium grey, argillaceous.

10200

Dolomite, medium grey, argillaceous.

10400

Dolomite, medium grey, argillaceous.

10600

Dolomite, medium grey, argillaceous.

10800

Dolomite, medium grey, argillaceous.

11000

Dolomite, medium grey, argillaceous.

11200

Dolomite, medium grey, argillaceous.

11400

Dolomite, medium grey, argillaceous.

11600

Dolomite, medium grey, argillaceous.

11800

Dolomite, medium grey, argillaceous.

12000

Dolomite, medium grey, argillaceous.

12200

Dolomite, medium grey, argillaceous.

12400

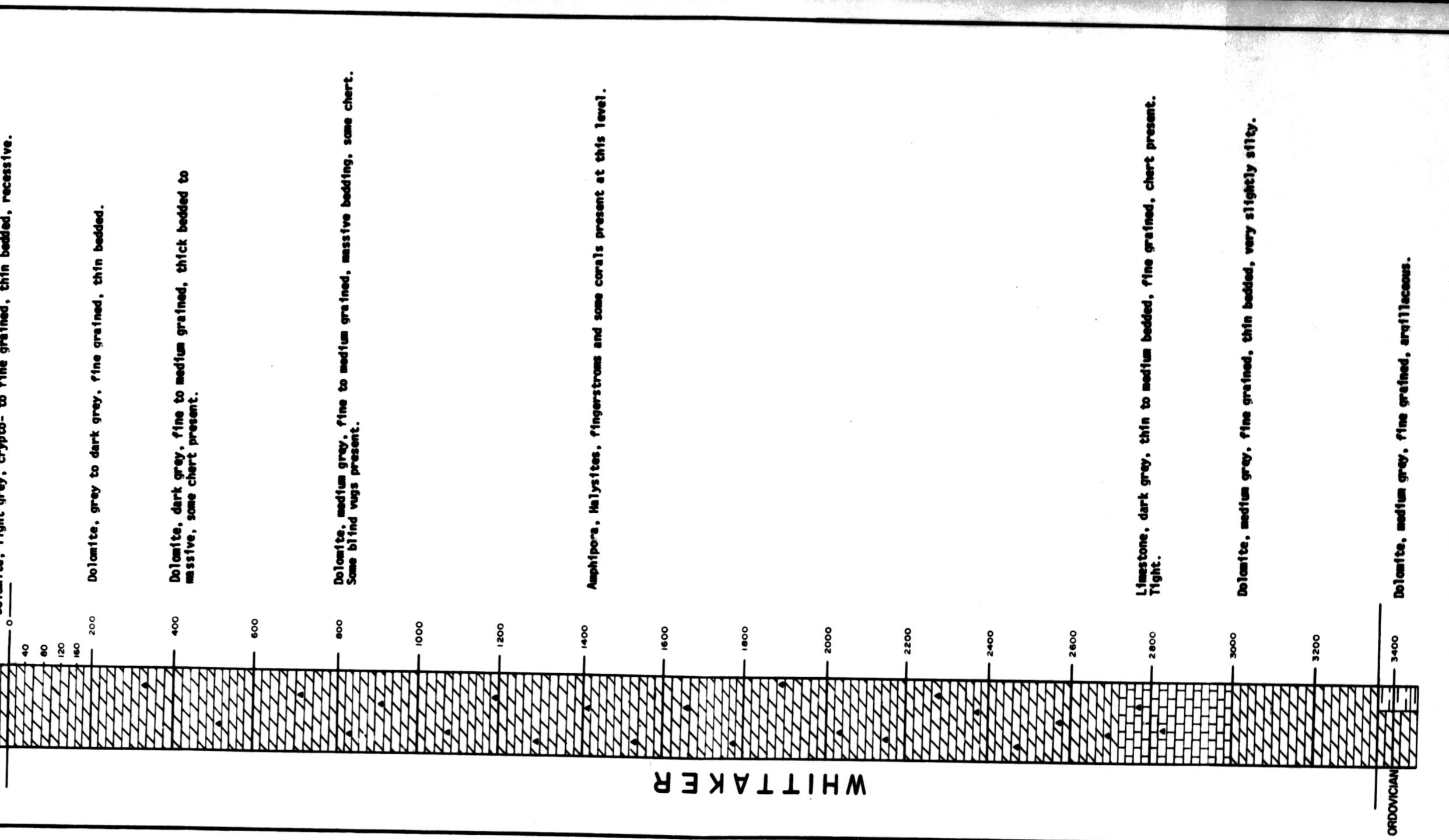
Dolomite, medium grey, argillaceous.

12600

Dolomite, medium grey, argillaceous.

12800

Dolomite, medium grey, argillaceous.


130

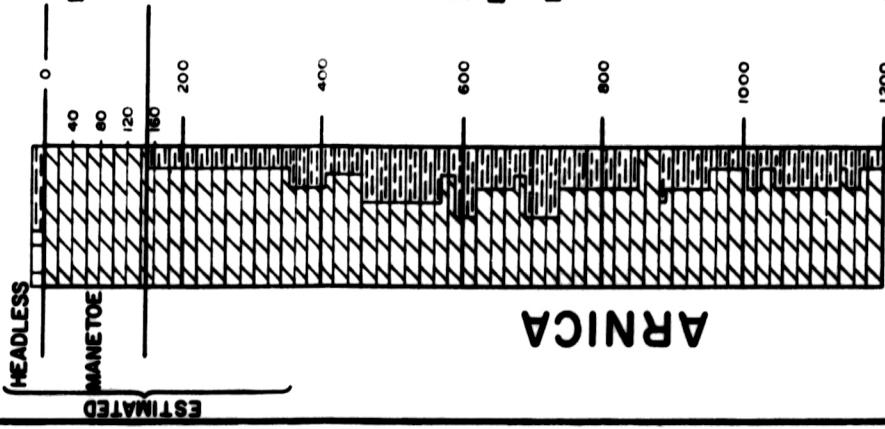
STRATIGRAPHIC SECTION

NTS:		
OUTCROP SECTION		
STATION № 105		
BLUE LAKE		
FIELD DESCRIPTION BY:	PALEONTOLOGY BY:	
R. CHAUDHRY		
TOTAL THICKNESS:	3460'	
NOTE:	Measured along south shore of Blue Lake and combined with section by Douglas and Norris (1963)	DATE: JULY 26, 1971

LEGEND

SHALE	GYPSUM OR ANHYDRITE	BRECCIATED
SILTSTONE	CHERT	COVERED
SANDSTONE	METASEDIMENTS	STROMATOPORA
CONGLOMERATE OR GRAVEL	IGNACEOUS	AMPHIPORA
LIMESTONE	COAL OR LIGNITE	HORN CORALS
DOLOMITE	SILICEOUS	COLONIAL CORALS
CALCAREOUS	PYRITIC, MICACEOUS	LIMESTONE, COLLAPSE BRECCIA
DOLOMATIC	IRONSTONE	SUBMARINE SLUMPING
ARGILLACEOUS (ls, dol)	BITUMINITE	CROSS BEDDING
SANDY (ls, dol)	SKELETAL MATERIAL	ANGULAR UNCONFORMITY
QUARTZITIC	GLAUCONITIC	DISCONFORMITY
		FAULT

STRATIGRAPHIC SECTION


NTS:

FIELD DESCRIPTION BY:		PALEONTOLOGY BY:		OUTCROP SECTION	
LOCATION	TOP	BASE	STATION	STATION	THICKNESS
LAT.	62° 13'	62° 14'			
LONG.	124° 24'	124° 24'			
TOTAL THICKNESS:	1200'		DATE: JULY 18, 1971	SUMMARY	
R. CHAUDHRY		Manetoe Form.		Thickness	150'
NOTE: Measured by tape and Brunton on south bank of the North Nahanni gorge.		Arniaca Form.		Thickness	1050'

NORTH NAHANNI GORGE

LEGEND

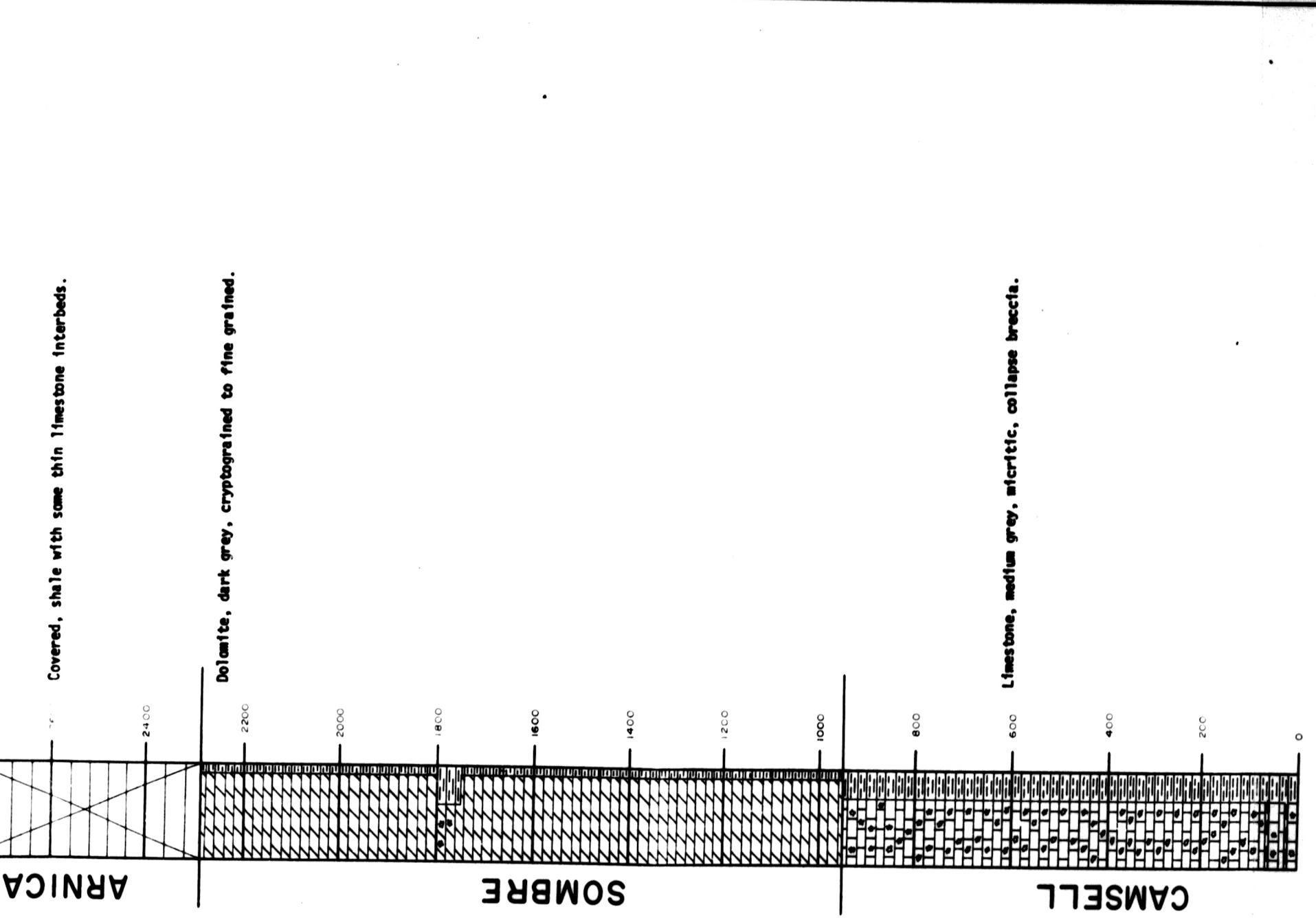
SHALE	GYPSUM OR ANHYDRITE	BRECCIATED
SILTSTONE	CHERT	COVERED
SANDSTONE	METASEDIMENT	STROMATOPORA
CONGLOMERATE OR GRAVEL	IGNACEOUS	AMPHIPORA
LIMESTONE	COAL OR LIGNITE	HORN CORALS
DOLOMITE	SILICEOUS	COLONIAL CORALS
CALCAREOUS	PYRITIC, MICACEOUS	LIMESTONE, COLLAPSE BRECCIA
DOLOMATIC	IRONSTONE	SJMARINE SLUMPING
ARGILLACEOUS (ls, dol)	BENTINITE	CROSS BEDDING
SANDY (ls, dol)	SKELETAL MATERIAL	ANGULAR UNCONFORMITY
QUARTZITIC	GLAUCONITIC	DISCONFORMITY
		1 FAULT

poor vuggy porosity

<5%

STRATIGRAPHIC SECTION

NTS:			
LOCATION		TOP	BASE
LAT.		62° 30'	62° 30'
LONG.		124° 45'	124° 47'
FIELD DESCRIPTION BY:	PALEONTOLOGY BY:		
R. CHAUDHRY			
TOTAL THICKNESS:	2840'	DATE:	JULY 8, 1971
NOTE:	Measured by tape and Brunton on south side of Trench Creek.	SUMMARY	
		FORMATION	THICKNESS/LITHOLOGY
		Camsell	950'
		Sombre	1340'
		Arniaca	550'


LEGEND

SHALE	GYPSUM OR ANHYDRITE	BRECCIATED
SILTSTONE	CHERT	COVERED
SANDSTONE	METASEDIMENTS	STROMATOPORA
CONGLOMERATE OR GRAVEL	IGNACEOUS	AMPHIPORA
LIMESTONE	COAL OR LIGNITE	HORN CORALS
DOLOMITE	SILICEOUS	COLONIAL CORALS
CALCAREOUS	PYRITIC, MICACEOUS	LIMESTONE, COLLAPSE BRECCIA
DOLOMATIC	IRONSTONE	CROSS BEDDING
ARGILLACEOUS (ls, dol)	BENTONITE	SUBMARINE SLUMPING
SANDY (ls, dol)	SKELETAL MATERIAL	ANGULAR UNCONFORMITY
QUARTZITIC	GLAUCONITIC	DISCONFORMITY

1 — 1 FAULT

Dolomite, dark grey, cryptocrystalline, bituminous.

Covered, shale with some thin limestone interbeds.

STRATIGRAPHIC SECTION

NTS:

		BASE		OUTCROP SECTION	
LOCATION		TOP	BASE	STATION № 20	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'		
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971

NOTE : Interval thickness from Douglas and Norris (1961)

Described along ridge on north side of Pastel Creek.

(s.s.)

Argillaceous (s.s., dol.)

Sandy (s.s., dol.)

Quartzitic

Dolomitic

Calcareous

Dolomite

Limestone

Conglomerate or Gravel

Sandstone

Siltstone

Shale

		TOP		OUTCROP SECTION			
LOCATION		TOP	BASE	STATION № 20		PASTEL CREEK	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK		PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'				
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971		

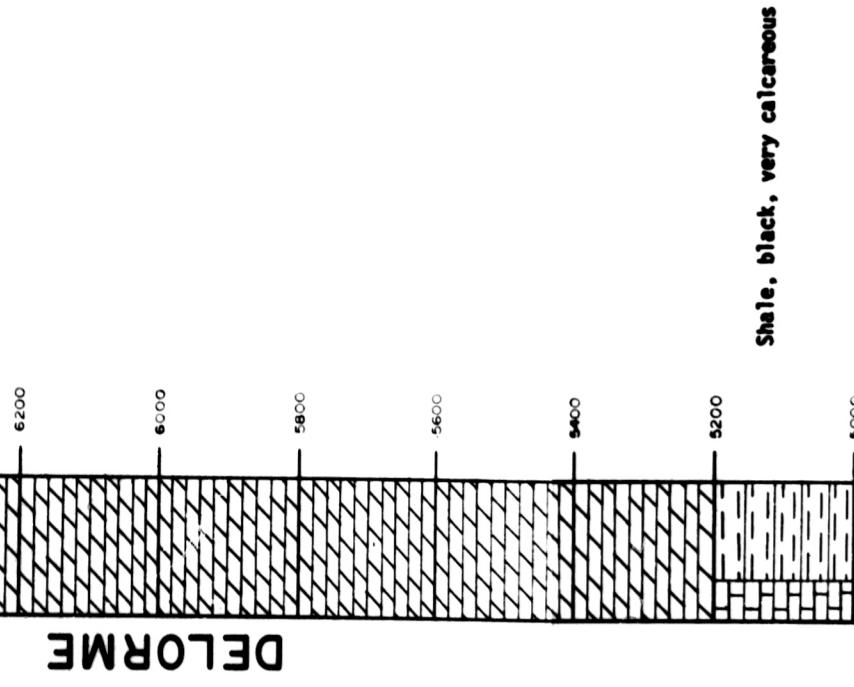
		TOP		OUTCROP SECTION			
LOCATION		TOP	BASE	STATION № 20		PASTEL CREEK	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK		PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'				
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971		

		TOP		OUTCROP SECTION			
LOCATION		TOP	BASE	STATION № 20		PASTEL CREEK	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK		PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'				
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971		

		TOP		OUTCROP SECTION			
LOCATION		TOP	BASE	STATION № 20		PASTEL CREEK	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK		PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'				
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971		

		TOP		OUTCROP SECTION			
LOCATION		TOP	BASE	STATION № 20		PASTEL CREEK	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK		PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'				
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971		

		TOP		OUTCROP SECTION			
LOCATION		TOP	BASE	STATION № 20		PASTEL CREEK	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK		PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'				
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971		


		TOP		OUTCROP SECTION			
LOCATION		TOP	BASE	STATION № 20		PASTEL CREEK	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK		PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'				
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971		

		TOP		OUTCROP SECTION			
LOCATION		TOP	BASE	STATION № 20		PASTEL CREEK	
FIELD DESCRIPTION BY:		62° 48'	62° 48'	PASTEL CREEK		PASTEL CREEK	
P. MCGILL		125° 14'	125° 17'				
TOTAL THICKNESS :	9600'			DATE :	JULY 29, 1971		

| | |
<th colspan="
| --- | --- |

occasional scattered small very porosity, permeability unit.

Probably back reef facies.

Limestone, black, micritic skeletal, argillaceous, skeletal, mostly crinoids.

Dolomite, dark grey to black, micritic-skeletal relict texture, 20% stroms, finger corals, crinoids, brachiopods. Platform facies.

Dolomite, dark grey, very fine grained, laminated basinal facies or platform margin.

Some submarine slumping near base of unit.

Chert, silicified thin bedded sediments. Tight.

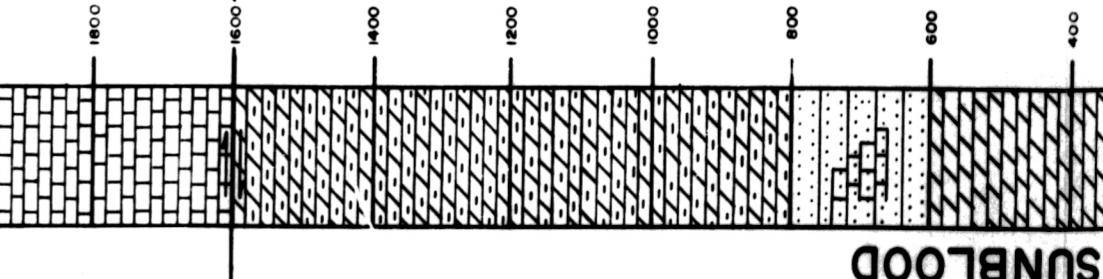
Dolomite, dark, fine grained, beds with 5% leached wavy porosity, mostly tight. 20% crinoid ossicles. Platform facies

Up to 10% fracture porosity.

Dolomite, dark, fine grained, beds with 5% leached wavy porosity, mostly tight.

In part relict skeletal, 15% brachiopods, gastropods, crinoids, occasional Stromatoporoidea and colonial corals.

Limestone, dark grey - black, thin bedded recessive weathering.


(This unit faulted out on Pastel Creek South, but visible on next range west).

Dolomite, grey, fine grained, silt to very silty, tight.

Sandstone, cream, quartitic, coarse grained dolomitic and cross bedded.

Dolomite, grey, fine grained, silt to very silty to arenaceous.

Note: The sand interval was not measured. Its position in the section was estimated.

DELORME

WHITTAKER

SUNBLOOD

STRATIGRAPHIC SECTION

NTS:

LOCATION				TOP		BASE		OUTCROP SECTION			
FIELD DESCRIPTION BY:		PALEONTOLOGY BY:		STATION № 19				EAST OF ANTICLINE B			
P. MCGILL											
TOTAL THICKNESS: 3000'		DATE: JULY 27, 1971				SUMMARY					
NOTE: Interval thickness from Douglas and Norris (1963)				FORMATION				THICKNESS LITHOLOGY			
Described along stream bed.				Camself				100'			
				Sombre				800'			
				Arnica				1480'			
				Landry				410'			
				Headless				210'			

LEGEND

SHALE	GYPSUM OR ANHYDRITE	BRECCIATED
SILTSTONE	CHERT	COVERED
SANDSTONE	METASEDIMENTS	STROMATOPORA
CONGLOMERATE OR GRAVEL	IGNACEOUS	AMPHIPORA
LIMESTONE	COAL OR LIGNITE	HORN CORALS
DOLOMITE	SILICEOUS	COLONIAL CORALS
CALCAREOUS	PYRITIC, MICACEOUS	LIMESTONE, COLLAPSE BRECCIA
DOLOMITIC	IRONSTONE	SUBMARINE SLUMPING
ARGILLACEOUS (ls, dol)	BENTINITE	CROSS BEDDING
SANDY (ls, dol)	SKELETAL MATERIAL	ANGULAR UNCONFORMITY
QUARTZITIC	GLAUCONITIC	DISCONFORMITY
		— FAULT

Limestone, grey-brown, very argillaceous, micritic
 Shale, dark grey, very calcareous
 Limestone, grey-brown to grey, lime mud.
 Birdseye with clear calcite cement.

HEADLESS

2800

2600

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

0

LANDRY

Dolomite, interbanded light grey and dark grey in equal proportions:
 Light grey, dolomitized lime mud, crypto-crystalline.
 Dark grey, bituminous, fetid odor, bioclastic, fine grained
 in part, amphipora or crinoids up to 20% plugged vesicular porosity, less than 1%.
 Dolomite, light grey (30% of the total)

Dolomite mostly light grey, cryptocrystalline weathers light grey - buff.

Lower part with some siltstone interbeds and 5% silt content in dolomite.

Some collapse breccia higher in section. Tight.

Environment: Mostly dolomitized back reef lime mud.

Dolomite, black, argillaceous, calcareous, bioclastic some beds amphipora.

Tight.

Limestone, grey-green to buff, very argillaceous, collapse breccia

Environment: Restricted, landward suba.

SOMBRE

Dolomite, black, argillaceous, calcareous, bioclastic some beds amphipora.

STRATIGRAPHIC SECTION

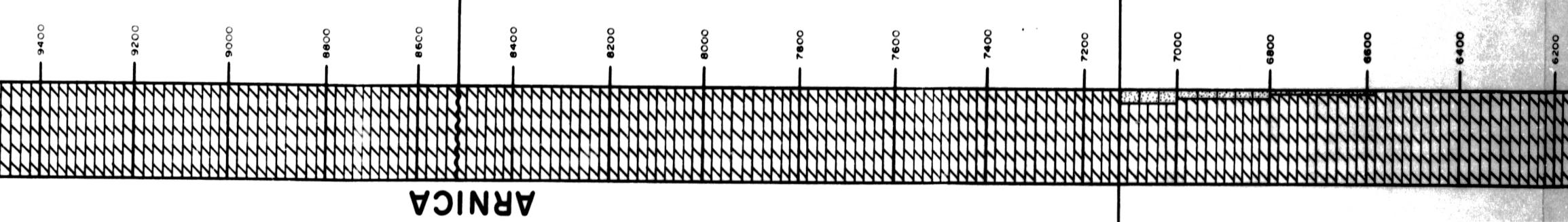
NTS:

		OUTCROP SECTION	
		STATION № 18	
		REDSTONE RANGE	
FIELD DESCRIPTION BY:	P. McGill	TOTAL THICKNESS:	10,260
NOTE:	Interval thickness from Douglas and Norris (1963)	DATE:	JULY 28, 1971
Section described along stream bed.			

LOCATION	LAT.	TOP	BASE	SUMMARY	
				FORMATION	THICKNESS (THICKNESS)
LONG.	63° 10'	63° 09'		Landry	720'
	125° 42'	125° 46'		Arnica	2420'
				Sombre	2870'
				Camsell	1850'
				Delorme	2100'
				Whittaker	300'

LEGEND

—	SHALE
—	SILTSTONE
—	SANDSTONE
—	CONGLOMERATE OR GRAVEL
—	LIMESTONE
—	DOLOMITE
—	CALCAREOUS
—	DOLOMATIC
—	ARGILLACEOUS (ls, dol)
—	SANDY (ls, dol)
—	QUARTZITIC
—	GYPSUM OR ANHYDRITE
—	CHERT
—	METASEDIMENTS
—	IGNACEOUS
—	COAL OR LIGNITE
—	SILECEOUS
—	PYRITIC, MICK-EOUS
—	IRONSTONE
—	BENTONITE
—	SKELETAL MATERIAL
—	GLAUCONITIC
—	BRECCIATED
—	COVERED
—	STROMATOPORA
—	AMPHIPORA
—	HORN CORALS
—	COLONIAL CORALS
—	LIMESTONE, COLLAPSE BRECCIA
—	SUBMARINE SLUMPING
—	CROSS BEDDING
—	ANGULAR UNCONFORMITY
—	DISCONFORMITY
—	FAULT


Limestone, grey-brown, fine mud, tight.

Dolomite, dark grey, cryptocrystalline.

Relict structure, algal mat and mud mounds.

Tight.

LANDRY

Dolomite, dark grey, cryptocrystalline. Relict structure micritic skeletal. Extreme leaching, zebra stone and leached breccias. All vugs now plugged with replacement dolomite.

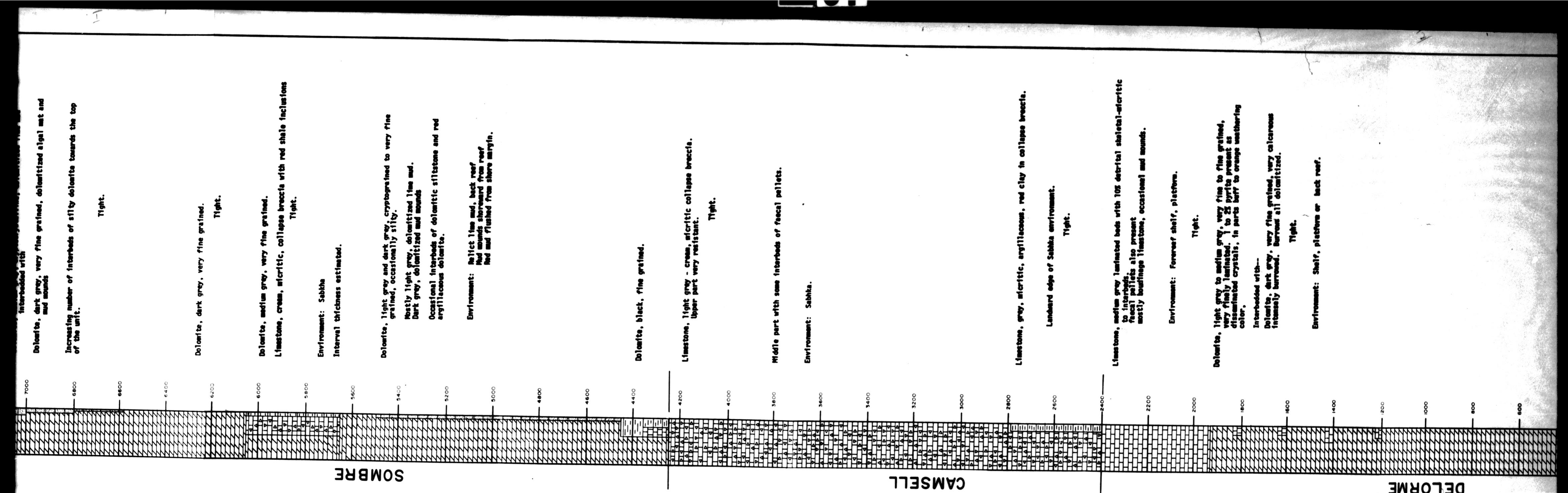
Dolomite, dark grey, very fine grained. Relict structure, algal mat and mud mounds. Some interbeds of algal mat and algal mounds. Up to 30% plugged leached vuggy porosity. Overall about 10% plugged leached vuggy porosity.

Dolomite, mostly dark grey - black, very fine to medium grained. Felted odor.

Interbeds with relict micritic-skeletal with amphipora, brachiopods and crinoid ossicles. Some interbeds of algal mat and algal mounds.

Up to 30% plugged leached vuggy porosity.

Overall about 10% plugged leached vuggy porosity.


(Unit thickness estimated)

ARNICA

Dolomite, medium grey, cryptocrystalline, dolomitized lime and dolomite, interbedded with dolomitized lime and dolomite, dark grey, very fine grained, dolomitized algal mat and dolomite, dark grey, very fine grained.

Increasing number of interbeds of silty dolomite towards the top of the unit.

Tight.

5400
5200
5000
4800
4600
4400
4200
3800
3600
3400
3200
3000
2800
2600
2400
2000
1800
1600
1400
1200
1000
800
600
400
200
0

SO

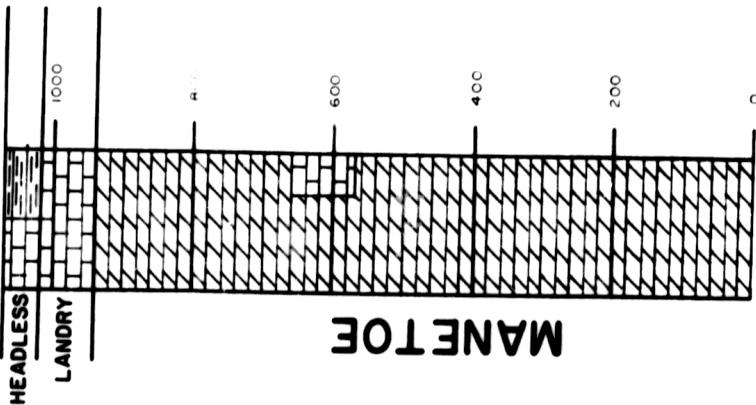
STRATIGRAPHIC SECTION

		NTS:		OUTCROP SECTION	
LOCATION	LAT.	TOP	BASE	STATION № 16	IVERSON RANGE
	LAT.	62° 26'	62° 26'		
	LONG.	124° 24'	124° 24'		
FIELD DESCRIPTION BY:	P. MCGILL	PALEONTOLOGY BY:			
TOTAL THICKNESS:	1070'				
NOTE:	Measured with pogo stick up a prominent ridge.				

DATE: JULY 18, 1971

FORMATION	SUMMARY	
	THICKNESS	LITHOLOGY
Headless	50'	
Landry	80'	
Manetoe	940'	

HEADLESS


LANDRY

MANETOE

LEGEND

SHALE	GYPSUM OR ANHYDRITE	BRECCIATED
SILTSTONE	CHERT	COVERED
SANDSTONE	METASEDIMENTS	STROMATOPORA
CONGLOMERATE OR GRAVEL	IGNACEOUS	AMPHIPORA
LIMESTONE	COAL OR LIGNITE	HORN CORALS
DOLOMITE	SILICEOUS	COLONIAL CORALS
CALCAREOUS	PYRITIC, MIOCACEOUS	LIMESTONE, COLLAPSE BRECCIA
DOLOMATIC	IRONSTONE	SUBMARINE SLUMPING
ARGILLACEOUS (ls, dol)	BENTONITE	CROSS BEDDING
SANDY (ls, dol)	SKELETAL MATERIAL	ANGULAR UNCONFORMITY
QUARTZITIC	GLAUCONITIC	DISCONFORMITY

1 FAULT

Shale, dark gray, very argillaceous.

Limestone, light brown, skeletal-stalal.

Dolomite, 20% leached vuggy porosity, good intergranular porosity. Dolomite, white, coarse grained, mostly replacement dolomite, up to 10% intergranular porosity 865-895 feet.

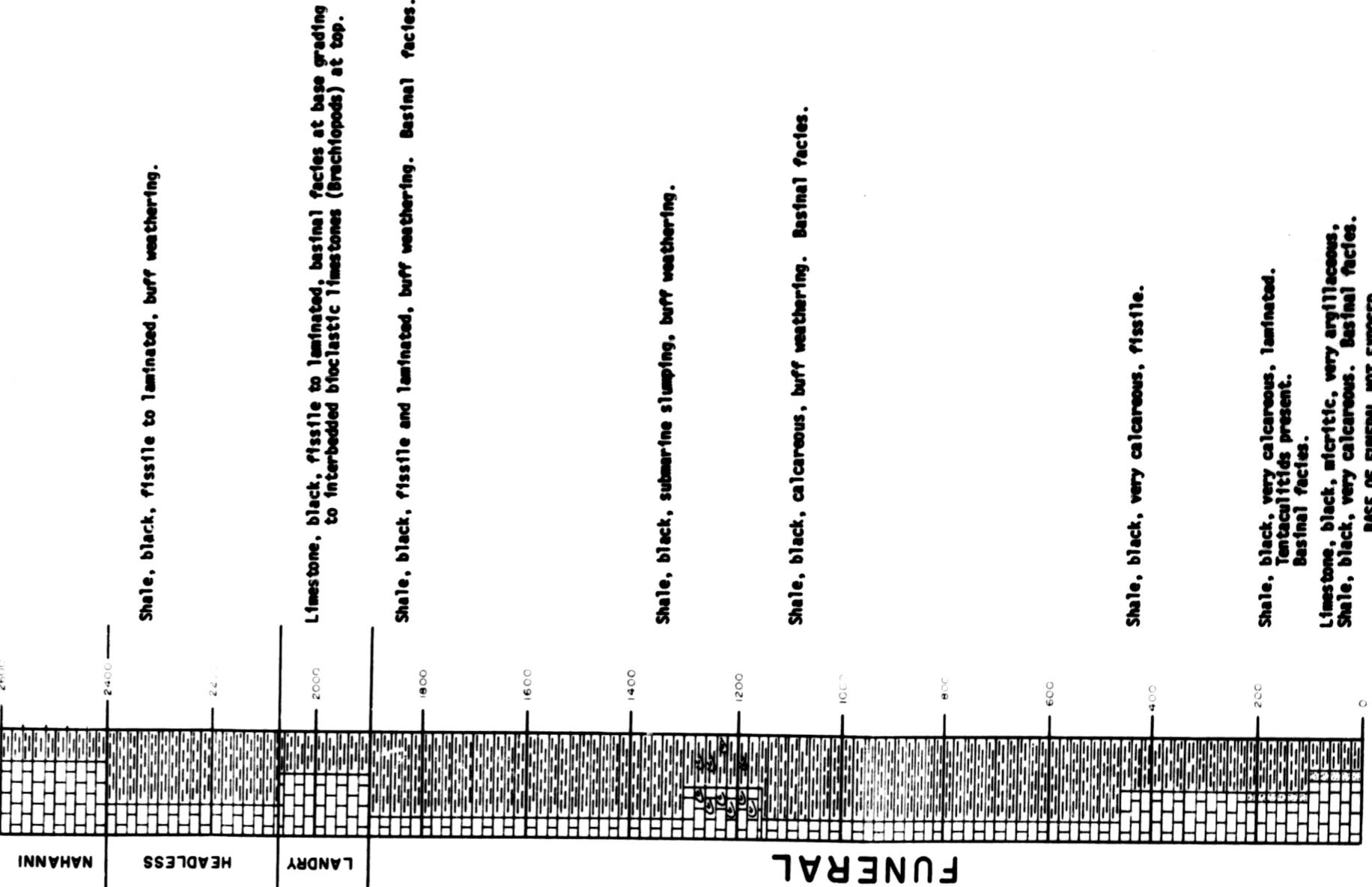
Lower some poor pinpoint porosity.

Dolomite, white, medium to coarse grained, replacement 70%. Limestone, gray, fine and 30% Tight.

Dolomite, white, medium to coarse grained 90% white replacement dolomite, plugged, leached, vuggy porosity.

Dolomite, dark gray, fine grained 50%, tight. 50% replacement dolomite, white medium to coarse grained, tight.

Dolomite, gray, fine to coarse grained, relict texture, skeletal micritic 50-50% shell hash.


BASE NOT EXPOSED

STRATIGRAPHIC SECTION

LOCATION		TOP	BASE	OUTCROP SECTION	
LAT.		62° 06'	62° 06'	STATION № 14	
LONG.		124° 27'	124° 26'	FUNERAL SECTION	
FIELD DESCRIPTION BY:		PALEONTOLOGY BY:			
P. MCGILL					
TOTAL THICKNESS:		2600'		DATE:	JULY 19, 1971
NOTE:		Measured by tape and Brunton along stream bed and then up side ridge.		SUMMARY	
				FORMATION	THICKNESS/THICKNESS
				Nathanni	200'
				Headless	330'
				Landry	170'
				Funeral	1900'

LEGEND	
	GYPSUM OR ANHYDRITE
	BRECCIATED
	CHERT
	COVERED
	STROMATOPORA
	AMPHIPORA
	HORN CORALS
	COLONIAL CORALS
	LIMESTONE, COLLAPSE BRECCIA
	SUBMARINE SLUMPING
	CROSS BEDDING
	ANGULAR UNCONFORMITY
	DISCONFORMITY
	SHALE
	SILTSTONE
	SANDSTONE
	CONGLOMERATE OR GRAVEL
	LIMESTONE
	DOLOMITE
	CALCAREOUS DOLOMITE
	ARGILLACEOUS (ls, dol)
	SANDY (ls, dol)
	QUARTZITIC

Accurate suggestions this is close to & full section of Funeral.

STRATIGRAPHIC SECTION

N T S

FIELD DESCRIPTION BY:		PALEONTOLOGY BY:		HEADWATERS ENGLISH	CHIEF RIVER
LOCATION	LAT.	124° 58'	TOP	124° 56'	BASE
	LONG.	62° 32'		62° 33'	
STATION N° 4		OUTCROP SECTION			

Limestone, black.
Shale interbeds.
Flysch type deposit. Some submarine slumping at top of section.

Limestone (black) interbedded with shale from typical flysch deposits.

Shale, black, laminated and fissile, basinal.

Shale, black, calcareous, fissile. At 600

FORMATI0N

Shale, black, laminated and fissile, basinal.

600 Shale, black, fissile. At 600 feet Graptolite locality.

Shale, black, calcareous, laminated.

800

1000

1200

Shale, black, calcareous with some 1' limestone interbeds.
Basinal facies.

1400

Shale, black.

1600

Shale, black, fissile.

1800

2000

Limestone, black, argillaceous, trace pyrite.

2200

2400

Dolomite, dark gray, micrograined.

Dolomitized lime mud, argillaceous

- frequent Chert Nodules

- quartz veining throughout

Tight.

Shale, black, fissile.

Shale, black, fissile, recessive.

2600

2800

Dolomite, light gray, cryptocrystalline, wavy, irregular bedding.

3000

Dolomite, gray, very fine grained, massive fossiliferous 35%

3200

Halyrites and Favosites. Tight.

3400

Interbedded Limestone, black, micritic, very argillaceous, thin bedded.

Shale, black, calcareous.

3600

Quartz veining throughout.

3800

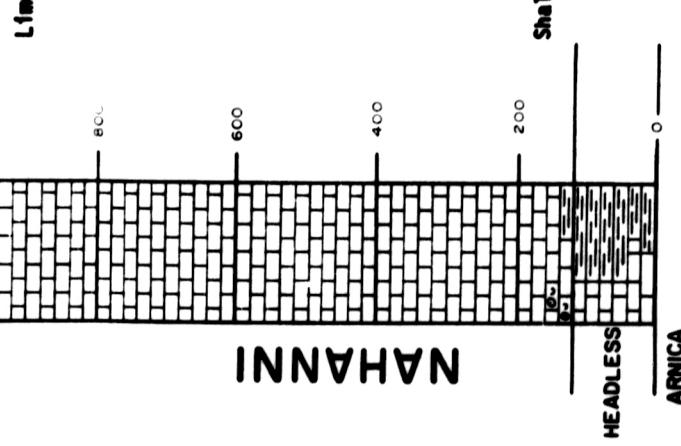
Basinal, flysch deposits.

4000

4200

4400

4600


W H I T T A K E R F O R M A T I O N

STRATIGRAPHIC SECTION

NTS:			
OUTCROP SECTION			STATION № 8
HOLLOW MOUNTAIN ANTICLINE			
FIELD DESCRIPTION BY : PALEONTOLOGY BY :			
P. MCGILL			
TOTAL THICKNESS : 1050'			
NOTE : Measured by tape and Brunton on western flank of Hollow Mountain Anticline.			
DATE : JULY 16, 1971			
SUMMARY		FORMATION	THICKNESS (THOUSANDS)
		Nahanni Headless	940' 110'

LEGEND

—	SHALE	—	GYPSUM OR ANHYDRITE
—	SILTSTONE	—	CHERT
—	SANDSTONE	—	METASEDIMENTS
—	CONGLOMERATE OR GRAVEL	—	IGNACEOUS
—	LIMESTONE	—	COAL OR LIGNITE
—	DOLOMITE	—	SILICEOUS
—	CALCAREOUS	—	PYRITIC, MICACEOUS
—	DOLOMITIC	—	IRONSTONE
—	ARGILLACEOUS (ls, dol)	—	BENTHITE
—	SANDY (ls, dol)	—	SKELETAL MATERIAL
—	QUARTZITIC	—	GLAUCONITIC
—		—	FAULT
—		—	CROSS BEDDING
—		—	ANGULAR UNCONFORMITY
—		—	DISCONFORMITY
—		—	LIMESTONE, COLLAPSE BRECCIA
—		—	SUBMARINE SLUMPING
—		—	COLONIAL CORALS
—		—	STROMATOPORA
—		—	AMPHIPORA
—		—	HORN CORALS
—		—	BRITTLE
—		—	COVERED
—		—	BRECCIATED

Limestone, dark grey to black, micritic to micritic skeletal.

Skeletal includes brachiopods, solitary corals and crinoids.

Shale, dark grey, very calcareous, with brachiopods and crinoids.

STRATIGRAPHIC SECTION

NTS:							
LOCATION		TOP	BASE	OUTCROP SECTION			
FIELD DESCRIPTION BY:		124° 50'	124° 54'	STATION No. 13			
P. MC GILL		61° 52'	61° 52'	TUNDRA RIDGE			
TOTAL THICKNESS: 9500'							
NOTE:	DATE: JULY 18, 1971			SUMMARY			
Interval thickness from Douglas and Norris (1960)				FORMATION			
Described along crest of ridge				THICKNESS LITHOLOGY			
				Bear Rock - Arnica			
				Sombre - Upper 490'			
				Middle 1060'			
				Lower 590'			
				Delorme & Camsell 2440'			
				4920'			

LEGEND

SHALE	GYPSUM OR ANHYDRITE
SILTSTONE	CHERT
SANDSTONE	METASEDIMENTS
CONGLOMERATE OR GRAVEL	IGNACEOUS
LIMESTONE	COAL OR LIGNITE
DOLOMITE	SILICEOUS
CALCAREOUS	PYRITIC, MICACEOUS
DOLOMITIC	IRONSTONE
ARGILLACEOUS (ls, dol)	BENTINITE
SANDY (ls, dol)	SKELETAL MATERIAL
QUARTZITIC	GLAUCONITIC

LEGEND

BRECCIATED	COVERED
STROMATOPORA	AMPHIPORA
HORN CORALS	COLONIAL CORALS
LIMESTONE, COLLAPSE BRECCIA	SUBMARINE SLUMPING
CROSS BEDDING	ANGULAR UNCONFORMITY
DISCONFORMITY	FAULT

Interval thickness from Douglas and Norris (1960)

Described along crest of ridge

DATE: JULY 18, 1971

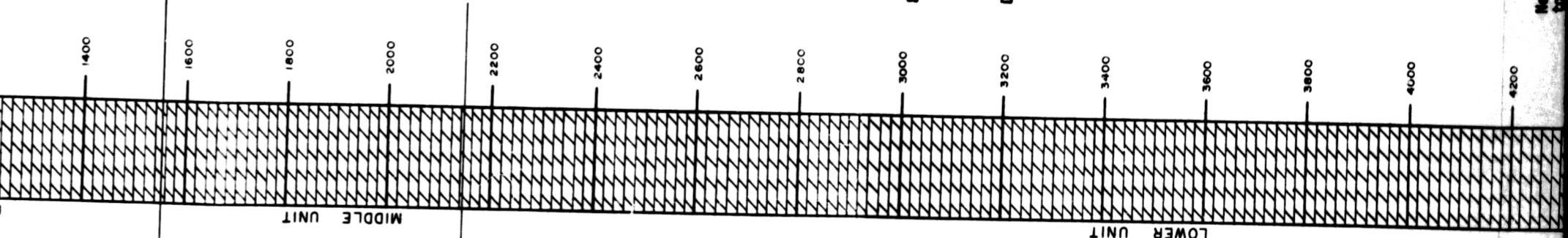
SUMMARY

FORMATION

THICKNESS LITHOLOGY

Bear Rock - Arnica

Sombre - Upper 490'


Middle 1060'

Lower 590'

Delorme & Camsell 2440'

4920'

SOMBRE FORMATION

Dolomite, dark grey, fine to medium grained, some rare bioclastic layers.

Scattered poor leached vuggy porosity.

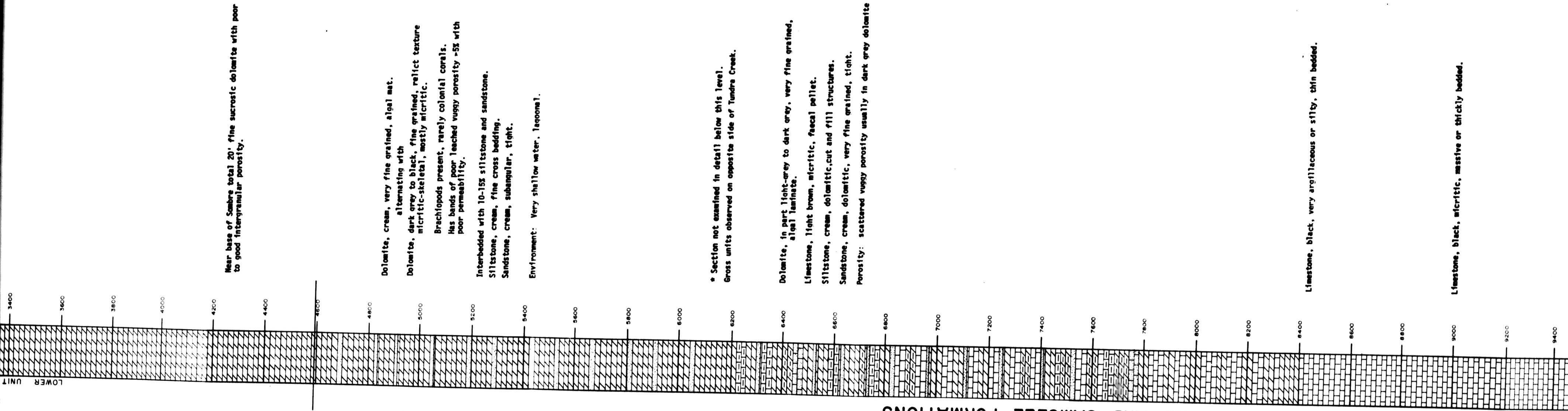
Dolomite, light grey, very fine to fine grained, algal laminate, tight.

Environment dolomitized back reef muds and algal laminates.

Environment: Back reef algal mat.

Dolomite, dark grey, fine grained, algal mat, tight.

Environment: Back reef algal mat.


Dolomite, cream, very fine grained, dolomitized lime mud or

algal mat.

Environment: Back reef algal mat.

Near base of Sombre total 20', fine sucrosic dolomite with poor
to good intercemental porosity

ERENTIATED DELORME AND CAMSELL FORMATI

