

662.1-5-23

GENERAL GEOLOGY

6

FRACTURE ANALYSIS SURVEY

01

P.E.N.G. PERMIT NO. 5068

for

GROSMONT OIL & GAS LTD.

by

RAYALTA PETROLEUMS LTD.

INTRODUCTION

This report discusses the results of a Fracture Analysis Survey carried out within, and in the immediate vicinity of, Petroleum and Natural Gas Permit No. 5068. This Permit is located in the Northwest Territories and is held under the Canada Oil and Gas Land Regulations and is located between 121° 30' to 121° 45' longitude and 64° 10' to 64° 20' latitude. The Permit is 790 miles northwest of Edmonton and 280 miles northwest of Yellowknife.

The Yellowknife Highway serves Fort Providence which is 220 miles southeast of the Permit and is the closest road to the area. Access to the Permit itself is by helicopter or on foot during the summer or by vehicle during the months when the ground is frozen. However, there are no roads in the area and considerable road construction would be required to reach any particular area.

The surface of the Permit is quite flat-lying and total relief does not exceed 100 feet. There is only a poorly developed drainage pattern within this area and a few intermittent streams flow to the north and eventually join the Johnny Hoe River which flows through the Permit. A layer of very soft muskeg covers this part of the Northwest Territories and this muskeg is so soft that it is impassable to all but specialized vehicles.

Vegetation consists of thick stands of thin evergreen trees interspersed with many small open areas. These open areas are covered by muskeg grass and scrub deciduous growth. The evergreen trees show up as a medium gray tone on the mosaic and the open areas are a lighter gray. A few small patches of deciduous trees are present.

There is no topographic form or serial photo feature present which immediately suggests the presence of any geologic structure.

The results of this survey are illustrated on the Total Fracture Map, the Major Fracture Map plus the mosaic with the fractures superimposed. In addition there are three hypothetical cross-sections. All the above can be found in the folder at the back of this report.

STRATIGRAPHY

GENERAL STATEMENT

The stratigraphic discussion presented herewith is based on a study of the area covered by Petroleum and Natural Gas Permit 5059 and Permits 5062 to 5068 inclusive. The north limit of this area is located along the south shore of the Health Arm of Great Bear Lake and it trends southward to about 64° 00' - 65° 00'. No wells have been drilled in this area and surface outcrops are rare and widely scattered. Therefore, it has been necessary to study the regional geology of the whole Northwest Territories and make many generalizations of data and, admittedly, some of these generalizations are rather long ranged. However, when combined with such subsurface information as is available an accurate picture of the sedimentary stratigraphy can be presented.

The Permits are on the Interior Plains 40 to 60 miles east of the Franklin Mountains, and about 100 miles west of the Pre-Cambrian Shield outcrop area. The Permits lie about 150 miles east-southeast of the Norman Wells Oil Field which provides most of the nearest well control. The area covered by the above referred Permits is underlain by sediments ranging in age from Cambrian to Tertiary. Regional isobaths indicate about 6,000 feet of sediments should be present under the northern Permits and about 4,500 feet under the southern Permits. Structurally, they should be underlain by homoclinal to gently folded beds. However, since the Northern Franklin Mountains are the result of compressional movements, it would seem likely that the area lying in front of the mountains may have been folded into anticlines of appreciable magnitude. The Pre-Cambrian may have undergone early faulting under the Permits since faulting of this age is quite common in this region. The Basement

faults have commonly produced northeast trending lineaments but are generally considered to have not disturbed the Paleozoic sediments. The Basement faults are generally steeply inclined right-hand faults and as far as is known, the horizontal movement exceeds the vertical movement by a large amount. Some recurrent movement at widely separated times has been noted in the region. Well control east of the acreage concerned is very scarce. Regional isopachs and facies maps along with published geological reports have been used to describe the stratigraphic sequence which might be expected to underlie this area.

CAMBRIAN and/or OLDER

KATHERINE GROUP

The Katherine Group which represents the earliest Paleozoic sediments in this region, is named from a section exposed in the Upper Carcassou River area which lies about 150 miles

on a knowledge of present Pre-Cambrian structure as well as its topographical expression, when the sands were being deposited. A gravity meter and airborne magnetometer survey could be used to good advantage in locating areas for more detailed exploration. Source rocks for hydrocarbons should be no problem since the outcrop section previously described would appear to contain an adequate source within its bituminous shales. This section should be considered in any exploratory plans for this area.

CAMBRIAN

MACDOUGAL GROUP

The type section of the Macdougal Group is located about 10 miles west of this area in the Dore Canyon of the Macdougal River. At the type section the Macdougal is divisible into 8 sub-layers of thicknesses which total 997 feet in thickness. The basal is placed at the bottom

of a 130 foot thick chocolate brown shale while the top is placed above 50 feet of evenly bedded limestone with shale partings. The lithology is made up of interbedded limestones, sandstones, reddish coloured gypsum, black, petroliferous shales, red and green shales as well as chocolate coloured shales. The Imperial River section which was mapped by Laudon lies 30 miles to the northwest of the type section. The section, which is 1,839 feet thick with the base not exposed, consists of alternating sandstones, limestones, gypsum and vari-coloured shales. The lower part consists of sandstones with minor shale interbeds which appear to be a shallow water deposit since they are ripple marked and cross-bedded. The section becomes increasingly shaly upwards. The gypsum content is also greater near the top. A 146 foot thick bed of black to dark grey, laminated, algal limestone is located near the top of the section. Calcareous algae up to three feet in diameter are present. At

Norman Wells the Macdougal Group contains a bed of salt 2,000 feet thick which is correlated with the Saline River Formation. This salt section is believed to be present to the north, west and south of Norman Wells for the following reasons:

- 1 The Western margin of the Saline River salt is known in the Norman Wells area and a postulated extension of this margin can be made to the north, west and south of Norman Wells

- 2 The overlying Ronning carbonates are brecciated at exposures in the northern Richardson Mountains west of Inuvik, suggesting salt solution collapse

- 3 The type section at Saline River which lies 100 miles south of

the Permits under discussion,
contains salt as evidenced by
the presence of salt springs

4 Aeromagnetic coverage
north of Inuvik has disclosed
two features which bear a
marked similarity to known salt
domes in the Arctic Islands

5 The gypsum in three
diapiric structures which intrude
Cretaceous beds on the east
margin of the Richardson
Mountains west of Inuvik contains
evidence of early Paleozoic
origin

Since the Saline River salt is evidently
so wide spread it should be present under this
area with the eastern edge lying some unknown
distance to the east. The solution of this salt

creates the possibility of salt structures in the overlying carbonate banks similar to those found to be productive in southeast Saskatchewan and at Rainbow Lake in northwestern Alberta. The algal laminate at Imperial River indicates some organic activity in the Macdougal seas and this coupled with underlying salt features, could give rise to hydrocarbon bearing reservoirs within this sequence. The petroliferous shales within the Macdougal should be adequate source material. The Macdougal has been reached by very few of the wells drilled in this region and no where has it been fully penetrated. Imperial Vermilion Ridge No. 1, drilled 3,177 feet of Macdougal beds without reaching the underlying Katherine Group. To date no reservoirs have been tested in the wells which have drilled to the Macdougal.

ORDOVICIAN-SILURIAN

RONNING FORMATION

Rocks of Ordovician Age have not, as noted by various authors, been definitely identified in this region; however, it seems to be generally accepted that they are present in the Norman Wells region. The contact with the underlying Macdougal is unconformable. Stelck mapped 1,500 feet of shales and argillites at outcrops in the Upper Peel River area, which lies some 300 miles to the west of these Permits. About 150 miles west of the Permits, at the Keele and Twitya River confluence, the Ordovician section was mapped by Keele as 4,000 feet of alternating beds of argillite, dolomite and limestone with 1,500 feet of sandstone overlying and separated from them by a 100 foot thick diabase sill. He mapped this same sandstone 35 miles to the east as being 4,500 feet thick with only occasional shale partings. The sections described in outcrop by Keele

and Greek along with the scattered influences
of other countries have been used to establish
some religious institutions in India for the Christians
to follow.

The Upper Room Church association is composed
of an open-minded, God fearing association of Christians
and Anglicans. Following this basic and strict
code of conduct the church is not allowed to accept
any other church members or related entities
into its fold. Members of the church association
are the church members of all other religious
denominations. Being a non-denominational organization
it has no specific creed or dogma. The church
members of the association follow and observe
according to the following principles:

The association of Upper Room church
is based on simple and clear rules for the conduct
of Christians. They are: 1. Non-denominational, 2. Non-creedal
and 3. Non-dogmatic.

On divisional basis and has this division as well as
area of working with them. They have been
granted permission to the Planning Order. The
exclusivity system has the difference in only
granted to the established in the working
Division. In the remaining states and the
Planning Order has the divided into two regu-
lations a lower one applied the Franklin
Division and an upper one applied the Mount
Divide. The Franklin Franklin Formation is
generally composed of limestone and dolomite
with occasional irregular shaped short nodules
The upper divide is generally found to consist
of a sequence of rocks with limestone and
dolomite which tend to form in a roughly
and irregular fashion.

The Franklin Franklin Formation

After the superimposed 600 feet thick in the
area around the Franklin Division is found
consists of rocks being consisting of a
sequence with irregular rocks limestone and

quite variable degrees of porosity

At the nearest outcrop section of the Ronning, which is found about 50 miles west of the Permits at Mt. St. Charles on Great Bear River, the Franklin Mountain Formation is about 865 feet in thickness. The section consists of limestones with the basal 200 feet described as cavernous; about midway in the section is 75 feet of cherty limestone. The upper 470 feet is a grey, dolomitic limestone. The base of the Franklin Formation here is not exactly clear as various workers have included beds beneath those described in the Ronning Group as well. They consist of gypsum, conglomeratic limestone with black, bituminous pebbles and highly bituminous limestones, which seems more like Macdougal to the writer. The Mount Kindle consists of 480 feet of carbonates, the basal 210 feet is a dolomitic limestone containing corals while overlying it are 90 feet of limestone and chert beds. The upper

180 feet is a hard, grey dolomite that is cherty in the lower part. The section is overlain by the Bear Rock brecciated dolomites. The section at Bear Rock near Fort Norman, which is 30 miles west of Mt. St. Charles, consists of 600 feet of limestone, dolomites and shales with the brecciated sediments of the Bear Rock overlying them and the Macdougal red and green, gypsiferous shales underlying them. The Mount Kindle is apparently not present here. Imperial Loon Creek No. 2, in 65° 07' 20" N., and 126° 12' 51" W., which is about 75 miles west of the Permits, penetrated 1,270 feet of Ronning which is close to the same thickness as mapped at Mt. St. Charles. The Loon Creek well found the Ronning to consist mainly of white to grey, micro-crystalline to granular dolomites with some evaporitic plugging. Scattered poor porosity was present throughout; however, no tests were run. Outcrops of the Ronning are found about 200 miles to the northwest of the Permits along the Hare Indian

River. The section consists of 750 feet of limestones, overlain by the Bear Rock with the base not exposed. The section is not identified as Mount Kindle but regionally it should be present at this location.

Stelick mapped 100 feet of massive, crystalline, porous limestones containing some coralline fauna at Schooner Creek, which is four miles north of Norman Wells. He correlated them with the lower portion of the Mount Kindle Formation. This section can be interpreted as a porous, carbonate bank deposit. The Mount Kindle is likely to have a number of these carbonate banks or low transgressive reef fronts in this area, since, as can be seen from the various sections described above, it undergoes both facies changes and thickness changes in this region. Since the Mount Kindle is present on Mt. St. Charles to the east of the Permits, as well as to the north of them it will doubtlessly be present under

them. The earliest may consist of thin
bands of low grade bringing the earliest
line of the Shanno Shale and Old Eocene
been described in the Upper Planning Group
as well as the Palaeogene Shale and

The trapping conditions which can be
outlined in this area, are quite varied. A few
of these potential traps are outlined below

- (a) The irregular discontinuity
which separates the Planning Group
from the overlying Middle Devonian
Clay Rock Formation may have
produced several features such
as escarp and meander-line, which
would be assisted by the gradual
elevation of the Clay Rock. It would
thus afford entrapment opportunities
as well as areas where the oil might
trickle through the

the comparative evolution of the various
living organisms during their early
and slow phase of life, as well as their
more rapid evolution in the later stages
and extinction associated with the
various geological eras, or periods
of the development of the various
groups of organisms. Comparing evolution
of the ~~various~~ various to the existing different
existing associations, we find that
in the various living organisms the
various conditions which they exist under
are as follows:—

would provide the loci for reef and/or carbonate banks to grow on. Traps of the Hummingbird type would involve early local solution of the salt. This may have occurred in late Cambrian or early Ronning time. The depressions created would receive an extra fill of sediments over that being deposited where the salt was not removed. Once sedimentation within the sink caught up, subsequent sediments would be deposited on a normal sea floor. The second stage in the formation of the Hummingbird type trap would involve the removal of the salt surrounding the original sink at some time subsequent to Mount Kindle deposition. This would leave the Mount Kindle reservoirs overlying the site of the

original salt solution structurally high. The Bear Rock evaporites should provide an effective reservoir seal. Evidence to support one or two stage salt removal in this region is present in the brecciated nature of the sediments composing the Lower Ronning and Bear Rock sediments in known sections.

(d) Gentle to tight anticlinal folds may have been formed by some of the numerous periods of structural activity which have occurred in this region.

MIDDLE DEVONIAN

BEAR ROCK FORMATION

The Bear Rock Formation overlies the Ronning Group and is separated from it by a

marked disconformity. The contact with the overlying Hume (Ramparts) may also be disconformable. The type section is located about 100 miles west of this Permit area at Bear Rock, near Fort Norman. The type section is mapped as two distinct facies, a basal 40 feet to 60 feet of white, gypsiferous, massive lensing dolomite or limestone and an upper 175 feet of breccia composed of brown, dolomitic limestone boulders set in a matrix of dolomitic limestone. Separating the two facies is a 30 foot section of poorly bedded, dark grey limestone and dolomite. The contact with the overlying Hume (Ramparts) is gradational and consists of a 10 foot interval of bedded limestone and dolomite breccia.

The Bear Rock is a very widespread formation which undergoes a number of facies changes from open marine basinal shale facies to an evaporitic sequence. The basinal shale facies which is present in the Richardson

Mountains continues southeast along the western side of the MacKenzie Mountains. The basinal shales are flanked by a belt of shelf-edge limestones and dolomites along their eastern side. Porosity is developed within these carbonates. Adjacent to the shelf-edge carbonates and covering much of the Interior Plains and Peel Plateau area are the shelf limestone and dolomite facies. In the Peel Plateau they attain a thickness of some 2,000 feet and consist of micritic, pellet and micritic skeletal limestone with intervals of finely crystalline, porous dolomite in the lower part. The shelf carbonates are in turn replaced by a relatively narrow belt of shelf dolomites. This takes place in the MacKenzie Mountains and extends in a line north through the Fort Good Hope region and south into the Camsell and Nahanni Ranges. The shelf dolomites in turn are replaced by an evaporite facies along their entire length. This facies change begins to the west of Norman Wells. In the Norman

Wells area and also in the area of the Permits under discussion the basal portion of the Bear Rock is commonly evaporitic while the upper portion consists of carbonate breccias. The evaporite facies extends southward into northern Alberta where it is known as the Chinchaga Formation. South of Norman Wells a strong depositional feature called the Camsell Basin occurs. Thickening from 2,000 feet to more than 5,000 feet, accompanied by facies changes from evaporites through shelf carbonates to basinal sediments takes place into this basin. The shelf carbonates are cryptocrystalline to microcrystalline dolomites while the shelf-edge facies is reefal with some of it at least being porous.

The Bear Rock carbonates in the Norman Wells area have been found to be very porous in some wells while in others the porosity has been plugged by anhydrite and gypsum. Considerable bitumen has been en-

countered in places. Drill stem test results vary from mud recoveries to water flowing to surface. While the wells drilled by Decelle at Rond Lake are about 400 miles to the northwest of the Bear Rock, whether or not the oil shows in these wells is significant in that they establish the presence of sulphur carbons in beds of Bear Rock Age. Decelle et al Rond Lake # 3, located in 67° 45' N. and 120° 25' 42" W., had circulation near the top of the Bear Rock and sulphur water was bailed from this interval. Decelle et al Rond Lake # 1, located in 67° 06' 51" N. and 120° 28' 18" W., flowed sulphurous water on a test conducted about 900 feet below the top of the Bear Rock. Subsequent to the completion of drilling, a plug was set to 1,066 feet. The hole was bailed to 600 feet with oil and sulphurous water being recovered. Three months later the hole was again bailed with oil and sulphurous water recovered again. Indicative of the stratigraphic trap possibilities, is the

With this the Plaintiff's case of a month was brought
down to the 7th of next and recovered all out
wages against the wages of the Clear Shacks, while
the 7th next only recovered additional wages from
the wages of the Navigation. The Clear Shacks should
be allowed to make addition the sum of the additional
allowable conditions outlined in the preceding
disposition of the Shipping Orders.

The Clear Shacks is operating in connection
with the other Indian River about 100 miles
westward of the bridge under conditions of
employment of Indian boatmen and
guides. The boatmen and guides of the Clear
Shacks are apparently entitled to being a
portion of the cost of the extension of the Clear
Shacks bridge and a sum representing the cost
of the original of the bridge is due to be a
portion of the cost of the extension being paid
the Shipping Company from the existing Clear
Shacks Navigation. The theory is doubtless
true for the lower portion of the Clear Shacks

Formation. The section exposed on Mt. St. Charles which is about 50 miles west of the subject Permits, may be considered as supporting evidence for the theory that the brecciation of the Bear Rock was caused by the solution of Saline River salt during Bear Rock deposition. The section is described by Williams, as, "340 feet of saccharoidal, coarse grained, brown dolomites...overlain by 1,000 feet of thin bedded, brown dolomites, in part brecciated". The top of the Bear Rock was not seen. In addition to the brecciation well up into the Bear Rock section, the great thickness of sediments mapped as Bear Rock could be considered suggestive of greater subsidence during deposition here than was occurring in adjacent areas. The thickness at Bear Rock, which is the type section, is about 265 feet. The anomalous thickness could also be due to erosional relief, or thrust faults repeating the section and not being recognisable; how-

ever, this does not seem very plausible. The rapid facies changes which may be expected within the Bear Rock is evident when the Mt. St. Charles section is compared to an exposure three miles further north. Here the chert beds of the underlying Mount Kindle Formation are overlain by 500 feet of grey gypsum beds that are in turn overlain by limestone beds that are mapped as part of the overlying Hume (Ramparts) Formation. The Mt. St. Charles section has no evaporites. The thickness variation between these two sections is worthy of comparison also.

HUME FORMATION

Considerable confusion has existed in the literature concerning the relationship of the Ramparts or Hume, Hare Indian and Kee Scarp Reef. A paper by H.G. Basset in the Geology of the Arctic Symposium is probably the most important to an understanding of the Middle Devonian geology of this area.

Hume defined the Ramparts Formation as containing all definite Middle Devonian beds in the Norman Wells area as well as in the surrounding area. The base would be placed at the top of the underlying Bear Rock and the top at the contact with the overlying Fort Creek Shales. He divided the Ramparts into three members, a lower limestone member, a middle shale member and an upper limestone member. The lower limestone, which is relatively thin in the Norman Wells area, thickens in a northwest direction. About 60 miles west-northwest of Norman Wells in the Imperial Range on Mountain River the lower Ramparts is described as 643 feet of limestone, dark gray to black, with irregular thin shale partings, very fossiliferous in part (particularly corals) and very weathered in part. The Middle Ramparts of this section consists of 900 feet of gray to green shales and silty shales with many thin limestone bands which are prominently developed in the lower

1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996
1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002
2002-2003 2003-2004 2004-2005 2005-2006 2006-2007 2007-2008
2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014
2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
2020-2021 2021-2022 2022-2023 2023-2024 2024-2025 2025-2026

1. **What is the primary purpose of the study?**
2. **What is the study's main finding?**
3. **What are the key variables being studied?**
4. **What is the study's methodology?**
5. **What are the study's conclusions?**
6. **What are the study's limitations?**
7. **What are the study's implications?**
8. **What are the study's recommendations?**
9. **What are the study's conclusions?**
10. **What are the study's conclusions?**

coarsest dolomite associated with the lower part of
the Chalcocite Formation of northern
Michigan. This dolomite is found on exposed
cuestas within the lower and lower Keg River
formations. The dolomite has been found as
thin lenses in the Anderson River. The thick-
ness of the dolomite is quite variable as is readily
seen in the upper section as compared to the
exposure on Chalcocite Creek, which is four miles
west of Chequamegon Valley. The dolomite here is
only 3 to 4 feet thick and consists of limestone,
slightly weathered and fossiliferous. The
upper bed is a one foot thick dolomite
overlying a thin intercalite contact with the
overlying shale. It is

The dolomite formation is generally
greenish-yellow and is very soft, easily both in
color and in texture. The Keg River
formation of the lower dolomite is also normally
a light greenish-yellow color. It does develop
some orange color along the north bank of the

Peace River Arch. This marginal shoal is very porous, granular, reefy dolomite which yields large quantities of water when drill stem tested. The marginal shoal is in turn replaced by back shoal mud flats, which are the lateral equivalent to shoreline sands. The sands have been found productive of oil in some locales. The facies pattern developed along the north flank of the Peace River Arch should have been repeated in this area long the margins of the Pre-Cambrian Shield. The marginal shoal and the shoreline sands may have been removed by one of the many periods of deep erosion that have occurred in this region; however, the acreage covered by these Permits must be considered as very well placed to evaluate these possibilities.

The Hume has been described at various localities as being very petroliferous in part. This situation is also duplicated in the Keg River platform where it is overlain by the

productive Keg River pinnacle reefs in north-western Alberta. The Keg River platform is almost certainly the source of the oil in these prolific reefs, and because of the similarities outlined above any reservoirs developed in the Hume must be considered as prospective.

HARE INDIAN

The contact of the Hare Indian with the underlying Hume is generally sharp and probably represents a sudden influx of mud into a clean well aerated sea. It appears to represent a mud bank deposit with the source area lying to the northeast, partially filling a large basin. The contact of the Hare Indian with the overlying Kee Scarp is somewhat diachronous, since it is generally placed at the point the section changes from predominant shale to predominant limestone. Facies changes thus account for the diachronous nature of the contact as well as having been the cause of some of the confusion which has

surrounded Devonian correlations in this region.

The section at Carcajou Ridge serves to

illustrate this problem. Carcajou Ridge lies

along the Mountain River west of Norman Wells.

The section can be mapped as Kee Scarp Reef

one to 70 feet thick, overlying 900 feet (plus)

of Hume Formation with the intervening Hare

Indian Shale going from zero (0) feet to 21

feet in thickness. The section should probably

be mapped as containing much more Hare

Indian, only as a limestone and shale facies

and not entirely as a shale facies in this case.

The Hare Indian generally consists of 900 feet

to 1000 feet of slightly carbonaceous, light green-

yellow to medium grey, bioclastic (in part)

shale with subordinate dolomite lenses.

Due to the facies changes, no distinct bedding

is apparent in these thick (100) feet of shale facies

This Hare Indian type shale has eight feet as

the matrix as Anderton Shale, the presence of

green Chert Shale as a 100 foot thick interval,

and is usually about 100 feet thick at Norman Wells. South of Norman Wells it is again represented by about 500 feet of shale around the confluence of the MacKenzie and Redstone Rivers. Worthy of note is the similarity between the Carcajou River section and the relationship between the Klus Shale and the adjacent reefs in the Clarke Lake area of northeastern British Columbia. Here the Klus Shale which is Middle Devonian, overlies the Keg River Formation in some areas while in others continuous reef growth from Keg River time through Slave Point has allowed no shale deposition.

KEE SCARP

The Kee Scarp as redefined by Basset is a widely distributed formation. Ostracods have been used to establish the Kee Scarp as equivalent to the combined Sulphur Point-Slave Point carbonates of northern Alberta. The contact with the underlying Hare Indian shale, as previously noted, is diachronous. The Kee

Scarp in the Norman Wells area consists of a lower platform unit which is about 75 feet to 165 feet thick and lithologically is a bedded limestone with abundant fossils. The platform unit is usually devoid of hydrocarbons. Overlying the foundation unit is a biohermal reef which constitutes the reservoir for the Norman Wells Oil Field. The reef is composed of materials such as corallites, bryozoans and stromatoporoids set in a coral sand matrix. The facies varies widely between wells as would be expected in a true reef. The thickness of the Kee Scarp reef above the platform unit varies from zero (0) feet to 350 feet in the Norman Wells area. The greatest overall measured thickness of Kee Scarp in the area is 495 feet. The Kee Scarp is overlain by the Canol Formation, or, in its absence, the Fort Creek shales which Basset redefined as part of the Imperial Formation.

The oil in the Norman Wells Field is trapped in the updip end of a discrete Kee Scarp reef. The thickness of the reef ranges up to a total of 495 feet. Reserves in the reef have been estimated as high as 60,000,000 barrels while the productive area of the field is placed at 2,600 acres.

The platform unit of the Kee Scarp is undoubtedly the correlative of the Upper Pamoia ls limestone unit mapped by Hume. This fact, as mentioned above, means the Kee Scarp is a widespread unit. Since the Kee Scarp reef grows upwards from the platform unit any well drilled in this area and any acreage held, must be considered as possibly containing discrete Kee Scarp reefs. Maximum reef growth, regionally, has generally been found on the margins of Hare Indian thick, however, the presence of them does not ensure Kee Scarp reefs. The margins of the two Hare Indian thick, which were described

under the discussion of this formation, have not yet been found to contain reefs, however, they have not been adequately explored either.

UPPER DEVONIAN

CANOL FORMATION

The Canol Formation was defined by Bassett to include the black to very dark brown, non-calcareous, bituminous shales which overlie the Kee Scarp, or, in its absence, the Hare Indian Formation. The Canol is overlain by the Imperial Formation. The Canol may be the equivalent of the lower part of the Bear River shale of northeastern British Columbia.

The Canol thickness ranges from zero (0) feet in the Norman Wells area. The thickness varies in relation to the underlying Kee Scarp reef much in the same manner that the Irton thickness is related to Leduc reefs within the Province of Alberta, i.e. the Canol thins over the reefs to nil in places and thickens in the off-reef direction. The Canol Formation should

be present under the Permits in question.

IMPERIAL FORMATION

The Imperial Formation was redefined by Bassett to include all beds of Devonian Age overlying the Canol Formation and which are unconformably overlain by Cretaceous strata. He recommended that the term Fort Creek Formation be discontinued as the above definition of the Imperial includes the Fort Creek shales within it. The Imperial consists of a sequence of greenish-grey shales overlain by a series of fine sandstones, siltstones and thin limestone beds. The Imperial is capped at many places by a grey shale sequence. The Imperial is extremely variable in lithologies which makes correlations within it very difficult. The Imperial may reach a thickness of more than 3,000 feet where the processes of erosion have not cut very deeply

CRETACEOUS

SANS SAULT GROUP

The Sans Sault Group is the basal group of Cretaceous sediments which lie directly above the disconformity separating Cretaceous and Devonian sediments. The top of the Group is usually placed at the base of the first bentonite bed in the overlying thick shale sequence. The sequence consists of shales and sandstones of marine origin. The thickness is about 1,411 feet at the Sans Sault section.

SLATER RIVER FORMATION

The Slater River which overlies the Sans Sault Group, consists of thin bedded, black, friable shales with abundant ironstone concretions. There are also some beds of white and yellow alum and sulphur. Sandstone is only occasionally present. There are many beds of bentonite, which in outcrop are $1/8$ " to 1" thick. The Slater River

Formation after entering a high altitude stratosphere
altitudes is thought to influence on ozone depletion
Also for the formation of the depletion is
thought to have effect on the ozone depletion

WIDE BEAM FORMATION

The wide beam of the formation is very
wide and appears as the in the upper stratosphere
wide beam of scattering due to high altitude
already effects and the ozone. The ozone and
the scattering formation ozone due to high
scattering ozone. The ozone and the ozone
is about 1000 km away from the scattering
scattering and the ozone scattering

LONG RANGE FORMATION

The long range formation is very
wide and the wide scattering due to high altitude
wide scattering due to scattering due to high altitude
wide scattering due to scattering due to high altitude
wide scattering due to scattering due to high altitude
wide scattering due to scattering due to high altitude

Chap. 2 and 3. Re. to 1939 Cuban Crisis

The situation of Cuban independence is
one involving the Cuban government being difficult
to approach. It is a very volatile and unstable
situation that will take time to settle the
details of the situation as the vast area of Cuban
policy is still very much up for debate. The
situation is also very much of concern to the
international community because of the
current political situation in Cuba. The
current political situation in Cuba is one of
highly polarized political parties. The
right wing of the party is very much
in favor of the Cuban government.

The international situation involving the
Cuban independence is one of the most significant
issues of the Cuban independence movement. It is
the main concern of the Cuban government. The
international situation involving the Cuban
independence is one of the most significant
issues of the Cuban independence movement. It is

This erosion is very difficult to make. North of Rasmussen Wells this erosion has in places removed the entire Upper Devonian sequence, leaving the Middle Devonian Formation at surface.

TERTIARY

The Tertiary sediments in the Norman Wells area are not subdivided. They consist of conglomerates, gravels, shales, lignites, silt, coarse, carbonaceous sands and soft clays. The Tertiary is exposed south of the Permit under review in the Mt. St. Charles area long the Great Bear River. Plants collected from the exposures along the Great Bear River indicate an Eocene Age. The thickness is approximately 600 feet at these exposures. At exposures on the Little Bear River, 1,600 feet of Tertiary sediments have been mapped. Near the headwaters of the East Fork River beds up to 1,200 feet

have been mapped with coal seams eight feet to ten feet thick. The sections mentioned form part of a basin which dips to the southwest in this area.

It is recommended that further evaluation of the Permits under review consist of gravity meter and/or airborne magnetometer surveys. They should be of great assistance in outlining the distribution of the Saline River salt and any salt structures associated with it. The present structure of the Pre-Cambrian Basement could probably be mapped by this method, also, as well as providing a better idea of the drilling depth to it.

FRACTURE ANALYSIS

This section of the report discusses the results of a Detailed Fracture Analysis Survey carried out on the area under discussion. An aerial mosaic (scale 1.5 inches equals approximately 1 mile) made from Dominion Government aerial photographs accompanies this report. These same photographs were examined stereoscopically and the fractures plotted on the individual photographs, then transferred to the mosaic for analysis.

The theory that the earth's crust is abundantly and methodically fractured is the basic premise on which is built the exploration technique known as Fracture Analysis. A Fracture is defined as "... generally abundant, natural lineation discernible on aerial photographs."

PROBLEMS IN DESIGNING INTEGRATED SYSTEMS

PROBLEMS IN THE DESIGN OF THE INTEGRATED SYSTEM

1.1

1.1.1 DESIGN OF SYSTEM

1.1.1.1 DESIGN OF SYSTEMS OF
THE EXISTING SYSTEMS TO
INTEGRATE WITHIN IT

1.1.1.2 DESIGN OF SYSTEMS OF
THE EXISTING SYSTEMS OF
INTEGRATION

1.1.2 DESIGN OF SYSTEMS OF SYSTEMS TO INTEGRATE

PROBLEMS IN THE DESIGN OF SYSTEMS OF SYSTEMS TO INTEGRATE AND IN
INTEGRATING SYSTEMS OF THE EXISTING SYSTEMS AND IN
DESIGNING INTEGRATING SYSTEMS OF THE EXISTING SYSTEMS
PROBLEMS IN THE DESIGN OF SYSTEMS OF SYSTEMS OF SYSTEMS TO INTEGRATE
INTEGRATING SYSTEMS OF THE EXISTING SYSTEMS AND IN
DESIGNING INTEGRATING SYSTEMS OF THE EXISTING SYSTEMS
INTEGRATING SYSTEMS OF THE EXISTING SYSTEMS AND IN
DESIGNING INTEGRATING SYSTEMS OF THE EXISTING SYSTEMS

1.2 DESIGN OF SYSTEMS OF SYSTEMS OF SYSTEMS TO INTEGRATE AND INTEGRATING

PROBLEMS IN THE DESIGN OF SYSTEMS OF SYSTEMS OF SYSTEMS TO INTEGRATE AND IN
INTEGRATING SYSTEMS OF THE EXISTING SYSTEMS AND IN
DESIGNING INTEGRATING SYSTEMS OF THE EXISTING SYSTEMS

any "photogeophysics" can be defined as the methodical statistical analysis of linear features seen on aerial photographs and this system is applied by any method recording all observable changes in the nature of a certain type of linear features, and the statistical presentation of the data in a simple and meaningful sense of dry writing the results directly on the original

GENERAL STATEMENT

ORIGIN OF FRACTURES

Fracturing is largely caused by external stresses on the earth, although internal stresses may play some minor role. The most important of these external forces are the diurnal earth tides due to the gravitational effects of the sun and moon, the change in radial acceleration of the earth along its radius vector and the gradual decrease in the earth's rate of rotation. The endless rhythmic action of these earth tides is probably the primary cause of the systematic fracture system seen over most of the world, even though the amplitude of these tides is only 9-13 inches. The tides themselves are most likely generated by the rotation of the earth as the end result of these processes which are considered relatively slow with the exception of some intense tides in the same manner as are considered to be relatively rapid.

In general the initiating forces which generate fractures must have continued for a very long time and the process involved are continuous and are probably active at the present time. Furthermore, Mollard (1957) states, "The mechanism required to reflect lineaments to ground surface must be reasonably simple, for simple fractures are produced on diverse topography and in diverse types and depths of surficial deposits that overlie different kinds of relatively flat-lying sedimentary rocks of varying thickness. The mechanism producing the lineament pattern must persist over extensive and widespread belts of the earth's outer shell, that is today, the engendering mechanism in fact the world-wide."

External forces such as earth tremors obviously fit these parameters. Some internal forces may also supply such as the action of deep seated tectonic forces and the mass of weight of these to generate adjustments. Deep seated adjustment following the melting of the glacial ice may still be

taking place and this will further accentuate fractures present before glaciation.

In general it can be said that fracture patterns are caused by either internal forces or external forces. If the forces are internal the result would be different orientation of the fracture systems in areas of similar tectonic history but different position. If the forces are external the orientation of the fracture arrangement should have world wide similarity. However, stable areas such as the masses of the continents may develop fracture patterns due to external forces and tectonically active areas may develop their own pattern due to internal forces.

If joints form early in the history of a sedimentary basin as diastrophic joints may be successively younger downwards through the section and the joint pattern is superposed on each new layer of sedimentation when they have become consolidated enough to disrupt. The number of generations is

caused by the fatigue caused by stress, which in turn is caused by diurnal earth tides

EXPRESSION OF FRACTURE

Fractures have been observed in aerial photographs from every climate and on every continent in the world. They are expressed as topographic relief, vegetation differences and soil tonal differences.

TOPOGRAPHIC RELIEF LINEAMENTS

A common type are relief lineaments which can be manifested by a change (usually abrupt) of topographic elevation on either side of a relatively straight line. They may also be expressed as straight valleys or hills or by straight streams where the stream discharge is uncontrolled by a drainage system.

VEGETAL LINEAMENTS

Vegetal lineaments are the most common in the parkland and mixed areas of western Canada and many excellent examples of them have been seen on almost any aerial photograph of northern Saskatchewan. Although in northern Saskatchewan straight lines of both deciduous and evergreen trees are most common growth and apparently climate influence the most common vegetal lineaments seen in the area is a straight ridge. As a result of trees on ridges in many cases these ridges consist of the best areas of cultivated fields. Excellent examples of this latter combination of ridge and field is the northern part of the Moose River valley.

第六章 中国农业的现代化途径

densely imbedded in the surface that
breakage continues to be both difficult and
often impossible.

INTERPRETATION OF FRACTURE DATA

The effect of fracture analysis (Fracture generation) on fracture initiation (Fracture propagation) is to reduce effort to detect initial and propagable crack tip. The initial effort of propagating the crack is made and reduced and increased in a 10¹⁰ ratio. Initially there is a great deal of effort to detect the crack tip is 10 times greater on the number of the crack than directly around the crack.

In any fracture system there are two main qualities of importance. The first quality is the crack tip which is the fracture and propagating end of the crack. The second quality is the crack tip which is the crack end and the crack tip which is the crack end.

Because of certain inherent limiting factors, Structure Incidence Surveys have a lower order of reliability than Detailed Fracture Analysis Surveys. To some extent at least, surface conditions affect the fracture count. In areas covered by lakes, sloughs and rivers, the fracture count is zero. Cultivated areas generally yield a lower count than adjacent virgin territory. Consequently, a difference or contrast in fracture count (F/I) between two points may be in part due to structure, but, also due in part to different surface conditions. To some extent, this can be compensated for by applying appropriate weightings to the observed counts, but over or under compensation may result.

Significance in terms of these counts of order to one can be demonstrated in terms of the significant differences which is greater than the probability of the finding to be entirely due to the sampling error immediately less than the standard error of the finding of the

structure. This is in contrast with a low or normal incidence over the crestal area, and also to a normal incidence off structure

FRACTURE ANALYSIS
of
PERMIT NO. 3000

The fracture pattern as shown on the enclosed
sketch and maps reflects a general orientation to
the outer surface of the Permit. The fracture is
located in the northern end of Green Bear
Lake and is many miles from the nearest continental
margin.

The continental margin is generally about
a 1000 feet high and underlain by a
consolidated to partially solidified
layer of marine origin of the Green Bear
Complex. This layer is in contact with the
overlying continental surface with the
continents. Between the two layers is a thin
layer of sand.

Fracture and weathering of the marine layer
is reflected in the presence of marine
fauna, which suggests a relatively low
salinity. The marine layer is composed
of a thin layer of sand.

minutely area is shown in red and the less minutely
area is shown in green. The average length of
the fractures is about 3,000 feet and their ends are
mostly broken and crumpled. It is mostly of sand
and is found to glacial action in the area.

Patches in the rocks will show that the
area is uniformly covered with glacial gravel
and erratic and for the direction of the flow and
they point to northwest. Some of these gravels
are so deeply imbedded in the surface that they
cannot be seen at some of the small areas and of
the gravel in the area. In any area where no the
are observed to break with the difficult problem
of eliminating the glacial areas from the fracture
areas without breaking the anomalies. The re-
sults of all fractures from a 1000 degrees are in
the area will create fracture anomalies and it
requires difficult sorting of the areas before to
eliminate the false effects.

In any fracture pattern there are two main systems of fractures: the axial system and the shear system. In both systems the fractures are of such length right angles to reach each other. Within Petroleum and Natural Gas Permit No. 5000 the statistical mean direction of the axial system is north 30 degrees west and the statistical mean direction of the shear system is north 30 degrees east. A third minor system, here termed the sub-axial system, trends nearly north-south.

The regional fractures of great length can be seen and as these are conceded to originate within the Basement, it is assumed that all fractures plotted on the mosaic originate within the sedimentary section. As the surface of the Permit is relatively flat-lying no azimuth correction is necessary for this study. It has been demonstrated that the low incidence anomalies on a mosaic are considerably larger than the subsurface feature which causes them.

There are three areas on the nozzle where the fractures are less intense than the surrounding area. Some fractures are always present within these areas but they always have a lower incidence than the surrounding area. These low intensity areas are important and it is quite likely that they are due to some subsurface feature. The type of feature will be discussed in the next section of this report.

STRUCTURE

Petroleum and Natural Gas Permit No.5068 is located on the interior plain of the Northwest Territories about 65 miles from the west to the edge of the Pre-Cambrian Shield. The strike of the sedimentary rocks is about north 30 degrees west and the units dip to the southwest at a few tens of feet per mile.

Structural features which could be present and which could cause the low incidence anomalies mentioned in this report are discussed in order of probability.

(I) PRE-CAMBRIAN TOPOGRAPHY

Basement topography under Permit No. 5068 is thought to be much the same as it is today along the southwest edge of the Shield. Low rounded hills separated by gentle to abrupt valleys are seen on the Shield and these

features are undoubtedly present under the subject Permit. The effect of this Basement relief on the overlying sedimentary rocks is often great. The Granite Wash sand is usually present in the topographic "lows" on the Basement but absent on the "highs". The Granite Wash is an excellent potential reservoir.

Further effects of Basement topography on beds higher than the Granite Wash is gentle folding present over Basement hills. These folds are anticlines in every sense and could form traps for oil or gas.

Many small faults have been reported by A.W. Norris (1965) in the Basement and immediately overlying rocks and these features could cause closure within the sedimentary units.

3. DEVENIAN REEFS.

Devonian reefs strongly affect the fracture pattern and control the occurrence of gas and oil in the overlying beds. Devonian reefs are present west of this Permit and others could well be present under the subject area.

3. TECTONIC FOLDING & FAULTING.

The presence of tectonic folds is very unlikely, but some normal faulting is probably present.

4. TOPOGRAPHY RELIEF ON AN INTRA-SEDIMENTARY UNCONFORMITY

Unconformity, is a possible source of fracture intensity anomalies, but within the Permit area it is unlikely that the relief on any unconformities within the sedimentary section is great enough to affect the fracture pattern.

Reference to the Tree Feature
Feature class which encompasses
the forest will also have three
are the areas of "High" feature
density, and three areas of "Low"
feature density (green). The
general interpretation is that the
tree feature density areas are
indicated by coniferous regions of
the forest. On the continent,
the distribution is that the forest
is higher in the northern part of
South Am. area.

These forested high density are more interesting
than the all over the area of green. The green
area is all the feature is over the tree
feature which is a mix of the forest and
a forest is unlikely on the continental feature as the
high density are greater than the low density which
is green. If a forest feature is feature "High" the
area of the tree would be the tree and the con-

4400/10

These questions and answers cross-confuse
concerning the rights and interests in the oil
and gas resources "rights" are intended to be
given beneath those of the Future Mineral.
The question can at right angles to the article of
the Government while the same is referred to article.

Respectfully submitted by:

GENERAL PETROLEUM LTD.

William A. Cook

4400/10

REFERENCES

BLANCHET, P.H. (1957)

"Development of Fracture Analysis as Exploration Method", Amer. Assoc. Petrol. Geol. Bull., Vol. 41, No. 8, 1740-1759

HANAN, P.J. (1966)

"Geomechanics Applied to Fracture Analysis on Aerial Photographs", West Canadian Research Publications, Series 2, No. 2

LAUDON, L.B. (1966)

Imperial River Section
Mackenzie Mountains,
Northwest Territories, Canada
Bull., Amer. Assoc. Petrol. Geol., Vol. 54, No. 7,
pp. 1966-1977

WILLIAMS, M.Y. (1923)

Exploration East of Mackenzie River between Simpson and Wrigley; Geol. Surv. Canada, Sum. Recd. 1921, st. 81, pp. 56-66 (1922)

WHITE, G.B. (1953)

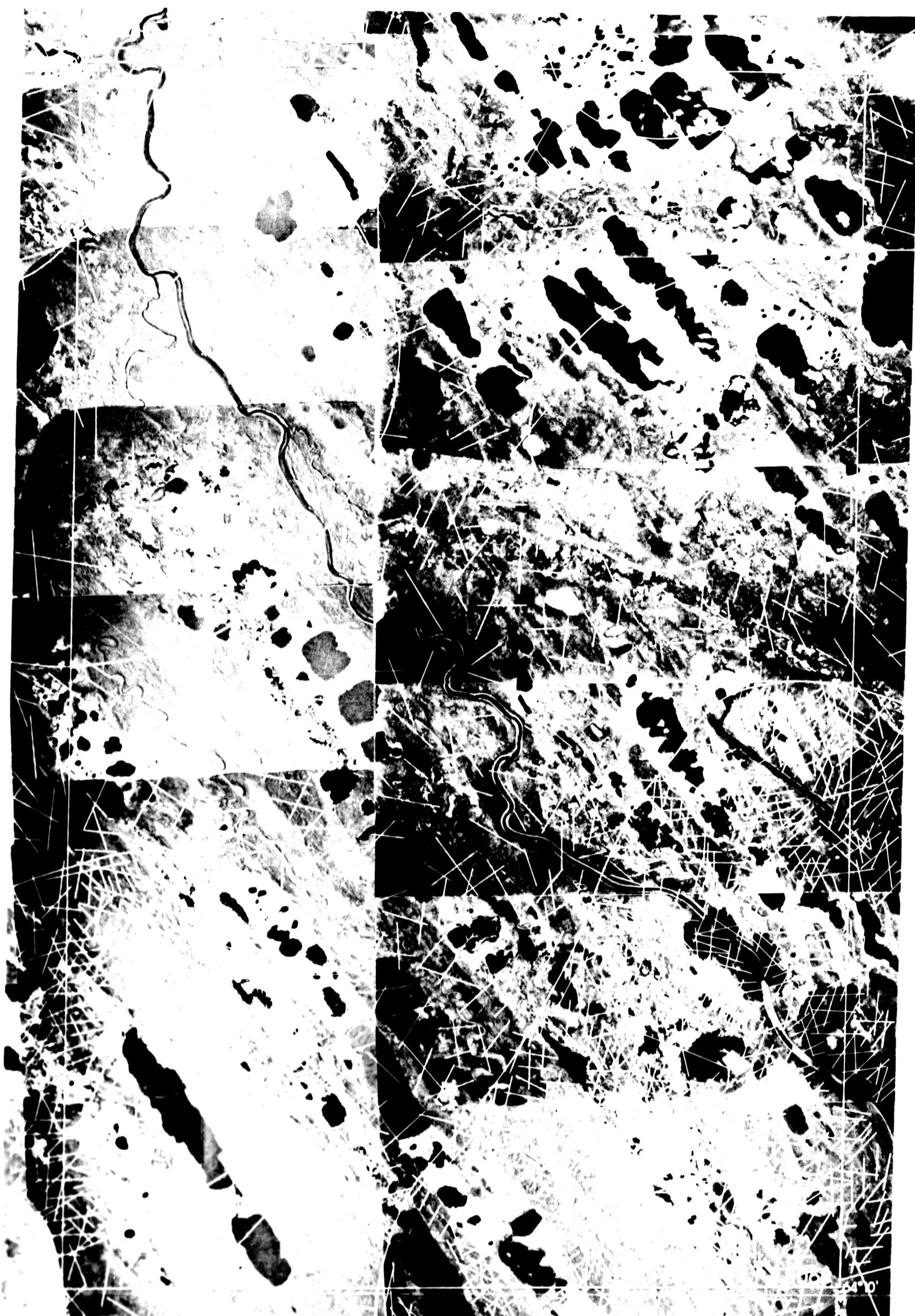
The Lower Mackenzie River Area, Northwest Territories and Yukon, Geol. Surv. Canada, Memoir 273.

KEELE, Joseph (1936)

A Reconnaissance across
MacKenzie Mountains on the
Pelly, Ross and Gravel
River; Geol. Surv. Canada,
Pub. 1097, 1910

Formation Names in the
MacKenzie River Valley;
Science, Vol. 83, No.
2140, pp 14-15.

NAUSS, A W


Upper Carcajou - Imperial
River. Canol Reports
Lower MacKenzie River,
Canol Reports.

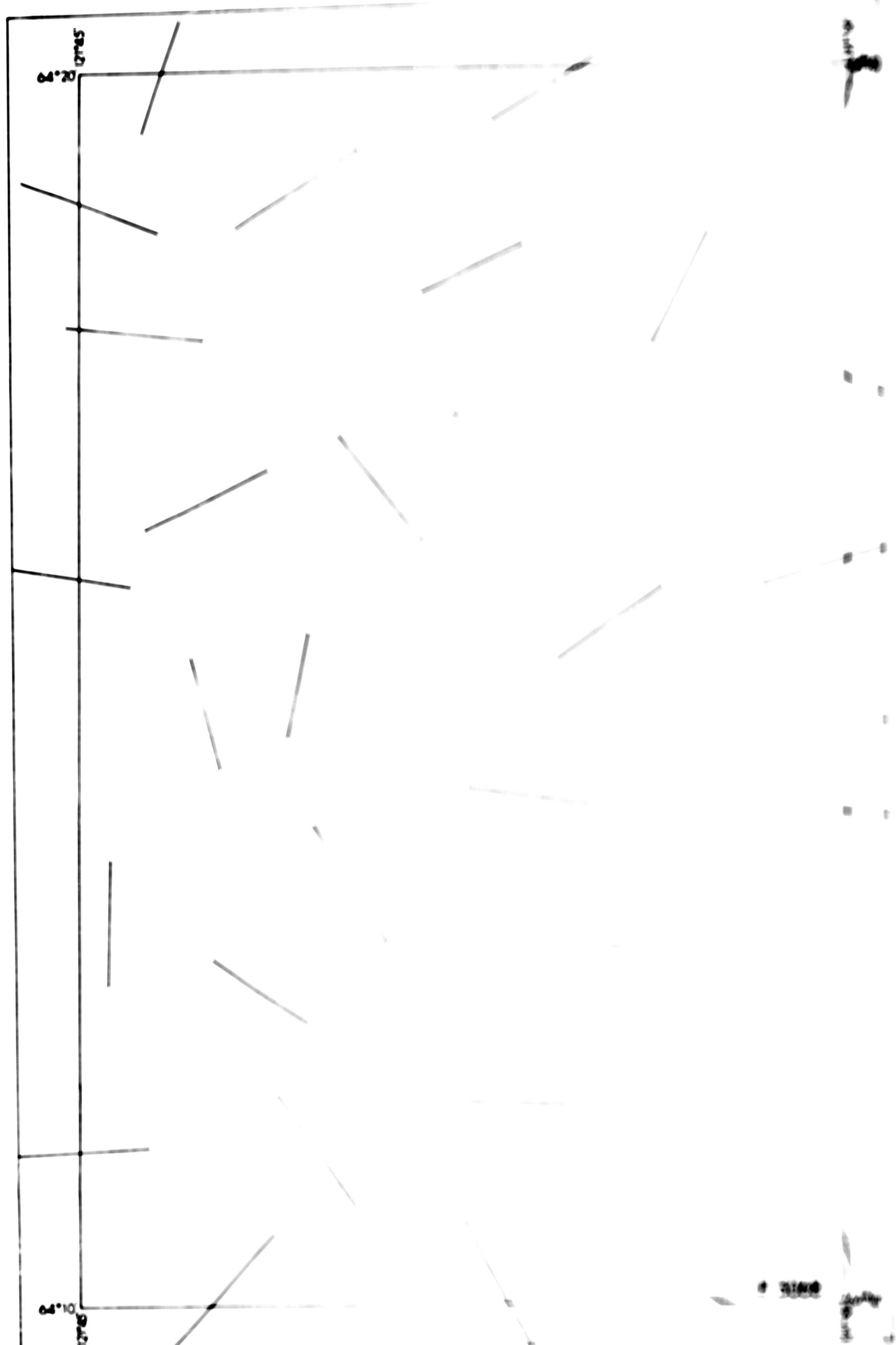
STELCK, C R

Upper Peel River Canol
Reports, Schooner Creek
Canol Reports, Carcajou
and Little Bear River Divide
Area Canol Reports, Bear
Rock and Bluefish Creek
Canol Reports.

MARTIN, L J. (1959)

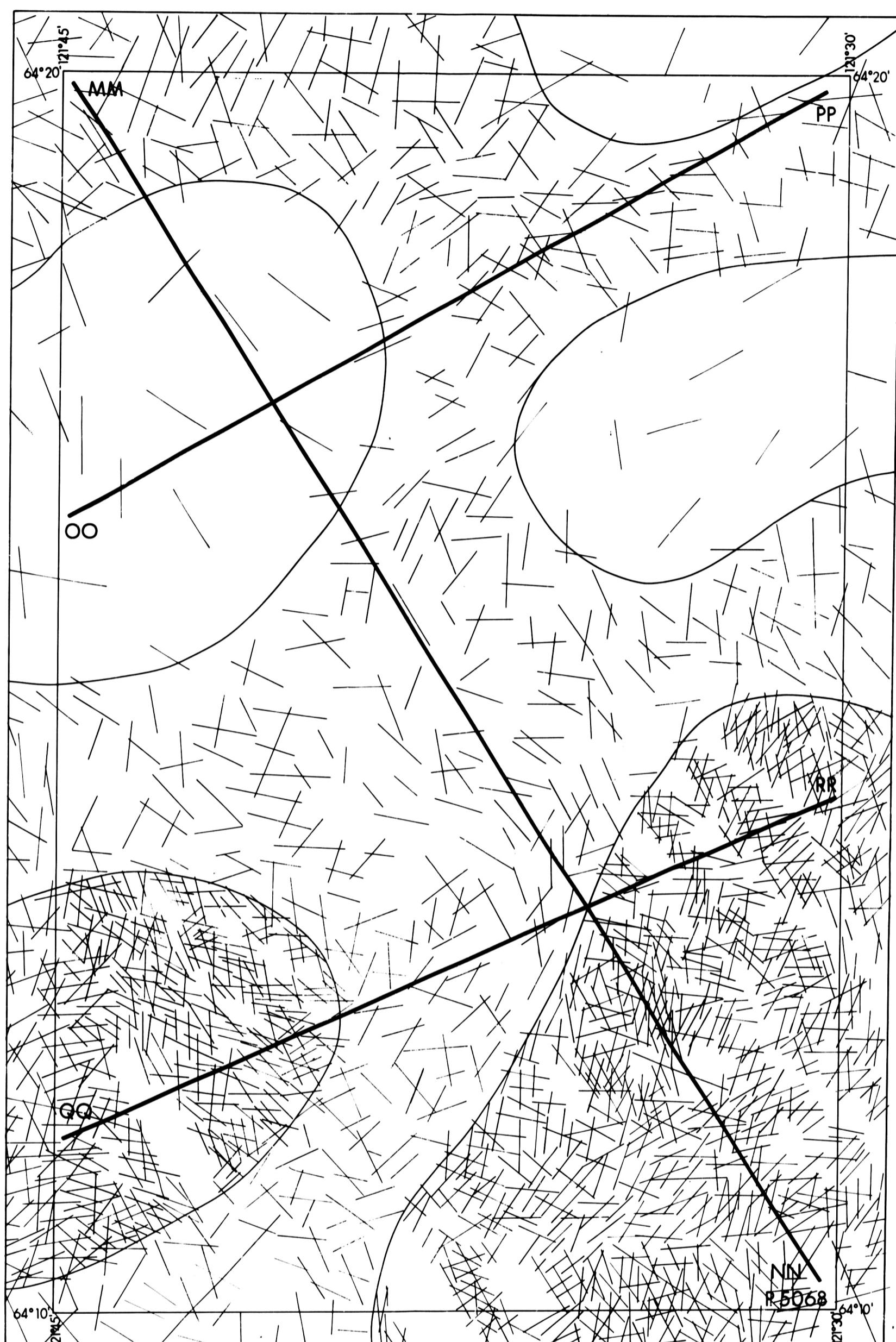
Stratigraphy and Depositional
Tectonics of North Yukon -
Lower MacKenzie Area, Canada,
Bull. Amer. Assoc. Petrol.
Geol., Vol., 43, No. 10, pp.
2399 - 2455.

GROSMONT OIL & GAS LTD


P & NG PERMIT 5068

662-1-5-23

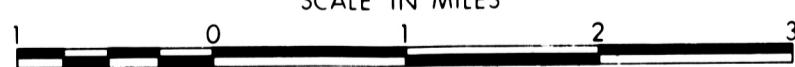
SCALE IN MILES



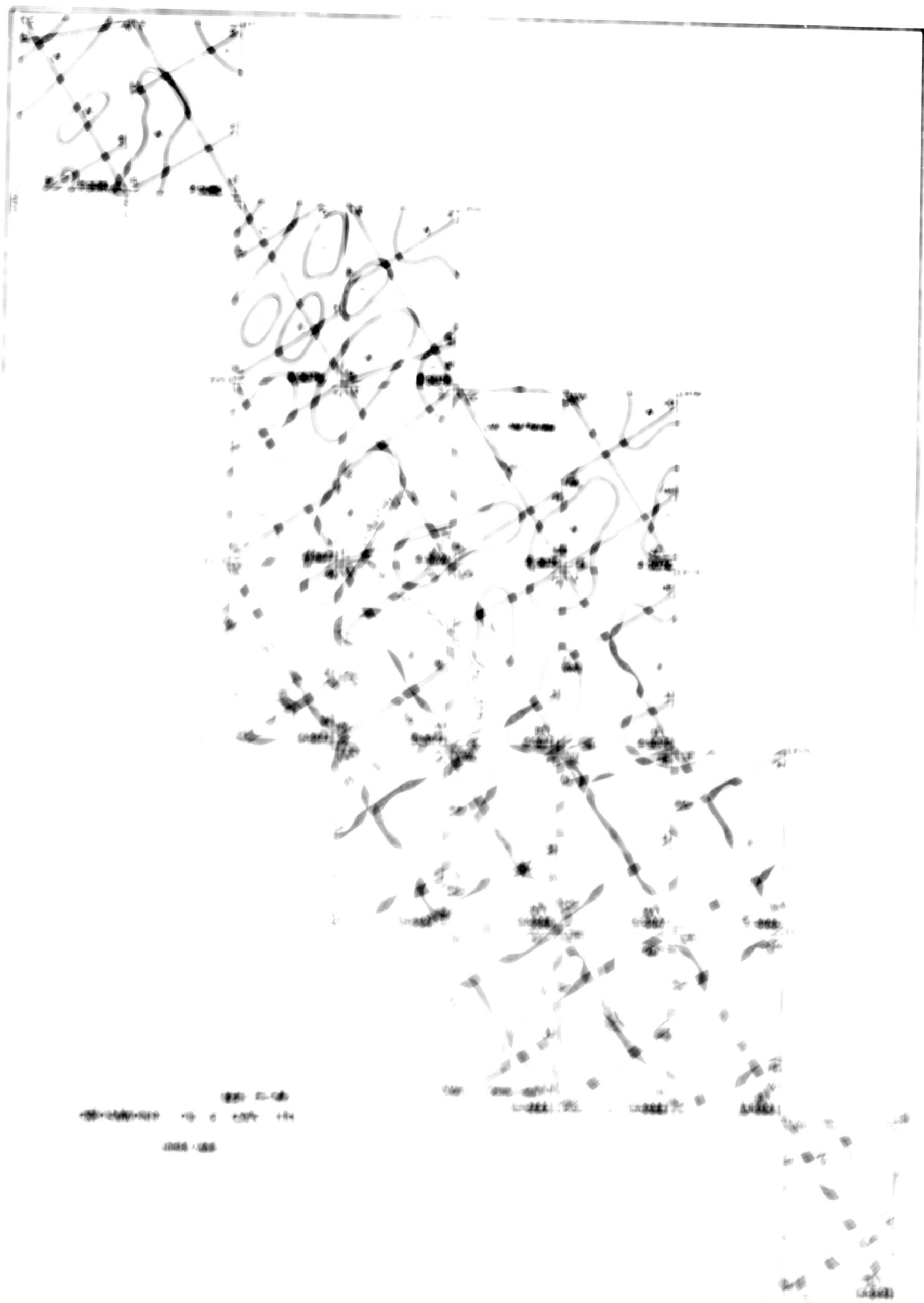
1 0 1 2 3
AERIAL PHOTOGRAPHIC MAP

GROSMONT OIL & GAS LTD
P & NO. PERMIT 3080
MEGA FRACTURE PATTERNS

1000 M. (1 KM.)


GROSMONT OIL & GAS LTD.

P. & N.G. PERMIT 5068


TOTAL FRACTURE PATTERN

662-1-5-23

SCALE IN MILES

- LOW DENSITY
- NORMAL DENSITY
- HIGH DENSITY

QQ

10

（原稿用紙）二 五時二十分半時

必修五 第二单元

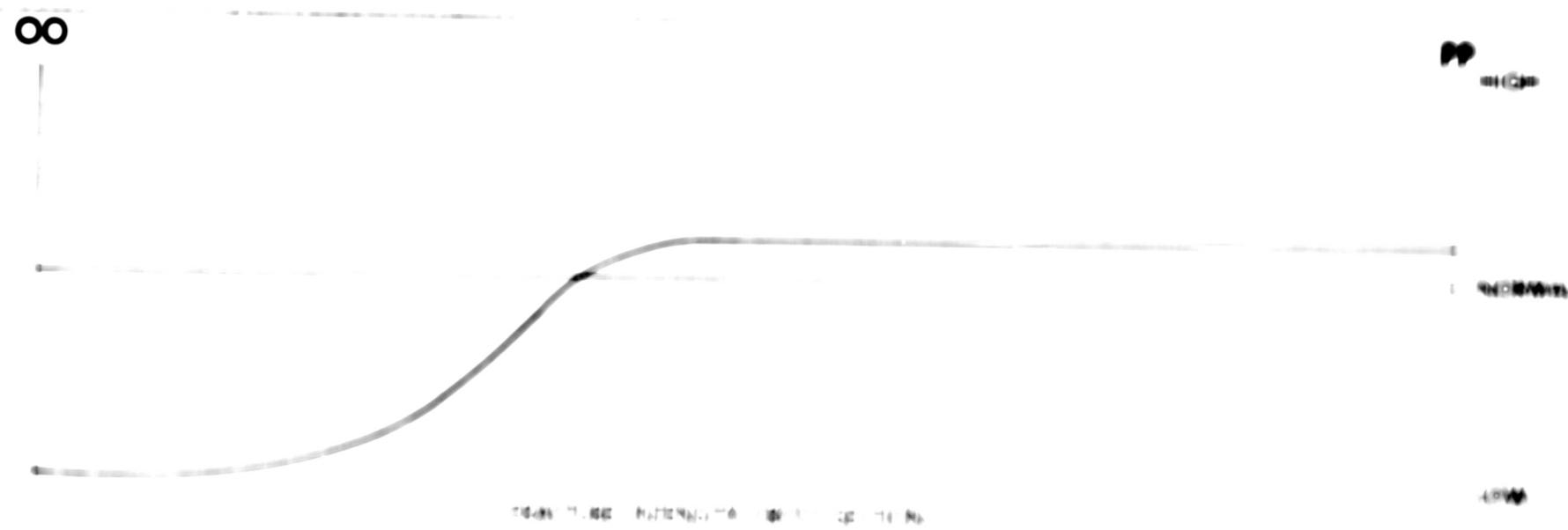
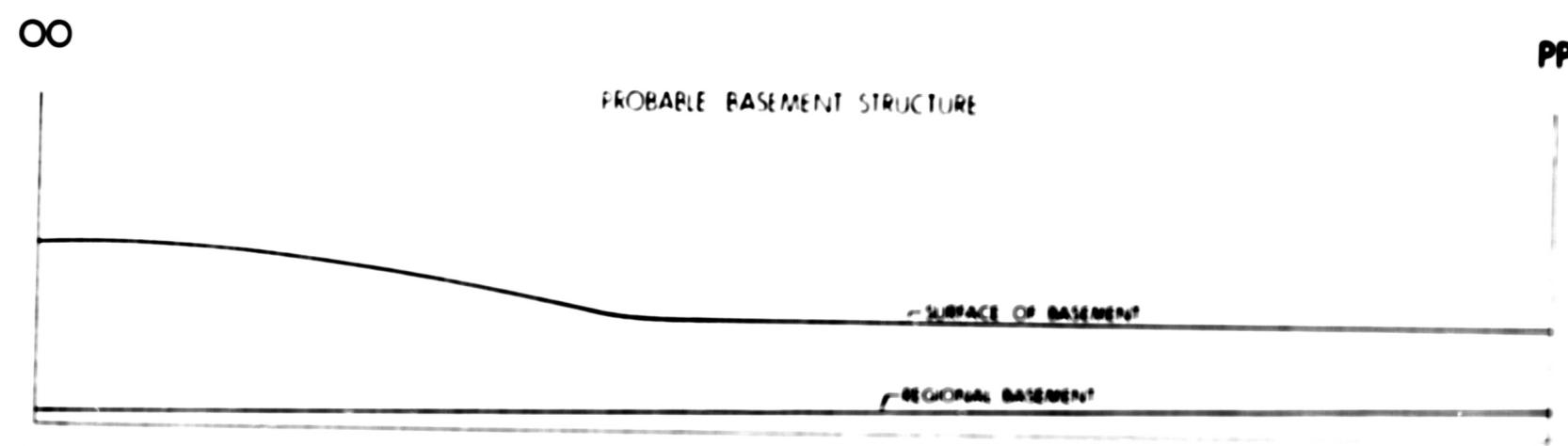
14

88

1

800-801

110 • JGIM

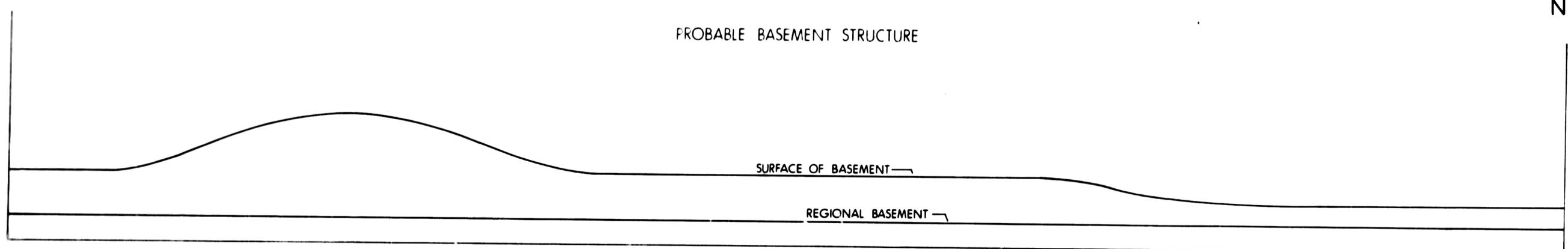


1000

卷之三

GROSSEONT OIL & GAS LTD

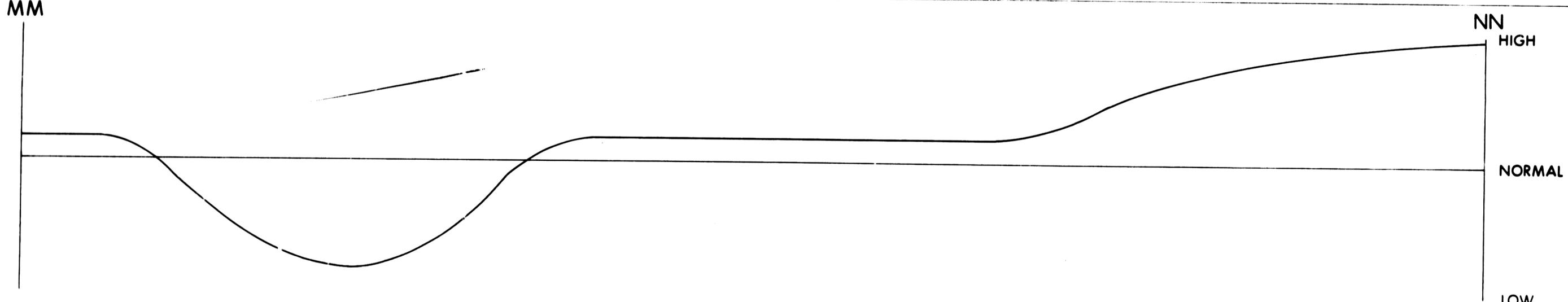
中華書局影印

五 五 金



GROSMONT OIL & GAS LTD

24 "b. 1780 - 3000


卷之三

MM

NN

MM

FRACTURE INTENSITY CROSS SECTION

GROSMONT OIL & GAS LTD.

P & N.G. PERMIT 5068

662-10-23

SCALE IN MILES

1 0 1 2 3