

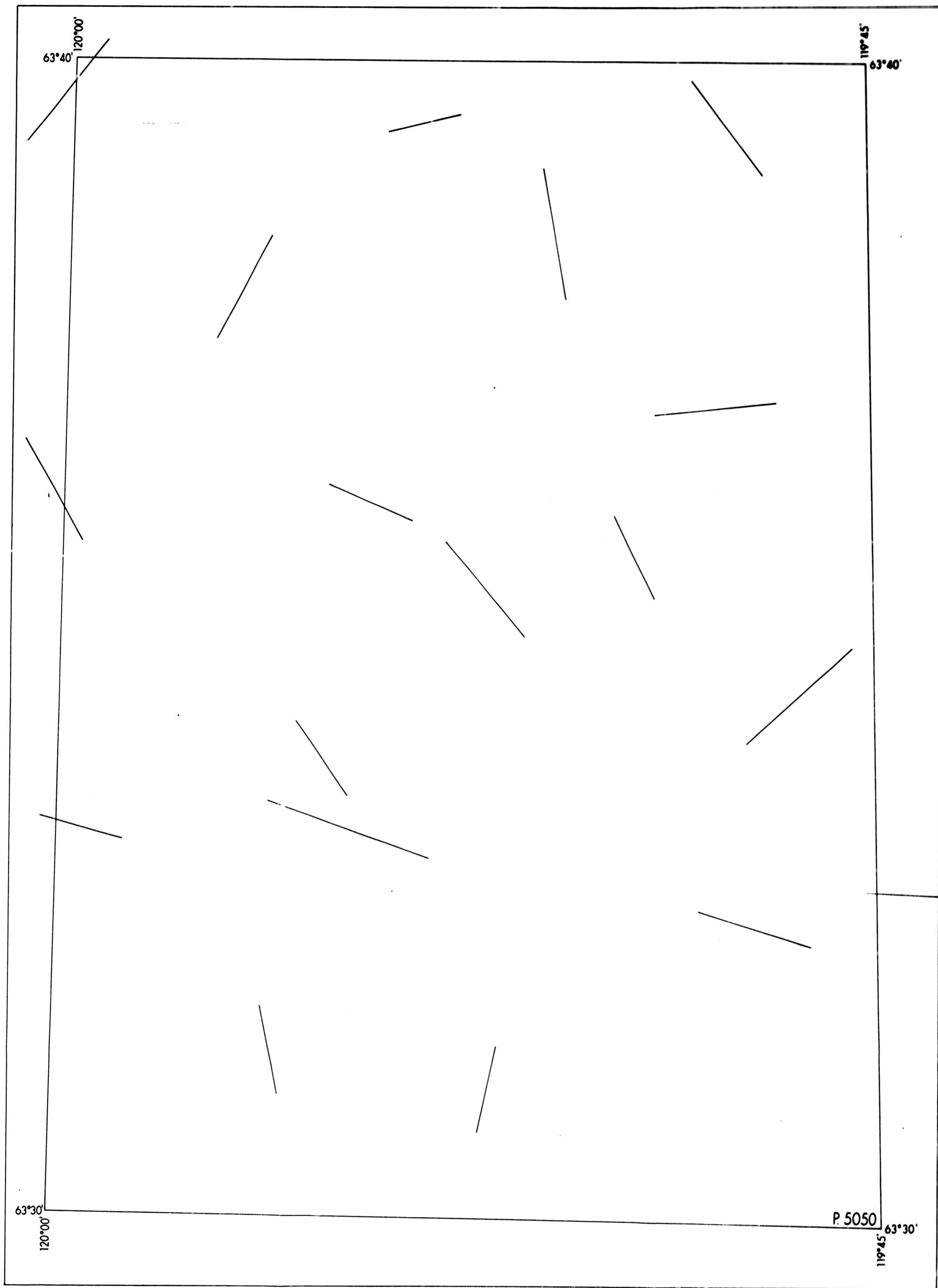
GROSMONT OIL & GAS LTD.
P & NG PERMIT 5050

SCALE IN MILES 662.2 4.4

1 0 1 2 3

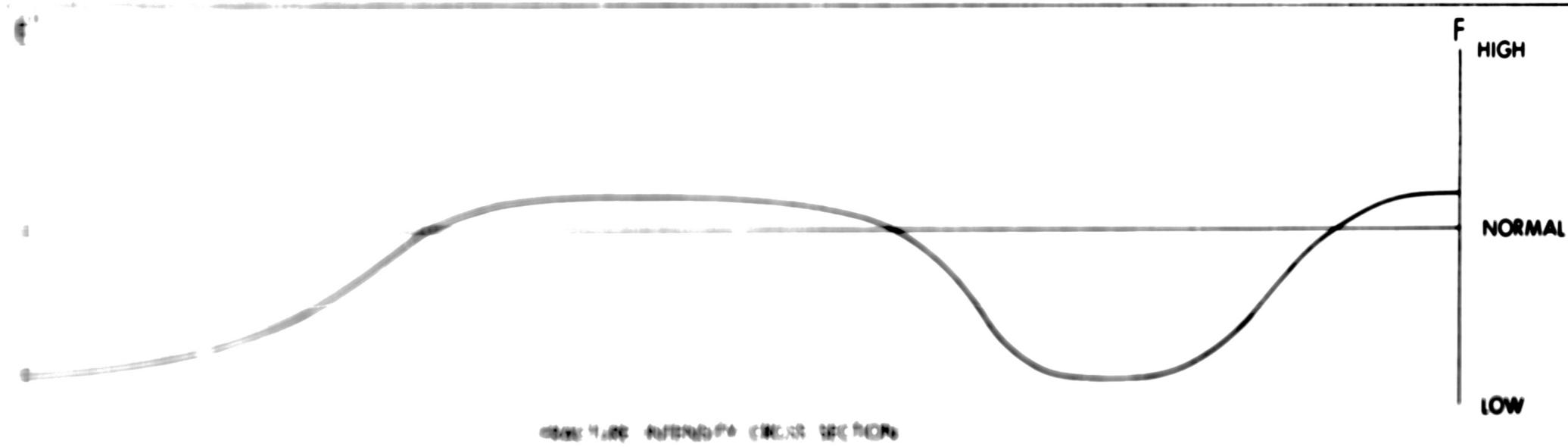
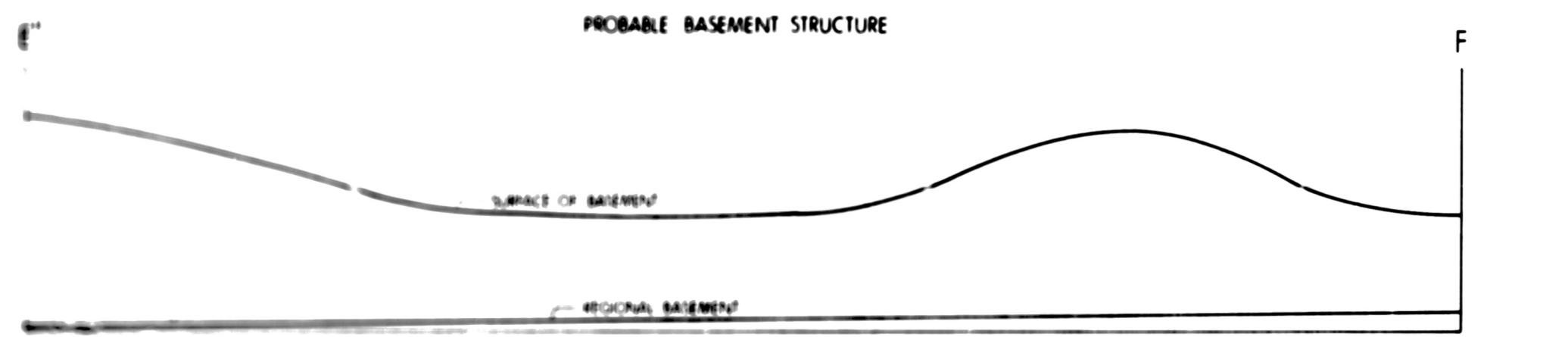
662.2 4.4
ACCRATE TO 1:250,000 MAP

GROSMONT OIL & GAS LTD


P & NG PERMIT 1030

TOTAL FRACTURE PATTERNS

SCALE 1:100000

100 km
50 km
25 km

GROSMONT OIL & GAS LTD.

P & N.G. PERMIT 5050

CROSMONT OIL & GAS LTD

BLDG PERMIT 5050

000-000

000-000

G'

PROBABLE BASEMENT STRUCTURE

H

— SURFACE OF BASEMENT

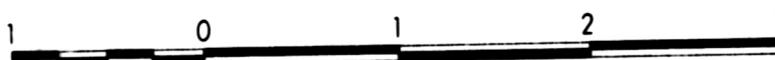
— REGIONAL BASEMENT

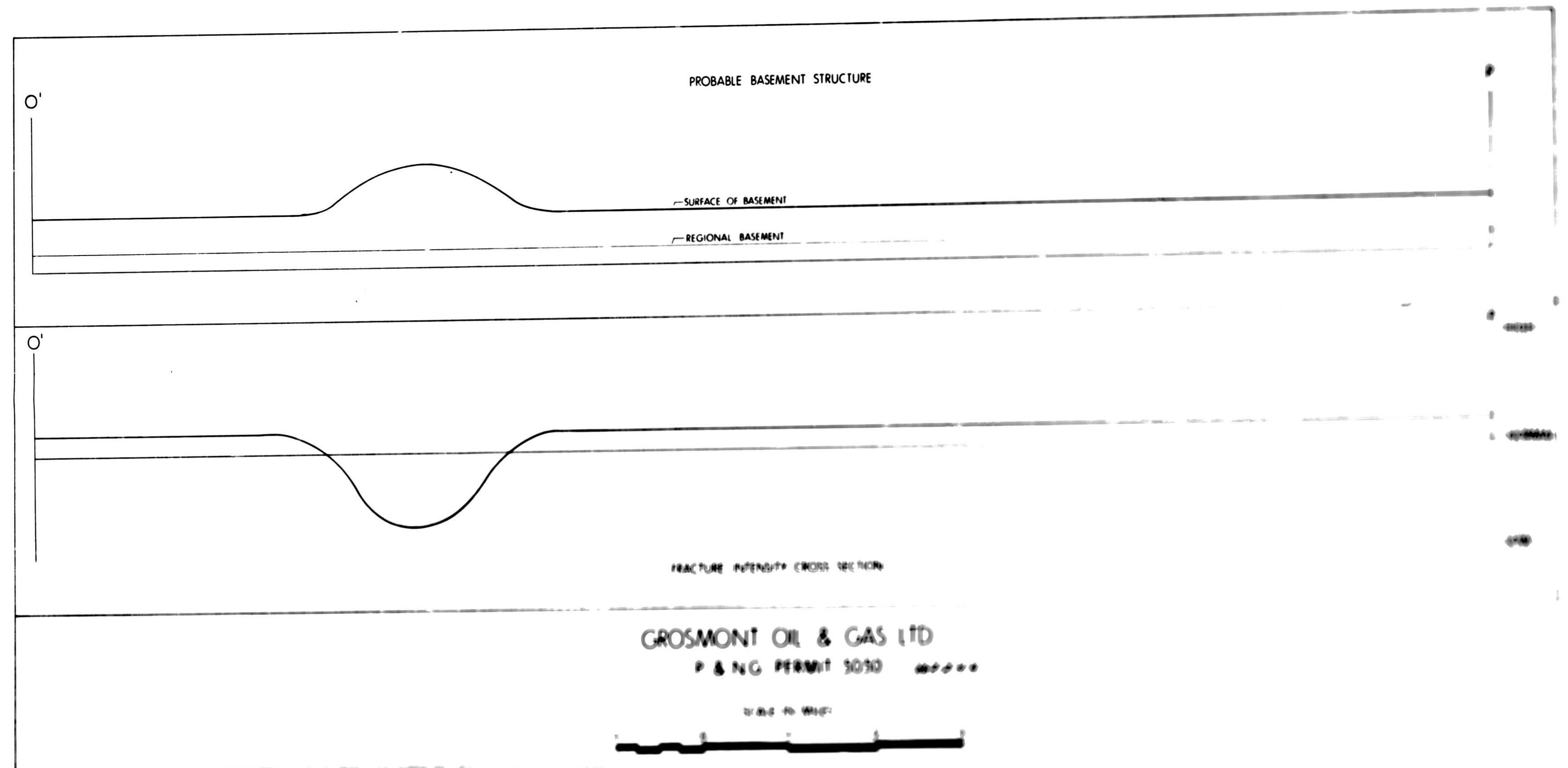
G'

H

HIGH

NORMAL


LOW


FRACTURE INTENSITY CROSS SECTION

GROSMONT OIL & GAS LTD.

P. & N.G. PERMIT 5050 662-24-4

SCALE IN MILES

668.8.8.4

GENERAL GEOLOGY

6

FRACTURE ANALYSIS SURVEY

of

P & N O PERMIT NO 5050

for

GROSMONT OIL & GAS LTD

by

RAYALTA PETROLEUMS LTD.

GROSMONT OIL & GAS LTD.
INDEX MAP

INTRODUCTION

This report discusses the results of a General Geology and Fracture Analysis Survey carried out within, and in the immediate vicinity of, Petroleum and Natural Gas Permit No. 5050. This Permit is located in the Northwest Territories and is held under the Canada Oil and Gas Land Regulations and is located between 119° 45' to 120° 00' longitude and 63° 30' to 63° 40' latitude. The Permit is 730 miles north of Edmonton and 200 miles north-northwest of Yellowknife.

The Yellowknife Highway is about 170 miles southeast of the Permit and this is the only road which passes through the area. Access to the Permit itself is by helicopter or on foot during the summer or by vehicle during the months when the ground is frozen. However, there are no roads in the area and considerable road con-

struction would be required to reach any particular area.

The surface of the Permit is quite flat-lying and total relief does not exceed 350 feet. There is no developed drainage pattern within this area but there are many irregularly shaped large and small elongated lakes present. Most of these lakes have no drainage streams. A layer of very soft muskeg covers this part of the Northwest Territories, and this muskeg is so soft that it is impassable to all but specialized vehicles.

Vegetation consists of thick stands of thin evergreen trees interspersed with many open areas. These open areas are covered by muskeg grass and scrub deciduous growth. The evergreen trees show up as a medium gray tone on the mosaic and the open areas are a lighter gray

A few small patches of deciduous trees are present.

There is no topographic form or aerial photo feature present which immediately suggests the presence of any geologic structure.

The results of this survey are illustrated on the Total Fracture Map, the Major Fracture Map plus the mosaic with the fractures superimposed. In addition there are four hypothetical cross-sections. All the above can be found in the folder at the back of this report.

STRATIGRAPHY.

The sedimentary section under Petroleum & Natural Gas Permit No. 1610 is about 3,000 feet thick and the Ordovician, Devonian and Cretaceous systems are represented. An unconformity is present between the Ordovician and Devonian systems. Between the Chouteau Limestone and the Chillicothe formation, and another is present between the Devonian and the Cretaceous. The Ordovician is mostly dolomite with some amount of carbonates while the Devonian dolomite is composed of dolomite and carbonates and the Cretaceous is composed of dolomite.

CHOUTEAU

The Chouteau section is about 800 feet thick and is divided into the Blue Mounds, the White Mounds and Chouteau Limestone. The Blue Mounds is mostly dolomite with dolomite and lime

carbonate being the dominant rock type. A sandstone will occur at the base of the section.

OLD FORT ISLAND FORMATION

The Old Fort Island formation is the oldest Paleozoic rocks unit present in the area north and northwest of Great Slave Lake. The unit is probably a "Graffiti Wash" type of deposit and where exposed in outcrops consists essentially of sandstone. Goding (1963) describes the unit as "consisting of up to four bedded, fine to coarse grained, very sorted but angular white, yellow, quartzose sand stones, some thin beds of greenish grey, and dusty and silty and carbonaceous laminae and perhaps a few shales. The sandstones are usually parallel and often tabular." Goding's description of this unit probably very similar to the present definition of the Graffiti Wash formation as present in the Slave Group (D) and in Foothills (F), Range 2, west of the 95th Meridian (Alberta).

As the Old Fort Island Formation has yielded no fossils as yet its exact age is unknown and a similar age problem exists with the Granite Wash in northern Alberta. However, both formations appear to be conformable with the overlying beds and both are often confined to topographic low areas on the Pre-Cambrian Shield. The age of the Old Fort Island formation is, therefore, probably Middle Ordovician, but older than the La Matre Falls formation. The sandstone beds of this unit are an excellent potential reservoir.

LA MATRE FALLS FORMATION

The LaMaire Falls formation is 300 to 350 feet thick in the region under discussion, and consists of red and green shale, fine to coarse grained sandstone and silty to sandy dolomite. The base of the La Matre Falls is often an argillaceous silty, oolitic limestone with some sandy and conglomeratic dolomite and sandstone. Gypsum and salt are also often present.

The shales are platy, fissile and are vari-colored with red and green being the most common color, but pinks, brown and gray also being present, silty to sandy and at times slightly dolomitic. The sandstone beds are medium to light gray, and fine to coarse grained. Where the sandstone lies directly on the Pre-Cambrian Shield it is often arkosic and in this area it is a "Granite Wash". Grapholite remains, date this formation as Middle Ordovician. The sandstone and dolomite members of this formation are good potential reservoir horizons.

CEDABUCTO LAKE FORMATION

The Chedabucto Lake formation is about 200 to 250 feet thick in the vicinity of the Permit and the unit consists of massive, cliff-forming dolomites some of which are sandy and conglomeratic. Norris (1962) describes the formation"consists of a thick bedded to massive,

highly resistant, scarp-forming, fine grained, granular, in places minutely vuggy, medium brown dolomite, commonly weathering a pale orange or orange-brown in the south, and a yellowish brown and gray in the north". Purple mottling is common and chert is often present. The age of the Chedabucto Lake formation is Upper Ordovician. The reservoir possibilities of this unit in the subsurface do not appear to be great as only minor vugs are reported from the surface exposures. This formation is overlain unconformably by the Middle Devonian System and the Chinchaga formation of the Middle Devonian is the overlying unit.

DEVONIAN

The Devonian section is about 1,075 feet thick and consists of the Chinchaga formation plus units which are equivalent to the Keg River and Muskeg formations. The exact sequence

present is unknown due to a lack of wells in the area plus the lack of surface knowledge in this northern area. In addition, the Middle Devonian succession in this area is very complex and many abrupt lithologic changes are present. The Chinchaga formation is recognized as a map-able unit but the units above the Chinchaga cannot be correlated to the northern Alberta type section area.

CHINCHAGA FORMATION

The Chinchaga is about 325 feet thick and in this area the unit consists of evaporites, some minor dolomite plus some dolomite and limestone breccia. The Chinchaga unconformably overlies the Chedabucto Lake formation and is conformably overlain by younger Middle Devonian beds. Norris (1965) states "The Chinchaga formation is mostly gypsumeasily eroded and does not produce

卷之三十一

Norris (1963) describes the lower part of the Lonely Bay formation as"massive dark brown aphanitic in part stylolitic limestone; thinly bedded light gray fine grained to aphanitic limestone, weathering orange-brown; irregularly thin-bedded light olive gray to medium gray, fine grained limestone; medium -bedded aphanitic slightly dolomitic limestone; and thinly bedded pale brown slightly argillaceous limestone. A younger section is described as consisting of ... "massive, dark to medium brown, fine grained to fetid limestone, overlain by irregularly thin-bedded medium brown, fine grained to aphanitic limestone interbedded with nodular limestone".

MUSKEG FORMATION EQUIVALENT

In the area north of Great Slave Lake there are units present which correlate to the muskeg of northwestern Alberta. It is up to 500 feet thick in this area and is comprised of a

lower 100 feet of bituminous shale; a middle 175 feet of green calcareous shale; and an upper member up to 225 feet thick which consists of gray to white reefal dolomite. This upper member correlates to the Presqu'ile reef of the Pine Point area.

Fracture intensity contrasts could reflect the edge of the Presqu'ile reef or where there is rapid change in lithology within the section.

CRETACEOUS

The Cretaceous sediments are about 400 to 800 feet thick depending on surface elevation. The thicker sections are present under the hills.

Lithologically the section consists of dark gray, concretionary, gypsiferous shales. These shales are Lower Cretaceous in age and are probably equivalent to the Peace River and Spirit River formations of northern Alberta.

TERtiARY

A thin layer of glacial clay, sand boulders and till lies on the surface of the map area. The thickness of these deposits varies from place to place but probably does not exceed 100 feet.

FRACTURE ANALYSIS

This section of the report describes the results of a Detailed Fracture Analysis being carried out on the area under discussion. An initial analysis has been made to indicate the main features of the damage and the following sections describe the detailed analysis of the damage.

9. **What is the relationship between the two characters?**

10. **What is the relationship between the two characters?**

11. **What is the relationship between the two characters?**

12. **What is the relationship between the two characters?**

13. **What is the relationship between the two characters?**

14. **What is the relationship between the two characters?**

15. **What is the relationship between the two characters?**

16. **What is the relationship between the two characters?**

17. **What is the relationship between the two characters?**

18. **What is the relationship between the two characters?**

19. **What is the relationship between the two characters?**

20. **What is the relationship between the two characters?**

• [View Details](#) • [Edit Details](#) • [Delete](#) • [Print](#) • [Email](#)

1990-91

• 100% Polyester • 100% Polyester • 100% Polyester • 100% Polyester

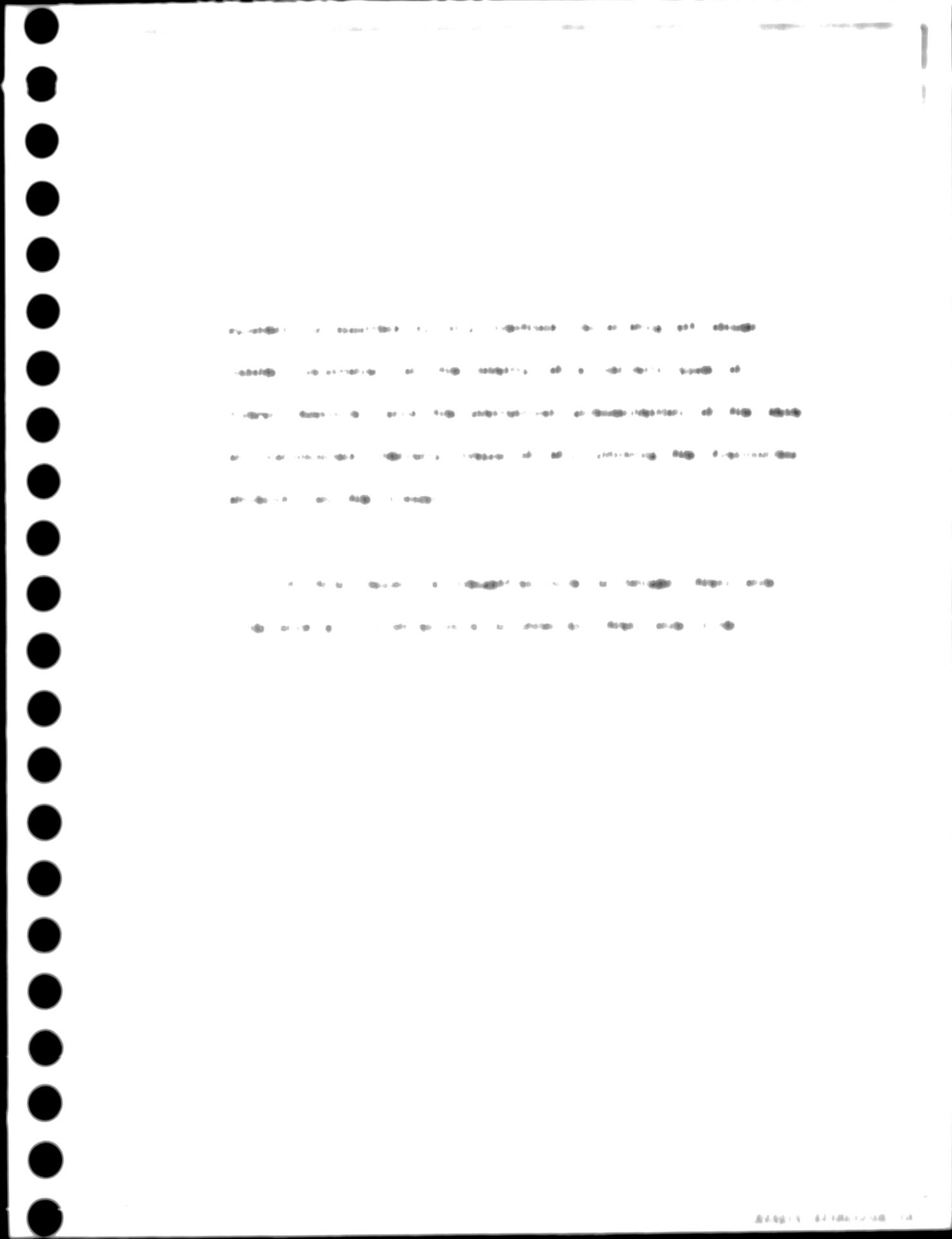
卷之三

1996-03-26 10:00:00 1996-03-26 10:00:00

4. [View Details](#) [Edit](#) [Delete](#) [View Details](#) [Edit](#) [Delete](#) [View Details](#) [Edit](#) [Delete](#) [View Details](#) [Edit](#) [Delete](#)

19. *Leucosia* (Leucosia) *leucostoma* (Fabricius) (Fig. 19)

11 of 11 | Page | [Report a Problem](#) | [Feedback](#) | [Help](#) | [About](#) | [Contact Us](#) | [Privacy Policy](#) | [Terms of Use](#) | [Sitemap](#)


卷之三

卷之三

卷之三

卷之三

2024 RELEASE UNDER E.O. 14176

卷之三十一

上列之數，即為該國之總人口數。

In general the initiating forces which generate fractures must have continued for a very long time and the process involved are continuous and are probably active at the present time. Furthermore, Mollard (1957) states, 'The mechanism required to reflect lineaments to ground surface must be reasonably simple, for simple patterns are produced on diverse topography and in diverse types and depths of surficial deposits upon even the different kinds of relatively flat-lying sedimentary rocks of varying thickness. The mechanism producing the lineament pattern must persist over extensive and widespread areas of the earth's outer shell, that is to say the generating mechanism in fact be world-wide.'

Conversely, earth or earth-like obviously has some significance. Thus, man-made features may also qualify under the criterion of being natural topographic features, and the more artificiality of these is evident the less natural

Isostatic rebound following the melting of the glaciers may still be taking place and this will further accentuate fractures present before glaciation.

In general it can be said that fracture patterns are caused by either internal forces or external forces. If the forces are internal the result would be different orientation of the fracture systems in areas of similar tectonic history but different position. If the forces are external the orientation of the fracture arrangement should have world wide similarity. However, stable areas such as the masses of the continents may develop fracture patterns due to external forces and tectonically active areas may develop their own pattern due to internal forces.

If joints form early in the history of a sediment then systematic joints must be successively younger upwards through the section and the joint pattern is imposed on each new layer of sediments when they

have become consolidated enough to fracture. This upward propagation is caused by the fatigue caused by stress, which in turn is caused by diurnal earth tides.

EXPRESSION OF FRACTURE

Fractures have been observed in aerial photographs from every climate and on every continent in the world. They are expressed as topographic relief, vegetation differences and soil color differences.

TOPOGRAPHIC RELIEF LINEAMENTS

Topographic relief and soil lineaments which are the expression of a fracture usually consist of topographic elevation on either side of a relatively straight line. They may also be expressed as straight valleys cutting on the straight surface where the stream which is concentrated by a fracture cuts.

VEGETAL LINEAMENTS

Vegetal lineaments are the most common in the parkland and muskeg areas of western Canada and many excellent examples of fractures can be seen on almost any aerial photograph of northern Saskatchewan, Alberta or British Columbia. Straight lines of both deciduous and evergreen trees as well as scrub growth are universally visible. However, the most common vegetal lineament seen by this writer is a straight "edge" to a clump of trees or bushes. In many cases these fractures control the size and shape of cultivated fields. Excellent examples of this latter expression of fractures are present in the western part of the Peace River district.

SOIL TONAL LINEAMENTS

These reflect differentiation in soil moisture and general ground water conditions. These are common

卷之二

1. (b) (5)(A) (b) (4) (C) (b) (5)(D) (b) (5)(E) (b) (5)(F) (b) (5)(G) (b) (5)(H) (b) (5)(I) (b) (5)(J) (b) (5)(K) (b) (5)(L) (b) (5)(M) (b) (5)(N) (b) (5)(O) (b) (5)(P) (b) (5)(Q) (b) (5)(R) (b) (5)(S) (b) (5)(T) (b) (5)(U) (b) (5)(V) (b) (5)(W) (b) (5)(X) (b) (5)(Y) (b) (5)(Z)

stratigraphic anomalies. The actual count of fractures per unit area is made and values are contoured on a "Fracture Intensity Map". In areas of known reefs the fracture intensity is 2-3 times greater on the flanks of the reef than directly above the reef.

In any fracture pattern there are two main systems of fractures: the axial system and the shear system. In both systems the fractures are sub-parallel and in general the two systems are at approximate right angles to each other.

Because of certain inherent limiting factors, Structure Incidence Surveys have a lower order of reliability than Detailed Fracture Analysis Surveys. To some extent at least, surface conditions affect the fracture count. In areas covered by lakes, sloughs and rivers, the fracture count is zero. Cultivated areas generally yield a lower count than adjacent virgin territory. Consequently, a difference or contrast

in fracture count (F/l) between two points may be in part due to structure, but, also due in part to different surface conditions. To some extent, this can be compensated for by applying appropriate weightings to the observed counts, but over or under corrections may result.

Nevertheless, in spite of these sources of error, it has been demonstrated in (plains) areas where abundant subsurface control is available, that the incidence of fracturing is considerably above normal in the surrounding area immediately out from the steepest part of the flanks of the structure. This is in contrast with a low or normal incidence over the crestal area, and also to a normal incidence off structure.

FRactURE ANALYSIS
OF
PERMIT NO. 3930

The fracture pattern as shown on the air
closed mosaic and maps shows a great variation
in intensity over various areas of the Permit. The
Permit is located in the northern area east of
Keller Lake, Northwest Territories and is 100
miles from the closest settlement.

The sedimentary section is probably about
2,400 feet (plus) thick and several systems are
represented. In addition a thin layer of Tertiary
glacial till covers nearly all of the area. Potential
reservoir horizons are present within both the
Ordovician and Devonian sections.

Fractures as plotted on the mosaic show
considerable variation in intensity. There are two
areas where the fracture intensity is greater than

upward and down and the areas where the running
movement is slow there is more to the right movement
areas and areas in which the low velocity
areas are shown in green. The average length
of the fractures is about 2 to 3 feet and with some
shorter fractures and others it is varying at
various rates to maintain the glacial condition in this
area.

Reference to the areas with areas that the
area is usually covered with glacial grooves and
corrugations and that the direction of the flow was
about north to degree over. Many of these
grooves are so deeply impressed on the surface
that they cover the slope of the land and of the
glaciers in the area. In any area such as this the
photographer will be faced with the difficult problem of
eliminating the glacial scars from the fracture
pattern without creating false anomalies. The re-
moval of all fractures from a 10 - 12 degree arc

Rule 15. Judgment to be returned at great length and the
same and as these are appended to the judgment within
the Document, it is assumed that all judgments entered
on the record are judgments within the administrative or other

新編——古今圖書集成·醫學編·本草綱目

Chlorophyll a + chlorophyll b

4000 40000 10 400000000 10 100 1000000 100000000

第六章 亂世之亂世

ANSWERING THE CHALLENGE TO THE CHURCH

9140730 001001 000000 000000 000000

1990-1991 1991-1992 1992-1993 1993-1994 1994-1995

11. **What** **Chromophore** **Group** **contains** **chlorophyll**

Digitized by srujanika@gmail.com

2020 年度 第 1 回定期評議會 議事日程

卷之三

卷之三

© 2010 Pearson Education, Inc.

116 [About](#) [Feedback](#) [Help](#) [Contact](#) [Log in](#)

www.industryweek.com

© 2008 Pearson Education, Inc.

NAME OF THE COMPANY AND ADDRESS

卷之三

100

• "The 'Tribute' of the Chinese & 'China' of the

• The Economics of Globalization 18

10. ~~STRUCTURE~~ ~~REPORT~~

11. ~~TOPOGRAPHIC RELIEF ON AN
INTERNAL SEDIMENTARY
UNCONFORMITY~~

Topographic relief is a possible source of fracture intensity anomalies, but within the study area it is unlikely that the relief on any unconformities within the sedimentary section is great enough to affect the fracture pattern.

Reference to the Total Fracture

Pattern Map which accompanies this report will show that there are two areas of "high" fracture intensity, and two areas of "low" fracture intensity (green). The general interpretation is that the low fracture intensity areas are underlain by topographic highs on the Basement. With this established,

the deduction is that the Basement is high in the northeast and north-central areas of Permit No. 5050.

These Basement high features are most interesting from the oil and gas point of view. The general shape of both features is such that the causative features must be a hill on the Basement surface. A fault is unlikely as the causative features as the high areas are over one and one-half miles in width. If a fault caused the fracture "low" the width of the low would be about one mile or less. Granite Wash sand is probably present around the flanks of these Basement highs but is probably absent on the top.

Four hypothetical structure cross-sections accompany this report and reference to them will show Basement "highs" are inferred to be present beneath areas of low fracture intensity. Three

1. 1990 2. 1991 3. 1992 4. 1993

5. 1994 6. 1995 7. 1996 8. 1997

9. 1998 10. 1999

11. 2000 12. 2001 13. 2002

14. 2003 15. 2004

16. 2005

REFERENCES

BLANCHET, P.H.

- "Development of Fracture Analysis as Exploration Method", Amer. Assoc. Petrol. Geol. Bull., Vol. 41, No. 8, 1718-1730 (1957).

BLANCHET, P.H.

- "Geomechanics Applied to Fracture Analysis on Aerial Photographe", West. Can. Res. Publications, Series 3 No. 3, (1966).

BLANCHET, P.H.

- "Georadiography of Middle Devonian and Other Paleozoic Rocks of the Green River Lake Region, Southern Territories", Can. Bur. of Min. Report 11402, (1962).