

660.0 - 661

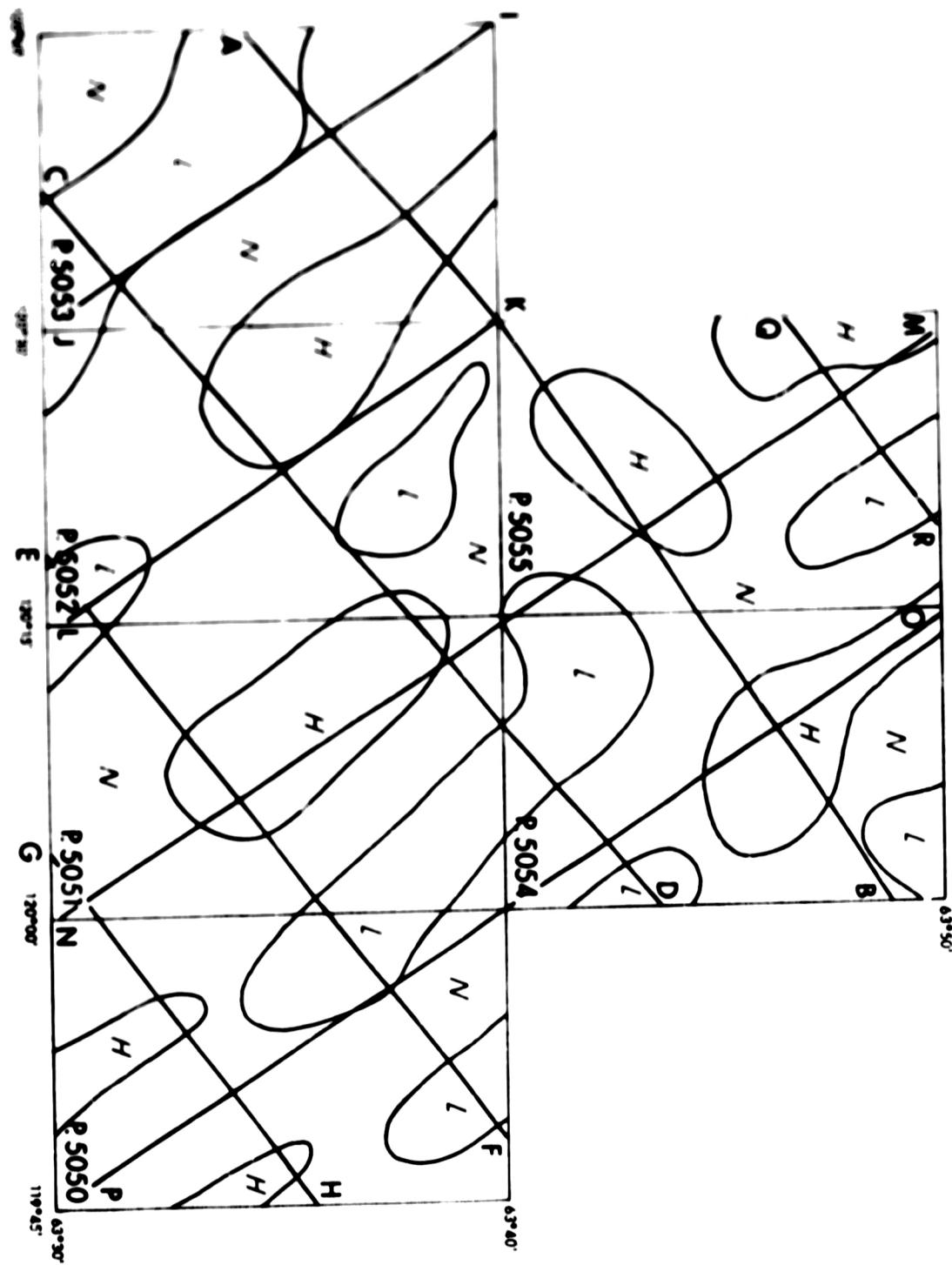
GENERAL USES OILS

6

PRINCIPAL ANALYSTS

af

P. O. O. PERMIT NO. 5053


for

EMC MONT OIL & GAS LTD

by

RAYALTA PETROLEUMS LTD

GROSMONT OIL & GAS LTD.
INDEX MAP

INTRODUCTION

This report discusses the results of a General Geology and Fracture Analysis Survey carried out within, and in the immediate vicinity of, Petroleum and Natural Gas Permit No. 5053. This Permit is located in the Northwest Territories and is held under the Canada Oil and Gas Land Regulations and is located between 120° 30' to 120° 45' longitude and 63° 30' to 63° 40' latitude. The Permit is 730 miles north of Edmonton and 200 miles northwest of Yellowknife.

The Yellowknife Highway is about 180 miles southeast of the Permit and this is the only road which passes through the area. Access to the Permit itself is by helicopter or on foot during the summer or by vehicle during the months when the ground is frozen. However, there are no roads in the area

and considerable road construction would be required to reach any particular area.

The surface of the Permit is relatively flat lying and total relief does not exceed 200 feet. Drainage is to the north and is by two good sized creeks which eventually flow into the Johnny Mac River. Many small lakes are also present. A layer of very soft muskeg covers this part of the Northwest Territories and this muskeg is so soft that it is impossible to all but specialized vehicles.

Vegetation consists of thick stands of thin evergreen trees interspersed with many open areas. These open areas are covered by muskeg grass and scrub deciduous growth. The evergreen trees show up as a medium gray tone on the maps and the open areas are a lighter gray. A few small patches of deciduous trees are present.

There is no radiographic form or cortical bone
feature present which immediately suggests the
presence of any foreign material.

The results of this survey are illustrated on
the Tissue Fracture Map. The Major Fracture Map
and the survey with the fracture superimposed
in addition there are three hypothetical cross-sections
of the tissue can be found in the center of the back
of this report.

STRATIGRAPHY

The sedimentary section under Petroleum & Natural Gas Permit No. 5053 is about 2,400 feet thick and the Ordovician, Devonian and Cretaceous systems are represented. An unconformity is present between the Ordovician and Devonian systems; (between the Chedabucto Lake formation and the Chinchaga formation) and another is present between the Devonian and the Cretaceous. The Ordovician is mostly clastics with some amount of carbonate while the Devonian section is composed of evaporite and carbonate rocks. The Cretaceous is composed of clastics.

ORDOVICIAN

The Ordovician section is about 650 feet thick and is divided into the Old Fort Island, La Matre Falls and Chedabucto Lake formations. The section is mostly carbonates with dolomite and limy

dolomite being the dominant rock type. A sandstone unit occurs at the base of the section.

OLD FORT ISLAND FORMATION

The Old Fort Island formation is the oldest Paleozoic rock unit present in the area north and northwest of Great Slave Lake. The unit is probably a "Granite Wash" type of deposit and where exposed in outcrops consists essentially of sandstone. Norris (1962) describes the unit as "consisting of thin to thick bedded, fine to coarse grained, vari-colored but mainly white, friable, quartzose sandstone; some thin beds of greenish gray and dusky red siltstone; and occasional laminae and partings of green shale". The sandstones are usually porous and often friable. Norris's description of this unit sounds very similar to the present writer's description of the Granite Wash formation as present in the Red Earth Oil Field in Township 87, Range 8, West of the Fifth Meridian (Alberta).

As the Old Fort Island Formation has yielded no fossils as yet its exact age is unknown and a similar age problem exists with the Granite Wash in northern Alberta. However, both formations appear to be conformable with the overlying beds and both are often confined to topographic low areas on the Pre-Cambrian Shield. The age of the Old Fort Island formation is, therefore, probably Middle Ordovician, but older than the La Mere Falls formation. The sandstone beds of this unit are an excellent potential reservoir.

LA MATURE FALLS FORMATION

The LaMaire Falls formation is 300 to 350 feet thick in the region under discussion, and consists of red and green shale, fine to coarse grained sandstone and silty to sandy dolomite. The base of the LaMaire Falls is often an argillaceous silty, oolitic limestone with some sandy and conglomeratic dolomite and sandstone. Gypsum and salt are also often present.

The shales are platy, fissile and are variously colored with red and green being the most common color, but pinks, brown and gray also being present, silty to sandy and at times slightly dolomitic. The sandstone beds are medium to light gray, and fine to coarse grained. Where the sandstone lies directly on the Pre-Cambrian Shield it is often arkosic and in this area it is a "Granite Wash". Grapholite remains, date this formation as Middle Ordovician. The sandstone and dolomite members of this formation are good potential reservoir horizons.

CHEDABUCTO LAKE FORMATION

The Chedabucto Lake formation is about 200 to 250 feet thick in the vicinity of the Permit and the unit consists of massive, cliff-forming dolomites some of which are sandy and conglomeratic. Norris (1962) describes the formation "consists of a thick bedded to massive,

highly resistant, scarp-forming, fine grained, granular, in places minutely vuggy, medium brown dolomite, commonly weathering a pale orange or orange-brown in the south, and a yellowish brown and gray in the north". Purple mottling is common and chert is often present. The age of the Chedabucto Lake formation is Upper Ordovician. The reservoir possibilities of this unit in the subsurface do not appear to be great as only minor vugs are reported from the surface exposures. This formation is overlain unconformably by the Middle Devonian System and the Chinchaga formation of the Middle Devonian is the overlying unit.

DEVONIAN

The Devonian section is about 1,075 feet thick and consists of the Chinchaga formation plus units which are equivalent to the Keg River and Muskeg formations. The exact sequence

present is unknown due to a lack of wells in the area plus the lack of surface knowledge in this northern area. In addition, the Middle Devonian succession in this area is very complex and many abrupt lithologic changes are present. The Chinchaga formation is recognized as a mappable unit but the units above the Chinchaga cannot be correlated to the northern Alberta type section area.

CHINCHAGA FORMATION

The Chinchaga is about 325 feet thick and in this area the unit consists of evaporites, some minor dolomite plus some dolomite and limestone breccia. The Chinchaga unconformably overlies the Chedabucto Lake formation and is conformably overlain by younger Middle Devonian beds. Norris (1965) states "The Chinchaga formation is mostly gypsumeasily eroded and does not produce

1960-1961 學年上學期

Norris (1963) describes the lower part of the Lonely Bay formation as"massive dark brown aphanitic in part stylolitic limestone; thinly bedded light gray fine grained to aphanitic limestone, weathering orange-brown; irregularly thin-bedded light olive gray to medium gray, fine grained limestone; medium -bedded aphanitic slightly dolomitic limestone; and thinly bedded pale brown slightly argillaceous limestone. A younger section is described as consisting of ... "massive, dark to medium brown, fine grained to fetid limestone, overlain by irregularly thin-bedded medium brown, fine grained to aphanitic limestone interbedded with nodular limestone".

MUSKEG FORMATION EQUIVALENT

In the area north of Great Slave Lake there are units present which correlate to the muskeg of northwestern Alberta. It is up to 500 feet thick in this area and is comprised of a

lower 100 feet of bituminous shale; a middle 175 feet of green calcareous shale; and an upper member up to 225 feet thick which consists of gray to white reefal dolomite. This upper member correlates to the Presquile reef of the Pine Point area.

Fracture intensity contrasts could reflect the edge of the Presquile reef or where there is rapid change in lithology within the section.

CRETACEOUS

The Cretaceous sediments are about 400 to 800 feet thick depending on surface elevation. The thicker sections are present under the hills.

Lithologically the section consists of dark gray, concretionary, gypsiferous shales. These shales are Lower Cretaceous in age and are probably equivalent to the Peace River and Spirit River formations of northern Alberta.

TERTIARY

A thin layer of glacial clay, sand boulders and till lies on the surface of the map area. The thickness of these deposits varies from place to place but probably does not exceed 100 feet.

FRACTURE ANALYSIS

© 2010 Pearson Education, Inc. All Rights Reserved. May not be reproduced, in whole or in part, without permission of the publisher.

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

200 210 220 230 240 250 260 270 280 290 300

system is applied by any method recording all observable lineations, or the totality of a certain type of linear feature, and the statistical presentation of the data on contoured intensity maps or dry plotting the fractures directly on the mosaic.

In this report a megafracture is longer than one mile and a microfracture is shorter than one mile.

GENERAL STATEMENT

ORIGIN OF FRACTURES

Fracturing is largely caused by external stresses on the earth, although internal stresses may play some minor roll. The most important of these external forces are the diurnal earth tides due to the gravitational effects of the sun and moon; the change in radial acceleration of the earth along its radius vector and the gradual decrease in the earth's rate of rotation. The endless rhythmic action of these earth tides is probably the principal cause of the systematic fracture system seen over most of the world, even though the amplitude of these tides is only 9-13 inches. The fractures are most likely generated by the process of fatigue as the end result of these stresses which are repeated regularly over millions and millions of years. Metals fatigue in the same manner when subjected to continual vibration.

In general the resulting forces which generate fractures must have continued for a very long time and the process involved are continuous and are probably active at the present time. Furthermore, Shallow (1957) states, "The mechanism required to reflect fractures to ground surface must be reasonably simple, for simple patterns are produced on diverse updrifts and in diverse types and depths of surficial deposits that overlie different kinds of relatively flat lying sedimentary rocks of varying thickness. The mechanism probably during the long time pattern must persist over distances and widespread belts of the earth's crust. That is today, the engendering mechanism is fairly well known."

External forces such as earth - like viscosity. In these parameters some internal forces may also apply such as the action of deep seated mantle forces and the most probable of these is crustal subduction.

Isothermal rebound following the melting of the glaciers may still be taking place and this will further accentuate fractures present before glaciation.

In general it can be said that fracture patterns are caused by either internal forces or external forces. If the forces are internal the result would be different orientation of the fracture systems in areas of similar tectonic history but different position. If the forces are external the orientation of the fracture arrangement should have varied with time. However, stable areas such as the regions of the continents may develop fracture patterns due to external forces and temporarily active areas may develop their fracture due to internal forces.

If joints form early in the history of a sedimentary deposit joints which are early in the history of the deposit appear through the section and the joints often are compressed in each other layer of sediments when they

have become consolidated enough to fracture. This upward propagation is caused by the fatigue caused by stress, which in turn is caused by diurnal earth tides.

EXPRESSION OF FRACTURE

Fractures have been observed in aerial photographs from every climate and on every continent in the world. They are expressed as topographic relief, vegetation differences and soil tonal differences.

TOPOGRAPHIC RELIEF LINEAMENTS

A common type are relief lineaments which can be manifested by a change (usually abrupt) of topographic elevation on either side of a relatively straight line. They may also be expressed as straight valleys or hills or by straight streams where the stream course is controlled by a fracture zone.

VEGETAL LINEAMENTS

Vegetal lineaments are the most common in the parkland and muskeg areas of western Canada and many excellent examples of fractures can be seen on almost any aerial photograph of northern Saskatchewan, Alberta or British Columbia. Straight lines of both deciduous and evergreen trees as well as scrub growth are universally visible. However, the most common vegetal lineament seen by this writer is a straight "edge" to a clump of trees or bushes. In many cases these fractures control the size and shape of cultivated fields. Excellent examples of this latter expression of fractures are present in the western part of the Peace River district.

SOIL TONAL LINEAMENTS

These reflect differentiation in soil moisture and general ground water conditions. These are common

stratigraphic anomalies. The actual count of fractures per unit area is made and values are contoured on a "Fracture Intensity Map". In areas of known reefs the fracture intensity is 2-3 times greater on the flanks of the reef than directly above the reef.

In any fracture pattern there are two main systems of fractures the axial system and the shear system. In both systems the fractures are sub-parallel and in general the two systems are at approximate right angles to each other.

Because of certain inherent limiting factors, Structure Incidence Surveys have a lower order of reliability than Detailed Fracture Analysis Surveys. To some extent at least, surface conditions affect the fracture count. In areas covered by lakes, sloughs and rivers, the fracture count is zero. Cultivated areas generally yield a lower count than adjacent virgin territory. Consequently, a difference or contrast

in fracture count (F/I) between two points may be in part due to structure, but, also due in part to different surface conditions. To some extent, this can be compensated for by applying appropriate weightings to the observed counts, but over or under corrections may result.

Nevertheless, in spite of these sources of error, it has been demonstrated in (plains) areas where abundant subsurface control is available, that the incidence of fracturing is considerably above normal in the surrounding area immediately out from the steepest part of the flanks of the structure. This is in contrast with a low or normal incidence over the crestal area, and also to a normal incidence off structure.

FRACTURE ANALYSIS
OF
PERMIT NO. 5053

The fracture pattern as shown on the enclosed mosaic and maps shows a great variation in intensity over various areas of the Permit. The Permit is located in the muskeg area east of Keller Lake, Northwest Territories and is hundreds of miles from the closest settlement.

The sedimentary section is probably about 2,400 feet (plus) thick and several systems are represented. In addition a thin layer of Tertiary glacial till covers nearly all of the area. Potential reservoir horizons are present within both the Ordovician and Devonian sections.

Fractures as plotted on the mosaic show considerable variation in intensity. There is one

11. **What is the primary purpose of the study?**
a. To compare the effectiveness of different treatment regimens.
b. To determine the safety profile of a new drug.
c. To explore the relationship between a specific biomarker and disease outcome.
d. To evaluate the cost-effectiveness of a medical intervention.
e. To assess the impact of a public health intervention on a specific population.

18. *Leucania* *luteola* (Hufnagel) *luteola*

within the Basement, it is assumed that all fractures plotted on the mosaic originate within the sedimentary section. Furthermore, as the fractures are short for this area it is very likely that they originate in the upper two-thirds of the sedimentary section. As the surface of the Permit is relatively flat-lying no azimuth correction is necessary for this study. It has been demonstrated that the low incidence anomalies on a mosaic are considerably larger than the subsurface feature which causes them.

There is one area on the mosaic where the fractures are less intense than the surrounding area. Some fractures are always present within these areas but they usually have a lower incidence than the surrounding area. These low intensity areas are important and it is quite likely that they are due to some subsurface feature. The type of feature will be discussed in the next section of this report.

STRUCTURE

Petroleum & Natural Gas Permit No. 5053 is located on the interior plains of the Northwest Territories about 65 miles to the west of the edge of the Pre-Cambrian Shield. The strike of the sedimentary rocks is about north 30 degrees west and the units dip to the southwest at a few tens of feet per mile.

Structural features which could be present and which could cause the low incidence anomalies mentioned in this report are discussed in order of probability.

1. PRE-CAMBRIAN TOPOGRAPHY

Basement topography under Permit 5053 is thought to be much the same as it is today along the southwest edge of the Shield. Low rounded hills

separated by gentle to abrupt valleys are seen on the Shield and these features are undoubtedly present under the subject Permit (5053). The effect of this Basement relief on the overlying sedimentary rocks is often great. The Granite Wash sand is usually present in the topographic "lows" on the Basement but absent on the "highs". The Granite Wash is an excellent potential reservoir.

Further effects of Basement topography on beds higher than the Granite Wash is the gentle folding present over Basement hills. These folds are anticlines in every sense and could form traps for oil or gas.

Many small faults have been reported by A.W. Morris (1963) in the Basement and immediately overlying rocks and these features could cause closure within the sedimentary units.

3. DEVONIAN REEFS

Devonian reefs strongly affect the fracture pattern and control the occurrence of gas and oil in the overlying beds. Small Middle Devonian reefs are present south-west of this Permit (5093) and others could well be present under the subject area.

3. TECTONIC FOLDING & FAULTING

The presence of tectonic folds is very unlikely, but some normal faulting

is probably present

4. TOPOGRAPHIC RELIEF ON
AN INTRA-SEDIMENTARY
UNCONFORMITY

Unconformity, is a possible source of fracture intensity anomalies, but within the Permit area it is unlikely that the relief on any unconformities within the sedimentary section is great enough to affect the fracture pattern.

Reference to the Total Fracture Pattern Map which accompanies this report will show that there is one area of "high" fracture intensity and one area of "low" fracture intensity (green). The general interpretation is that the low fracture intensity areas are underlain by topographic highs on the Basement. With this established, the

deduction is that the Basement is high in a belt running northwest-southeast across the southwest corner of this Permit (5053).

These Basement high features are most interesting from the oil and gas point of view. The general shape of this feature is such that the causative feature must be a hill on the Basement surface. A fault is unlikely as the causative feature as the high area is over one and one-half miles in width. If a fault caused the fracture "low" the width of the low would be about one mile or less.

Granite Wash sand is probably present on the flanks of these highs but is absent on top.

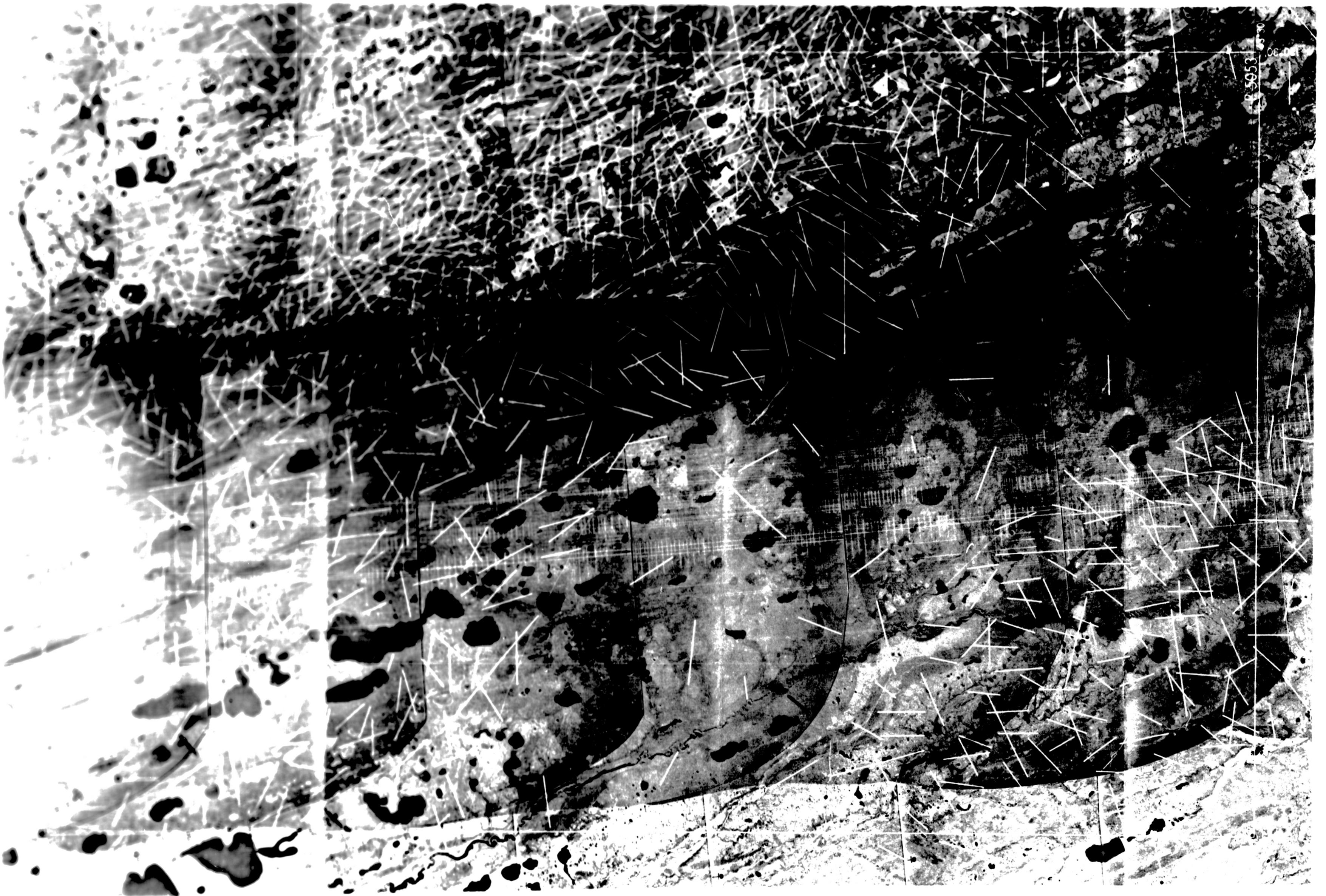
1920-1921
1921-1922
1922-1923
1923-1924
1924-1925
1925-1926
1926-1927
1927-1928
1928-1929
1929-1930
1930-1931
1931-1932
1932-1933
1933-1934
1934-1935
1935-1936
1936-1937
1937-1938
1938-1939
1939-1940
1940-1941
1941-1942
1942-1943
1943-1944
1944-1945
1945-1946
1946-1947
1947-1948
1948-1949
1949-1950
1950-1951
1951-1952
1952-1953
1953-1954
1954-1955
1955-1956
1956-1957
1957-1958
1958-1959
1959-1960
1960-1961
1961-1962
1962-1963
1963-1964
1964-1965
1965-1966
1966-1967
1967-1968
1968-1969
1969-1970
1970-1971
1971-1972
1972-1973
1973-1974
1974-1975
1975-1976
1976-1977
1977-1978
1978-1979
1979-1980
1980-1981
1981-1982
1982-1983
1983-1984
1984-1985
1985-1986
1986-1987
1987-1988
1988-1989
1989-1990
1990-1991
1991-1992
1992-1993
1993-1994
1994-1995
1995-1996
1996-1997
1997-1998
1998-1999
1999-2000
2000-2001
2001-2002
2002-2003
2003-2004
2004-2005
2005-2006
2006-2007
2007-2008
2008-2009
2009-2010
2010-2011
2011-2012
2012-2013
2013-2014
2014-2015
2015-2016
2016-2017
2017-2018
2018-2019
2019-2020
2020-2021
2021-2022
2022-2023
2023-2024
2024-2025
2025-2026
2026-2027
2027-2028
2028-2029
2029-2030
2030-2031
2031-2032
2032-2033
2033-2034
2034-2035
2035-2036
2036-2037
2037-2038
2038-2039
2039-2040
2040-2041
2041-2042
2042-2043
2043-2044
2044-2045
2045-2046
2046-2047
2047-2048
2048-2049
2049-2050
2050-2051
2051-2052
2052-2053
2053-2054
2054-2055
2055-2056
2056-2057
2057-2058
2058-2059
2059-2060
2060-2061
2061-2062
2062-2063
2063-2064
2064-2065
2065-2066
2066-2067
2067-2068
2068-2069
2069-2070
2070-2071
2071-2072
2072-2073
2073-2074
2074-2075
2075-2076
2076-2077
2077-2078
2078-2079
2079-2080
2080-2081
2081-2082
2082-2083
2083-2084
2084-2085
2085-2086
2086-2087
2087-2088
2088-2089
2089-2090
2090-2091
2091-2092
2092-2093
2093-2094
2094-2095
2095-2096
2096-2097
2097-2098
2098-2099
2099-20100
20100-20101
20101-20102
20102-20103
20103-20104
20104-20105
20105-20106
20106-20107
20107-20108
20108-20109
20109-20110
20110-20111
20111-20112
20112-20113
20113-20114
20114-20115
20115-20116
20116-20117
20117-20118
20118-20119
20119-20120
20120-20121
20121-20122
20122-20123
20123-20124
20124-20125
20125-20126
20126-20127
20127-20128
20128-20129
20129-20130
20130-20131
20131-20132
20132-20133
20133-20134
20134-20135
20135-20136
20136-20137
20137-20138
20138-20139
20139-20140
20140-20141
20141-20142
20142-20143
20143-20144
20144-20145
20145-20146
20146-20147
20147-20148
20148-20149
20149-20150
20150-20151
20151-20152
20152-20153
20153-20154
20154-20155
20155-20156
20156-20157
20157-20158
20158-20159
20159-20160
20160-20161
20161-20162
20162-20163
20163-20164
20164-20165
20165-20166
20166-20167
20167-20168
20168-20169
20169-20170
20170-20171
20171-20172
20172-20173
20173-20174
20174-20175
20175-20176
20176-20177
20177-20178
20178-20179
20179-20180
20180-20181
20181-20182
20182-20183
20183-20184
20184-20185
20185-20186
20186-20187
20187-20188
20188-20189
20189-20190
20190-20191
20191-20192
20192-20193
20193-20194
20194-20195
20195-20196
20196-20197
20197-20198
20198-20199
20199-20200
20200-20201
20201-20202
20202-20203
20203-20204
20204-20205
20205-20206
20206-20207
20207-20208
20208-20209
20209-20210
20210-20211
20211-20212
20212-20213
20213-20214
20214-20215
20215-20216
20216-20217
20217-20218
20218-20219
20219-20220
20220-20221
20221-20222
20222-20223
20223-20224
20224-20225
20225-20226
20226-20227
20227-20228
20228-20229
20229-20230
20230-20231
20231-20232
20232-20233
20233-20234
20234-20235
20235-20236
20236-20237
20237-20238
20238-20239
20239-20240
20240-20241
20241-20242
20242-20243
20243-20244
20244-20245
20245-20246
20246-20247
20247-20248
20248-20249
20249-20250
20250-20251
20251-20252
20252-20253
20253-20254
20254-20255
20255-20256
20256-20257
20257-20258
20258-20259
20259-20260
20260-20261
20261-20262
20262-20263
20263-20264
20264-20265
20265-20266
20266-20267
20267-20268
20268-20269
20269-20270
20270-20271
20271-20272
20272-20273
20273-20274
20274-20275
20275-20276
20276-20277
20277-20278
20278-20279
20279-20280
20280-20281
20281-20282
20282-20283
20283-20284
20284-20285
20285-20286
20286-20287
20287-20288
20288-20289
20289-20290
20290-20291
20291-20292
20292-20293
20293-20294
20294-20295
20295-20296
20296-20297
20297-20298
20298-20299
20299-202100
202100-202101
202101-202102
202102-202103
202103-202104
202104-202105
202105-202106
202106-202107
202107-202108
202108-202109
202109-202110
202110-202111
202111-202112
202112-202113
202113-202114
202114-202115
202115-202116
202116-202117
202117-202118
202118-202119
202119-202120
202120-202121
202121-202122
202122-202123
202123-202124
202124-202125
202125-202126
202126-202127
202127-202128
202128-202129
202129-202130
202130-202131
202131-202132
202132-202133
202133-202134
202134-202135
202135-202136
202136-202137
202137-202138
202138-202139
202139-202140
202140-202141
202141-202142
202142-202143
202143-202144
202144-202145
202145-202146
202146-202147
202147-202148
202148-202149
202149-202150
202150-202151
202151-202152
202152-202153
202153-202154
202154-202155
202155-202156
202156-202157
202157-202158
202158-202159
202159-202160
202160-202161
202161-202162
202162-202163
202163-202164
202164-202165
202165-202166
202166-202167
202167-202168
202168-202169
202169-202170
202170-202171
202171-202172
202172-202173
202173-202174
202174-202175
202175-202176
202176-202177
202177-202178
202178-202179
202179-202180
202180-202181
202181-202182
202182-202183
202183-202184
202184-202185
202185-202186
202186-202187
202187-202188
202188-202189
202189-202190
202190-202191
202191-202192
202192-202193
202193-202194
202194-202195
202195-202196
202196-202197
202197-202198
202198-202199
202199-202200
202200-202201
202201-202202
202202-202203
202203-202204
202204-202205
202205-202206
202206-202207
202207-202208
202208-202209
202209-202210
202210-202211
202211-202212
202212-202213
202213-202214
202214-202215
202215-202216
202216-202217
202217-202218
202218-202219
202219-202220
202220-202221
202221-202222
202222-202223
202223-202224
202224-202225
202225-202226
202226-202227
202227-202228
202228-202229
202229-202230
202230-202231
202231-202232
202232-202233
202233-202234
202234-202235
202235-202236
202236-202237
202237-202238
202238-202239
202239-202240
202240-202241
202241-202242
202242-202243
202243-202244
202244-202245
202245-202246
202246-202247
202247-202248
202248-202249
202249-202250
202250-202251
202251-202252
202252-202253
202253-202254
202254-202255
202255-202256
202256-202257
202257-202258
202258-202259
202259-202260
202260-202261
202261-202262
202262-202263
202263-202264
202264-202265
202265-202266
202266-202267
202267-202268
202268-202269
202269-202270
202270-202271
202271-202272
202272-202273
202273-202274
202274-202275
202275-202276
202276-202277
202277-202278
202278-202279
202279-202280
202280-202281
202281-202282
202282-202283
202283-202284
202284-202285
202285-202286
202286-202287
202287-202288
202288-202289
202289-202290
202290-202291
202291-202292
202292-202293
202293-202294
202294-202295
202295-202296
202296-202297
202297-202298
202298-202299
202299-202300
202300-202301
202301-202302
202302-202303
202303-202304
202304-202305
202305-202306
202306-202307
202307-202308
202308-202309
202309-202310
202310-202311
202311-202312
202312-202313
202313-202314
202314-202315
202315-202316
202316-202317
202317-202318
202318-202319
202319-202320
202320-202321
202321-202322
202322-202323
202323-202324
202324-202325
202325-202326
202326-202327
202327-202328
202328-202329
202329-202330
202330-202331
202331-202332
202332-202333
202333-202334
202334-202335
202335-202336
202336-202337
202337-202338
202338-202339
202339-202340
202340-202341
202341-202342
202342-202343
202343-202344
202344-202345
202345-202346
202346-202347
202347-202348
202348-202349
202349-202350
202350-202351
202351-202352
202352-202353
202353-202354
202354-202355
202355-202356
202356-202357
202357-202358
202358-202359
202359-202360
202360-202361
202361-202362
202362-202363
202363-202364
202364-202365
202365-202366
202366-202367
202367-202368
202368-202369
202369-202370
202370-202371
202371-202372
202372-202373
202373-202374
202374-202375
202375-202376
202376-202377
202377-202378
202378-202379
202379-202380
202380-202381
202381-202382
202382-202383
202383-202384
202384-202385
202385-202386
202386-202387
202387-202388
202388-202389
202389-202390
202390-202391
202391-202392
202392-202393
202393-202394
202394-202395
202395-202396
202396-202397
202397-202398
202398-202399
202399-202400
202400-202401
202401-202402
202402-202403
202403-202404
202404-202405
202405-202406
202406-202407
202407-202408
202408-202409
202409-202410
202410-202411
202411-202412
202412-202413
202413-202414
202414-202415
202415-202416
202416-202417
202417-202418
202418-202419
202419-202420
202420-202421
202421-202422
202422-202423
202423-202424
202424-202425
202425-202426
202426-202427
202427-202428
202428-202429
202429-202430
202430-202431
202431-202432
202432-202433
202433-202434
202434-202435
202435-202436
202436-202437
202437-202438
202438-202439
202439-202440
202440-202441
202441-202442
202442-202443
202443-202444
202444-202445
202445-202446
202446-202447
202447-202448
202448-202449
202449-202450
202450-202451
202451-202452
202452-202453
202453-202454
202454-202455
202455-202456
202456-202457
202457-202458
202458-202459
202459-202460
202460-202461
202461-202462
202462-202463
202463-202464
202464-202465
202465-202466
202466-202467
202467-202468
202468-202469
202469-202470
202470-202471
202471-202472
202472-202473
202473-202474
202474-202475
202475-202476
202476-202477
202477-202478
202478-202479
202479-202480
202480-202481
202481-202482
202482-202483
202483-202484
202484-202485
202485-202486
202486-202487
202487-202488
202488-202489
202489-202490
202490-202491
202491-202492
202492-202493
202493-202494
202494-202495
202495-202496
202496-202497
202497-202498
202498-202499
202499-202500
202500-202501
202501-202502
202502-202503
202503-202504
202504-202505
202505-202506
202506-202507
202507-202508
202508-202509
202509-202510
202510-202511
202511-202512
202512-202513
202513-202514
202514-202515
202515-202516
202516-202517
202517-202518
202518-202519
202519-202520
202520-202521
202521-202522
202522-202523
202523-202524
202524-202525
202525-202526
202526-202527
202527-202528
202528-202529
202529-202530
202530-202531
202531-202532
202532-202533
202533-202534
202534-202535
202535-202536
202536-202537
202537-202538
202538-202539
202539-202540
202540-202541
202541-202542
202542-202543
202543-202544
202544-202545
202545-202546
202546-202547
202547-202548
202548-202549
202549-202550
202550-202551
202551-202552
202552-202553
202553-202554
202554-202555
202555-202556
202556-202557
202557-202558
202558-202559
202559-202560
202560-202561
202561-202562
202562-202563
202563-202564
202564-202565
202565-202566
202566-202567
202567-202568
202568-202569
202569-202570
202570-202571
202571-202572
202572-202573
202573-202574
202574-202575
202575-202576
202576-202577
202577-202578
202578-202579
202579-202580
202580-202581
202581-202582
202582-202583
202583-202584
202584-202585
202585-202586
202586-202587
202587-202588
202588-202589
202589-202590
202590-202591
202591-202592
202592-202593
202593-202594
202594-202595
202595-202596
202596-202597
202597-202598
202598-202599
202599-202600
202600-202601
202601-202602
202602-202603
202603-202604
202604-202605
202605-202606
202606-202607
202607-202608
202608-202609
202609-202610
202610-202611
202611-202612
202612-202613
202613-202614
202614-202615
202615-202616
202616-202617
202617-202618
2026

1990-1991 1991-1992

1000

REFERENCES

BLANCHET, P. H.

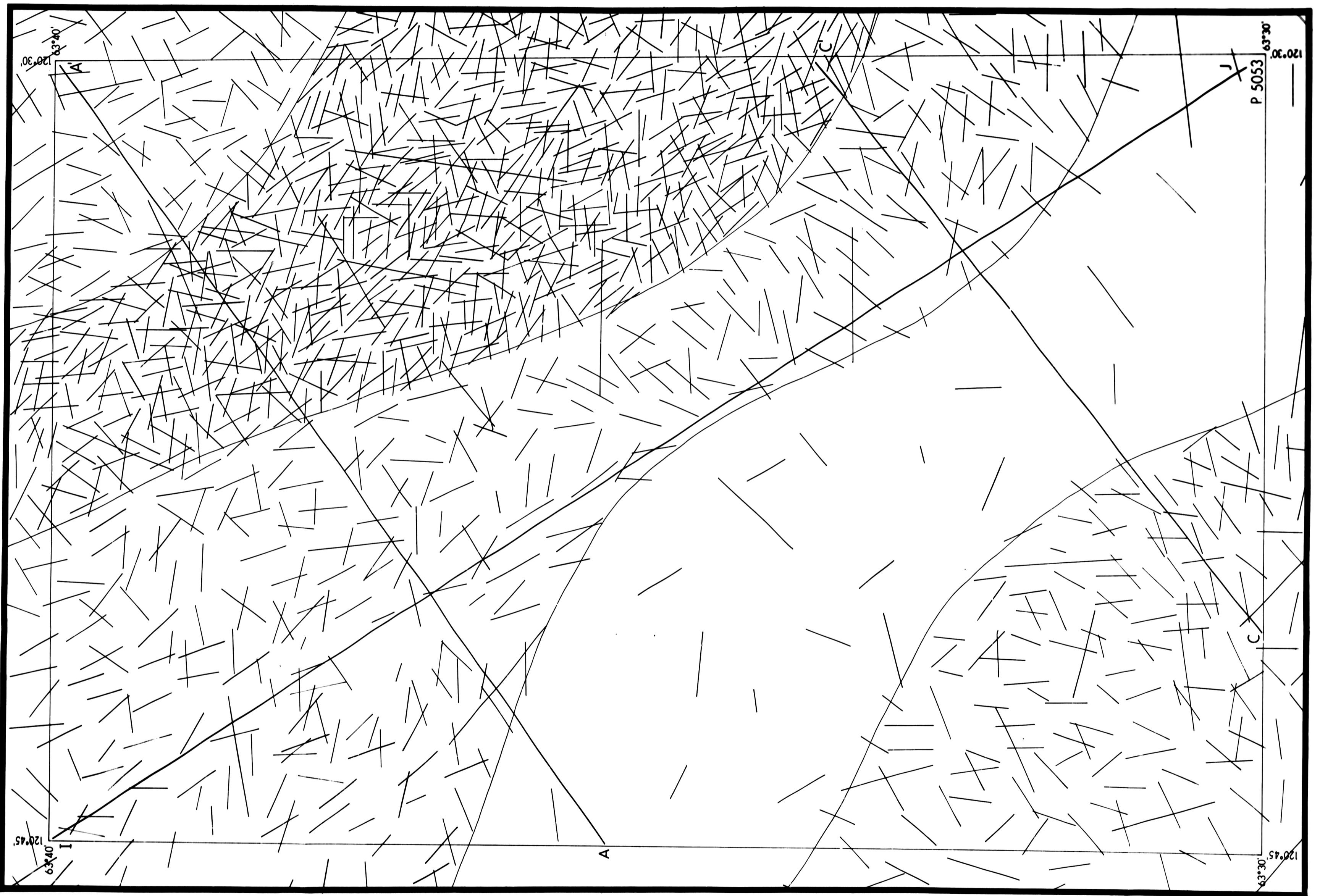

"Development of Fracture Analysis as Exploration Method", Amer. Assoc. Petrol. Geol. Bull., Vol. 61, No. 8, 1788-1799 (1977).

BLANCHET, P. H.

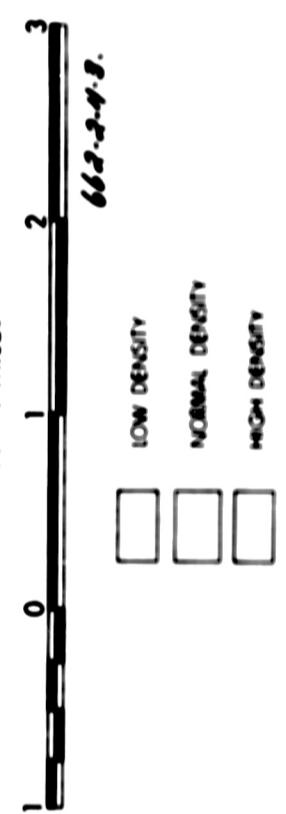
"Geomechanics Applied to Fracture Analysis on Aerial Photographs", West. Can. Geo. Publications, Series 2 No. 3, (1984).

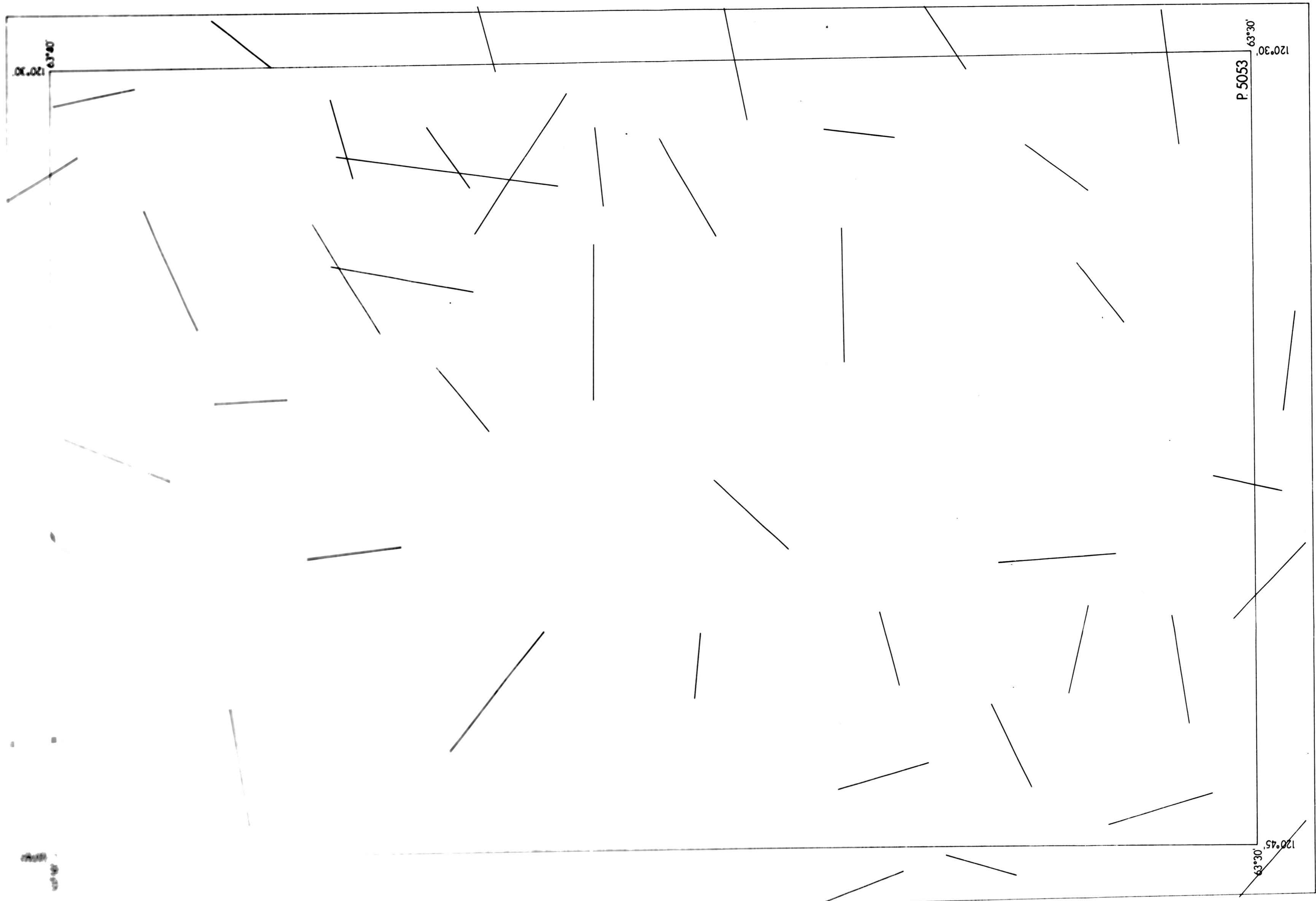
BLANCHET, P. H.

"Geotigraphy of Middle Devonian and Other Paleozoic Rocks of the Green Gables Line, Nepean, Northwest Territories", Can. Bur. of Min. Membr. 148 (1983).



GROSMONT OIL & GAS LTD.
P & N.G. PERMIT 5053


SCALE IN MILES
662-24-3.


1 0 2 3

THIS IS AN UNCONTROLLED MOSAIC AND SHOULD NOT BE TAKEN AS AN
ACCURATE TOPOGRAPHIC MAP

GROSMONT OIL & GAS LTD.
P & NG PERMIT 5053
TOTAL FRACTURE PATTERN

GROSMONT OIL & GAS LTD.
P & N.G. PERMIT 5053
MEGA FRACTURE PATTERN

667-24-3.

SCALE IN MILES

0 1 2 3

PROBABLE BASEMENT STRUCTURE

SURFACE OF BASEMENT

REGIONAL BASEMENT

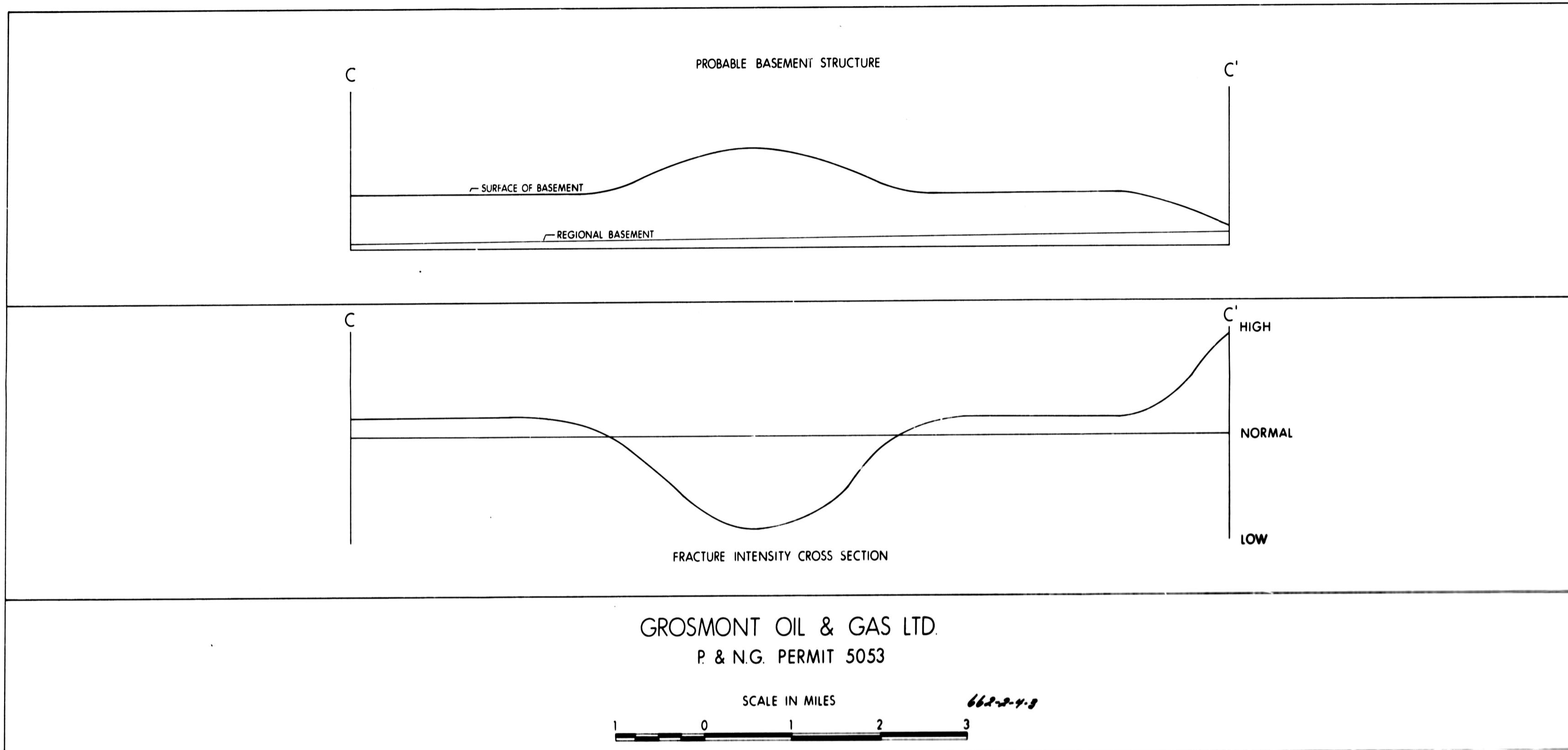
J

J

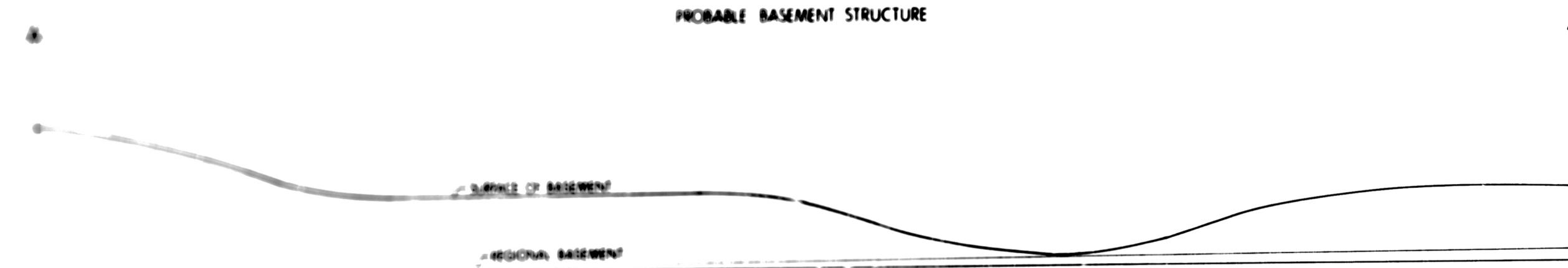
H

N

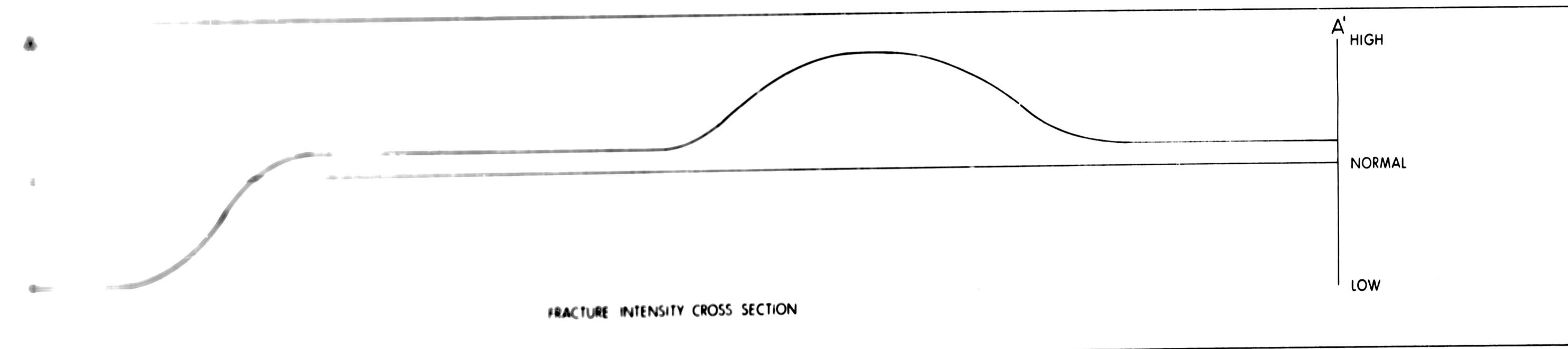
L


FRACTURE INTENSITY CROSS SECTION

GROSMONT OIL & GAS LTD.
P & NG PERMIT 5053


SCALE IN MILES

662-2-43



PROBABLE BASEMENT STRUCTURE

FRACTURE INTENSITY CROSS SECTION

GROSMONT OIL & GAS LTD.
P & NG PERMIT 5053

SCALE IN MILES

662-2-4-3