

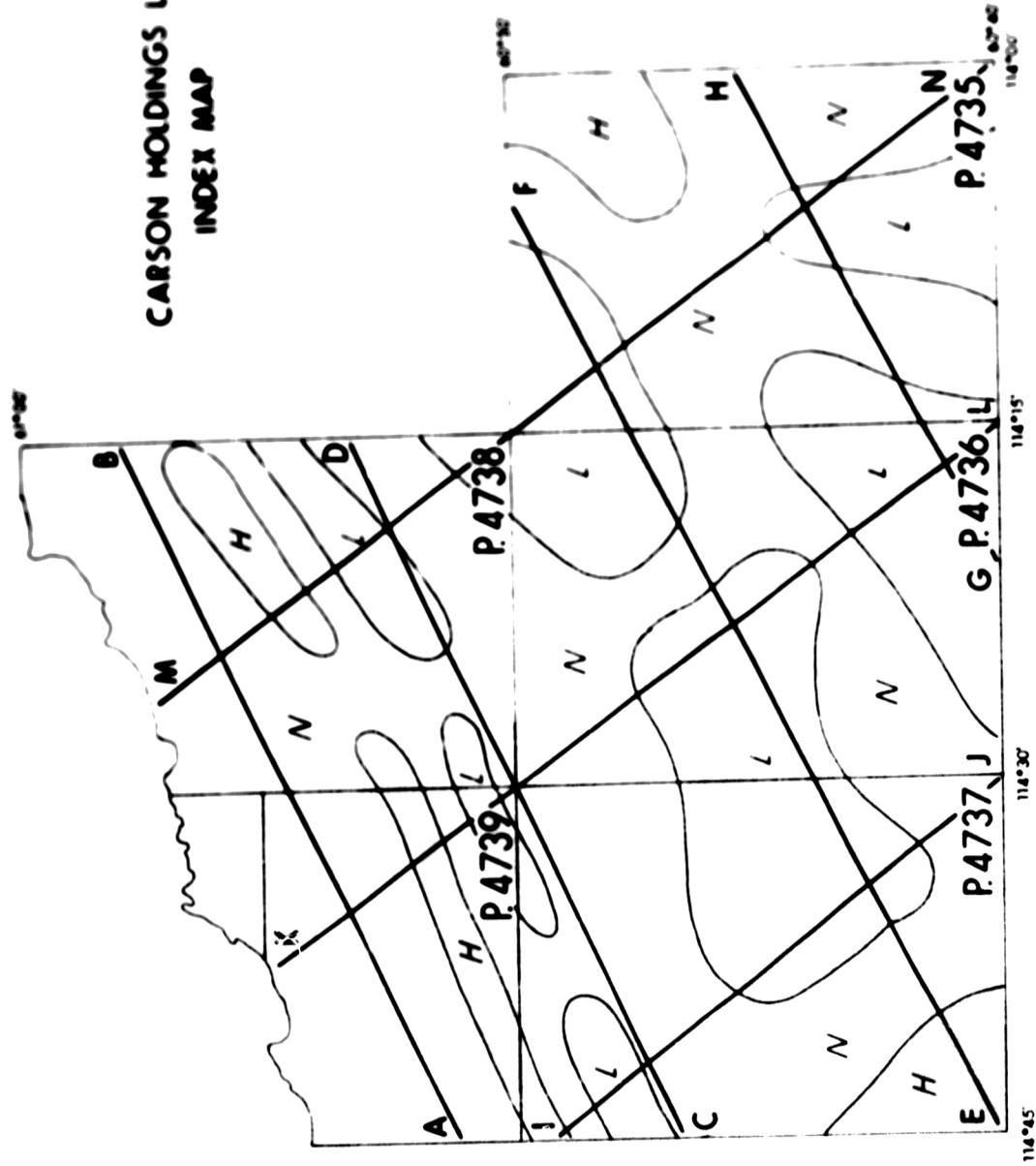
GENERAL GEOLOGY

6

FRAC TURE ANALYSIS SURVEY

67

EDM PERMIT NO. 4735


100

CARBON HOLDINGS LTD

100

— RAYALTA PETROLEUMS LTD

CARSON HOLDINGS LTD
INDEX MAP

INTRODUCTION

This report discusses the results of a Fracture Analysis Survey carried out within, and in the immediate vicinity of, Petroleum and Natural Gas Permit No. 4735. This Permit is located in the Northwest Territories and is held under the Canada Oil and Gas Land Regulations and is located between 114° 00' to 114° 15' longitude and 60° 40' to 60° 50' latitude. The Permit is 500 miles north of Edmonton and 100 miles south of Yellowknife.

The Pine Point Highway is about ten miles northeast of the Permit and this is the only road which passes through the area. Access to the Permit itself is by helicopter or on foot during the summer or by vehicle during the months when the ground is frozen. However, there are no roads in the area and considerable road construction would be required

to reach any particular area. A few minor cut lines may be present and these would provide limited access.

The surface of the Permit is quite flat-lying and total relief does not exceed 100 feet. There is a poorly developed drainage pattern within this area and only a few intermittent streams are present. A layer of very soft muskeg covers this part of the Northwest Territories and this muskeg is so soft that it is impassable to all but specialized vehicles.

Vegetation consists of thick stands of thin evergreen trees interspersed with many open areas. These open areas are covered by muskeg grass and scrub deciduous growth. The evergreen trees show up as a medium gray tone on the mosaic and the open areas are a lighter gray. A few small patches of deciduous trees are present.

There is no topographic form or aerial photo feature present which immediately suggests the presence of any geologic structure.

The results of this survey are illustrated on the Total Fracture Map, the Mega Fracture Map plus the mosaic with the fractures superimposed. In addition there are three hypothetical cross-sections. All the above can be found in the folder at the back of this report.

STRATIGRAPHY

TABLE OF FORMATIONS

ERA	PERIOD	FORMATION or MEMBER & THICKNESS	LITHOLOGY
PALEOZOIC	MIDDLE DEVONIAN	SLAVE POINT	Brown fine grained stromatoporoidal lime- stone, or dense argillaceous limestone Amco Shale marker present in Buffalo River area.
		0' - 300'	
		?	
		SULPHUR POINT	Light brown stroma- poroidal limestone minor beds of light brown petroliferous sandy limestone, some dark brown fine grain- ed dolomite.
		0' - 170'	
	MIDDLE	PRESQUILE	Reefoidal, recrystallized vuggy coarse grained massive dolomite, in part petroliferous
		0' - 260'	
		NYARLING	Evaporitic sequence, mainly gypsum, some limestone.
		0' - 460'	

STRATIGRAPHY

TABLE OF FORMATIONS

2

ERA	PERIOD	FORMATION or MEMBER & THICKNESS	LITHOLOGY
PAL	ZADON	(Fine grained) DOLOMITE MEMBER 0 - 460'	Brown, in part vuggy and petrolierous fine grained granular dolomite. Also sandy and minor coarse grained dolomite.
	FO	(Brown) LIME- STONE MEMBER 150'	Thinly bedded, brown fine grained fossil- iferous limestone; brown platy, partly petrolierous lime- stone medium brown to coarse grained vuggy dolomite.
	ZADON	BUFFALO RIVER MEMBER 0 - 185'	Green to bluish gray fissile limy shale, some iron sulphide

SYNTHETIC POLYMERS

TABLE OF FORMATIONS

1

STRATIGRAPHY

TABLE OF FORMATIONS

ERA	PERIOD	FORMATION or MEMBER & THICKNESS		LITHOLOGY
		MIRAGE POINT	0' - 595'	
PALaeozoic	MIDDLE DEVONIAN & OLDER	OLD FORT ISLAND	0' - 110'	White friable quartzose sandstone and minor greenish gray siltstone and green shale.

WHALE C. DEPOSITION

SLAVE POINT FORMATION

This formation overlie the upper part of the
Whale Depression (Gulfian) and consists of a fine
grained limestone, originally showing soft laminae
with sharp nodules near the top. Certain areas are
slightly fossiliferous, with numerous fossils including
Amphipods, Alcyon, Chonetes, Stromatopores
and Emenella. There are minor amounts of broken
spherical limestone containing carbonaceous shales
with thin interbedded fine grained granular lime-
stone and massive quartzose sandy limestone. Al-
though some fractures are oil stained the rock has
poor porosity.

The Slave Point formation is underlain by an
11 foot bed of gray shale and argillaceous limestone
which served as a marker bed for the bottom of the
Slave Point formation in the Buffalo River area. This
11 foot bed is believed to be the remnants of the Wall
Mountain formation to the south (Law 1957) and is

where the older rocks are exposed a thin bed of
volcanic rock is exposed in some places.

The older rocks described above are the
older volcanics and older metamorphic.

SULPHUR POINT FORMATION

This formation is composed of the following
descriptions of the underlying Precambrian bedrock
is composed of a medium gray fine-grained mica-schist
interbedded with a greenish gray fine-grained
mica-schist, and a medium gray
mica-schist.

Other occurrences of a medium gray fine-grained
mica-schist and a greenish gray mica-schist
with black carbonaceous streaks along bedding planes
are found near Sulphur Point.

Although the Sulphur Point formation has similar
features in common with the Precambrian bedrock
occurring at one locality, a section above the latter which

中華書局影印
新編
古今圖書集成
醫部全錄

THE BOSTONIAN

中華書局影印
中華書局影印

11. *Leucosia* *leucosia* (L.) *leucosia* (L.)

1990-1991: The first year of the new program.

卷之三十一

卷之三

卷之三十一

卷之三十一

卷之三

卷之三

總 編 著者名 卷數 期數

coarsely recrystallized dolomite underlies a crescent shaped area fringing the south side of Great Slave Lake.

South of Presquile Point, the dolomite is a medium gray to purplish gray, coarsely to medium crystalline, vuggy to cavernous, massive and weathers light gray to brown. The formation is very irregular to the east with thickness varying considerably.

The Presquile formation overlies the Fine Grained Dolomite Member of the Pine Point formation.

NYARLING FORMATION

An evaporitic area of gypsum and minor thin bedded, brown fissile, fine grained to aphanitic limestone, with occasional dark brown carboniferous streaks, occupies the southern part of this area.

The name applied to this formation is the Nyarling

formation and it is thought to be the stratigraphic equivalent of the upper portion of the Pine Point formation, the whole of the Presquile and Sulphur Point formation.

Because of the soft erosive nature of this unit, very few outcrops were observed.

PINE POINT FORMATION

BUFFALO RIVER MEMBER

The Buffalo River Member is the youngest unit of the Point Point formation. Penetration by two drill holes, immediately west of Buffalo River revealed a bluish gray to dark green fissile, limy shale with occasional iron sulphide, approximately 100 feet thick. It was overlain by fine grained porous dolomite and underlain by the Bituminous Shale and Limestone Member of the Pine Point formation.

This formation was also present in Cominco's G-4 well, with 165 feet being present.

FINE GRAINED DOLOMITE MEMBER

The Fine Grained Dolomite Member

of the Pine Point formation is the largest and thickest member of that formation, and may possibly be given formation status in the future.

In Cominco's G-1 well the Fine Grained Dolomite Member comprises the upper 460 feet of the Pine Point formation, which is itself 540 feet thick. In this area, the Fine Grained Dolomite Member is overlain by the Presquile formation and overlies the Limestone Member of the Pine Point formation.

At Cominco's G-4 well, the member is overlain by the Bimimicus shale and Limestone member, and overlies the Chinchaga formation. It consists of a sandy, very colored dolomite and minor limestones, which interfinger with the Buffalo River Shale.

In the G-1 well area where the member is thickest the basal beds consist of a gray, finely crystalline compact, vuggy, fractured dolomite, about 35 feet thick. Overlying the basal dolomite are two beds of green shale and argillaceous dolomite, separated by three feet of dark brown dolomite. Campbell (1950) referred to these as the E-2 (lower) and E-1 (upper) horizons.

The overlying 310 feet between the top of the E-1 horizon and the Prequillie formation consists mainly of a light brown, fine grained sandy porous dolomite. Coal-like carbonaceous material is present between 100 feet and 130 feet above the E-1 member bed.

BROWN LIMESTONE MEMBER

This unit is equivalent to the upper part of the Pine Creek Dolomite and is composed of a series of dolomitic dolomite and a thin concretion of dolomite in dolomite.

The beds consist of a dark to medium brown, fine grained, thin bedded and laminated, partly petriferous and argillaceous limestone. There are also occasional beds of brown, medium to coarse grained, vuggy dolomite which is richly fossiliferous.

This member overlies the Bituminous Shale and Limestone Member, and is believed to be the Buffalo River Member.

BITUMINOUS SHALE & LIMESTONE MEMBER

Two main types of lithology are present in the Bituminous Shale and Limestone Member of the Penns River Formation

The lower lithologic sequence of a dark carbonaceous shale often finely interbedded with sandstone and siltstone. The shales are often thin bedded and laminated, alternating with thin bedded sandstone and siltstone.

Two diamond drill holes have penetrated this unit 5.5 miles southwest of Pine Point. There, the beds are present on the south-southeast flank of a west-southwest trending syncline, plunging in the same direction.

On the shore of Great Slave Lake, west of Isle du Mort, the Bituminous Shale and Limestone Member appears to underlie and intertongue with the shale of the Buffalo River Member.

LIMESTONE MEMBER

The Limestone Member of the Pine Point formation does not outcrop on the lease area but is present in the subsurface, in Commerce's Q-1 well.

The lower 30 feet of the member is composed of a light brown fine grained to subarenaceous dolomite with irregular markings and fragmental shales.

The upper part consists of grayish brown aphanitic to fine grained limestone, containing irregular dark bituminous partings. The Limestone Member of the Pine Point Formation is considered to be the basal unit of this formation and is the stratigraphic equivalent of the cherty fine grained dolomite located at the base of the fine grained dolomite member in Cominco G-1 well.

LOWER MIDDLE DEVONIAN
and
ORDOVICIAN

Underlying the Pine Point formation is the evaporitic Chinchaga formation a regular unit of between 310 feet - 325 feet thick, encountered at 675 feet in Cominco's G-1 well and 709.5 feet in Cominco's G-4 well. This formation is composed mainly of gypsum, argillaceous limestone, anhydrite, and salt, with minor limy dolomite. There is some possibility that this formation may be, in part, Upper Silurian, b.t., the evidence is inconclusive.

A large unconformity separates the Chinchaga from the underlying Upper- Middle Ordovician-Mirage Point Formation. These beds are composed of red and green beds of silty mudstone, quartz, dolomite, gypsum, anhydrite and dolomite in a matrix of clay and gypsum.

In Cominco's G-1 well, the **Mirage Point** formation overlies the igneous **Pre-Cambrian** and in Cominco's G-4 well 20 feet of the **Old Fort Island** formation, a quartzose, silty sandstone separates the **Mirage Point** formation from the **Pre-Cambrian**.

STRUCTURE

If one interprets the Presqu'ile reef as being a barrier reef migrating northward over the fore-reef deposits of the Pine Point formation, it would restrict the circulation of sea water in the back-reef area to the south, resulting in the deposition of evaporites. Such an evaporite exists as the Nyarling Formation. There is a general dip of 20 feet - 25 feet per mile to the south-west, but the local structure is not well known, due to lack of well control.

The Presqu'ile reef is probably in part, biostromal and biohermal. Dips of 5 degrees - 10 degrees are common, and occasionally much higher. Large gentle folds parallel the reef trend.

The Slave Point Formation seems to have been deposited on the western flank of the undolomitized equivalent of the Presqu'ile Formation, (the Sulphur Point Formation) extending over a broad westward tilting shelf, which may have been restricted in cir-

culation, of sea water, resulting in some anhydrite being deposited. When normal conditions returned (the top of the Presqu'ile being eroded, or the depth of water sufficiently increased) limestone was laid down.

COL. B. VAN PELT, 1940
PROBLEMS

The most outstanding of the problems and difficulties of continuing a commercial operation are the following: Inadequate financial management and lack of funds and good compatibility. The Pine Point Formation also has the property of being the dominant factor along the surface. However, it has been shown in the San Joaquin Sandstone, Glass Beach, that a portion of the Pine Point Formation does have oil and gas and are in part commercial.

Traces of commercial quantities could always be forthcoming from the same wells used in the San Joaquin Sandstone, Glass Beach, as it may well always occur in the area indicated by the following diagram.

FRACTURE ANALYSIS

This section of the report discusses the results of a Detailed Fracture Analysis Survey carried out on the area under discussion. An aerial mosaic (scale 1.5 inches equals approximately 1 mile) made from Dominion Government aerial photographs accompanies this report. These same photographs were examined stereoscopically and the fractures plotted on the individual photographs, then transferred to the mosaic for analysis.

The theory that the earth's crust is abundantly and methodically fractured is the basic premise on which is built the exploration technique known as Fracture Analysis. A Fracture is defined as "...generally abundant, natural lineation discernible on aerial photographs".

Fracturing is largely caused by external stresses

on the surface. The most important are

- (a) earth tides
- (b) radial acceleration of the earth along its radius vector
- (c) a gradual decrease of the earth's rate of rotation.

As stated above, the earth is systematically fractured and the fracture system would approach symmetry if the crust were homogeneous. It is considered that irregularities are caused by regional heterogeneous conditions within the earth's crust. Local departures from the norm are caused by structural or stratigraphic anomalies.

The term "photogeophysics" was introduced by Blanchet (1956) and deals with mapping, analysis and interpretation of fracture traces as recorded on aerial photographs. In a more general way "photogeophysics" can be defined as the methodical statistical analysis of linear features seen on aerial photographs and this

any reason to suspect a serious irregularity concerning any election
and/or irregularities in the carrying out of a particular voter or
electoral irregularities and the election of the election of the
and a serious and irregular conduct of the election the irregularities
directly on the election.

In this regard a number of irregularities in the election
and the conduct of the election of the election and the

卷之三

卷之三

2000-2001 学年 第一学期

卷之三十一

1. **What is the primary purpose of the study?** (check all that apply)

ii. The classification scheme of fractures and fracture patterns

Fracture types, fracture patterns

Classification of fractures is based on the following criteria:
magnitude and orientation with respect to joints, bedding, foliation,
or glaciogenic erosion such as western Cordilleran. The photogeophysicist
must take care to establish the direction of the
fracture zone or zones before the region is interpreted
and must interpret the fractures. Major zones in western
Cordillera often are combinations of fractures and joints
induced by the glaciator and these must be considered
when fractures are induced by tectonic or other tectonic
conditions. In parts of the Cordillera areas of
extreme difference the glaciator joints are as deeply
penetrated in the surface than fractures and joints in a
given difficult and often unpredictable

INTERPRETATION OF FRACTURE DATA

The object of Fracture Analysis (Photogeophysics)
is to locate shallow to deep-seated structural and

stratigraphic anomalies. The actual count of fractures per unit area is made and values are contoured on a "Fracture Intensity Map". In areas of known reefs the fracture intensity is 2-3 times greater on the flanks of the reef than directly above the reef.

In any fracture pattern there are two main systems of fractures: the axial system and the shear system. In both systems the fractures are sub-parallel and in general the two systems are at approximate right angles to each other.

Because of certain inherent limiting factors, Structure Incidence Surveys have a lower order of reliability than Detailed Fracture Analysis Surveys. To some extent at least, surface conditions affect the fracture count. In areas covered by lakes, sloughs and rivers, the fracture count is zero. Cultivated areas generally yield a lower count than adjacent virgin territory. Consequently, a difference or contrast

in fracture count (F/I) between two points may be in part due to structure, but, also due in part to different surface conditions. To some extent, this can be compensated for by applying appropriate weightings to the observed counts, but over or under corrections may result.

Nevertheless, in spite of these sources of error, it has been demonstrated in (plains) areas where abundant subsurface control is available, that the incidence of fracturing is considerably above normal in the surrounding area immediately out from the steepest part of the flanks of the structure. This is in contrast with a low or normal incidence over the crestal area, and also to a normal incidence off structure.

CLASS & THE QUALITY OF LIFE

REFERENCES

The British government has been in contact with
Russia and Russia offered to grant a loan of £100
million to the Chinese government at 3% interest
to finance the construction of the railway. The
loan is to be repaid in the following three years at 3% per
annum.

It is the hope of the author that the present paper will be of interest to those who are interested in the study of the history of the development of the English language.

and there are three areas where the fracture intensity is less than normal. The high intensity areas are shown in red and the low intensity areas are shown in green. The average length of the fractures is about 2,800 feet and both mega and micro fractures are present. It is worthy of special note to mention the glacial problem in this area.

Reference to the mosaic will show that the area is moderately scarred with glacial grooves and striations and that the direction of ice flow was about north 60 degrees east. Some of these grooves are so deeply impressed on the surface that they control the shape of the lakes and of tree growth in the area. In any area such as this the photoanalyst is faced with the difficult problem of eliminating the glacial scars from the fracture pattern without creating false anomalies. The removal of all fractures from a 10-12 degree arc in any area

will create fracture anomalies and it requires delicate weighting of the whole pattern to adjust for these effects.

In any fracture pattern there are two main systems of fractures: the axial system and the shear system. In both systems the fractures are sub-parallel and in general, the two systems are at approximate right angles to each other. Within Petroleum and Natural Gas Permit No. 4735 the statistical mean direction of the axial system is north 35 degrees west and the statistical mean direction of the shear system is north 55 degrees east. A third minor system, here termed the sub-axial system, trends nearly north-south.

No regional fractures of great length can be seen and as these are coned to originate within the Basement, it is assumed that all fractures plotted on the mosaic originate within the sedimentary section.

As the surface of the Permit is relatively flat-lying no azimuth correction is necessary for this study. It has been demonstrated that the low incidence anomalies on a mosaic are considerably larger than the subsurface feature which causes them.

There are three areas on the mosaic where the fractures are less intense than the surrounding area. Some fractures are always present within these areas but they always have a lower incidence than the surrounding area. These low intensity areas are important and it is quite likely that they are due to some subsurface feature. The type of feature will be discussed in the next section of this report.

STRUCTURE

Petroleum and Natural Gas Permit No. 4735 is located on the interior plain of the Northwest Territories about 50 miles from the west of the edge of the Pre-Cambrian Shield. The strike of the sedimentary rocks is about north 25 degrees west and the units dip to the southwest at a few tens of feet per mile.

Structural features which would be present and which could cause the low incidence anomalies mentioned in this report are discussed in order of probability.

(I) PRE-CAMBRIAN TOPOGRAPHY

Basement topography under Permit No. 4735 is thought to be much the same as it is today along the southwest edge of the Shield. Low rounded

Hills separated by granite or other
valleys are seen on the Basement and
these features are usually well
seen under the overlying Shinarump (6733).
The effect of this Basement relief on
the overlying sedimentary rocks is
often great. The Granite Wash sand
is usually present in the topographic
"lows" on the Basement but absent on
the "highs". The Granite Wash is
an excellent potential reservoir.

Further effects of Basement topo-
graphy on beds higher than the
Granite Wash is the gentle folding pres-
ent over Basement hills. These folds
are anticlines in every sense and could
form traps for oil or gas.

1. 1980-1981 年度
2. 1981-1982 年度
3. 1982-1983 年度
4. 1983-1984 年度
5. 1984-1985 年度
6. 1985-1986 年度
7. 1986-1987 年度
8. 1987-1988 年度
9. 1988-1989 年度
10. 1989-1990 年度
11. 1990-1991 年度
12. 1991-1992 年度
13. 1992-1993 年度
14. 1993-1994 年度
15. 1994-1995 年度
16. 1995-1996 年度
17. 1996-1997 年度
18. 1997-1998 年度
19. 1998-1999 年度
20. 1999-2000 年度
21. 2000-2001 年度
22. 2001-2002 年度
23. 2002-2003 年度
24. 2003-2004 年度
25. 2004-2005 年度
26. 2005-2006 年度
27. 2006-2007 年度
28. 2007-2008 年度
29. 2008-2009 年度
30. 2009-2010 年度
31. 2010-2011 年度
32. 2011-2012 年度
33. 2012-2013 年度
34. 2013-2014 年度
35. 2014-2015 年度
36. 2015-2016 年度
37. 2016-2017 年度
38. 2017-2018 年度
39. 2018-2019 年度
40. 2019-2020 年度
41. 2020-2021 年度
42. 2021-2022 年度
43. 2022-2023 年度
44. 2023-2024 年度
45. 2024-2025 年度
46. 2025-2026 年度
47. 2026-2027 年度
48. 2027-2028 年度
49. 2028-2029 年度
50. 2029-2030 年度
51. 2030-2031 年度
52. 2031-2032 年度
53. 2032-2033 年度
54. 2033-2034 年度
55. 2034-2035 年度
56. 2035-2036 年度
57. 2036-2037 年度
58. 2037-2038 年度
59. 2038-2039 年度
60. 2039-2040 年度
61. 2040-2041 年度
62. 2041-2042 年度
63. 2042-2043 年度
64. 2043-2044 年度
65. 2044-2045 年度
66. 2045-2046 年度
67. 2046-2047 年度
68. 2047-2048 年度
69. 2048-2049 年度
70. 2049-2050 年度
71. 2050-2051 年度
72. 2051-2052 年度
73. 2052-2053 年度
74. 2053-2054 年度
75. 2054-2055 年度
76. 2055-2056 年度
77. 2056-2057 年度
78. 2057-2058 年度
79. 2058-2059 年度
80. 2059-2060 年度
81. 2060-2061 年度
82. 2061-2062 年度
83. 2062-2063 年度
84. 2063-2064 年度
85. 2064-2065 年度
86. 2065-2066 年度
87. 2066-2067 年度
88. 2067-2068 年度
89. 2068-2069 年度
90. 2069-2070 年度
91. 2070-2071 年度
92. 2071-2072 年度
93. 2072-2073 年度
94. 2073-2074 年度
95. 2074-2075 年度
96. 2075-2076 年度
97. 2076-2077 年度
98. 2077-2078 年度
99. 2078-2079 年度
100. 2079-2080 年度
101. 2080-2081 年度
102. 2081-2082 年度
103. 2082-2083 年度
104. 2083-2084 年度
105. 2084-2085 年度
106. 2085-2086 年度
107. 2086-2087 年度
108. 2087-2088 年度
109. 2088-2089 年度
110. 2089-2090 年度
111. 2090-2091 年度
112. 2091-2092 年度
113. 2092-2093 年度
114. 2093-2094 年度
115. 2094-2095 年度
116. 2095-2096 年度
117. 2096-2097 年度
118. 2097-2098 年度
119. 2098-2099 年度
120. 2099-20100 年度

These Basement high features are most interesting from the oil and gas point of view. The general shape of both features is such that the causative feature must be a hill on the Basement surface. A fault is unlikely as the causative feature as the high area is over one and one-half miles in width. If a fault caused the fracture "low" the width of the low would be about one mile or less.

Three hypothetical structure cross-sections accompany this report and reference to them will show how Basement "highs" are inferred to be present beneath areas of low fracture intensity. Two profiles run at right angles to the strike of the Basement while the third is parallel to strike.

Respectfully submitted by:

RAYALTA PETROLEUMS LTD.

WGC/jp

Walter G. Carter

REFERENCE

LAW J. - "Geology of Northwestern Alberta & Adjacent Areas" (in Jurassic & Carboniferous of Western Canada. A.A.P.G. - 1958.

NORRIS A.W.

- "Stratigraphy of Middle Devonian & Older Paleozoic Rocks of the Great Slave Lake Region, N.W.T." G.S.C. - Memoir 322 - 1965.

CAMERON A.E.

- "Exploration in the Vicinity of Great Slave Lake". Geol. Sur. 1918.

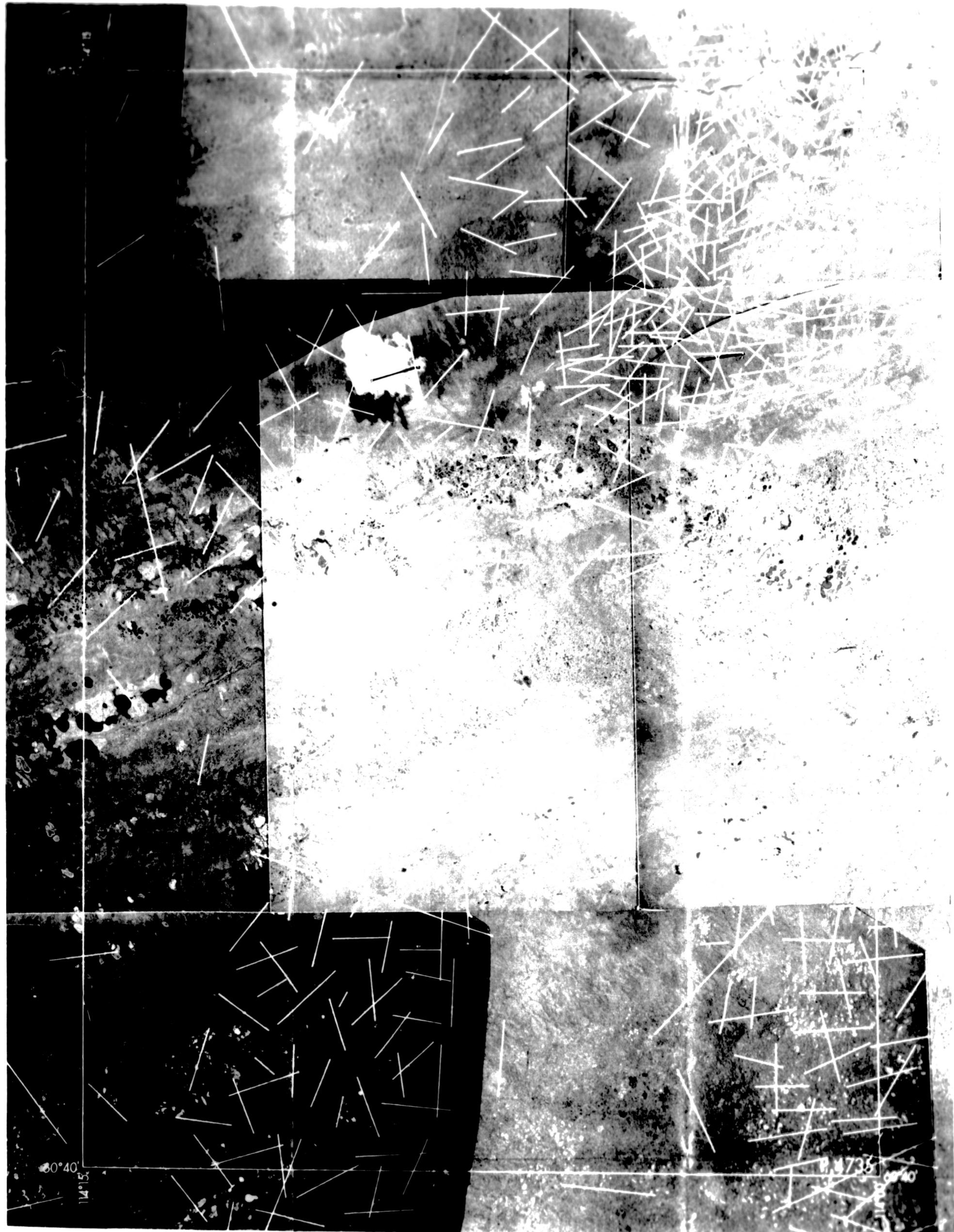
CAMPBELL N.L.

- "The Middle Devonian of the Pine Point Area, N.W.T." Pro. Geol. Assoc. Canada - 1950.

HUNT C.W. - "Normal Devonian Sequence of Southern MacKenzie Basin, Western Canada". Bull. Amer. Assoc. Petrol. Geol. 1954.

REFERENCES

BLANCHET, P.H.


- "Development of Fracture Analysis as Exploration Method"., Amer. Assoc. Petrol. Geol. Bull, Vol. 41, No. 8, 1748-1759 (1957).

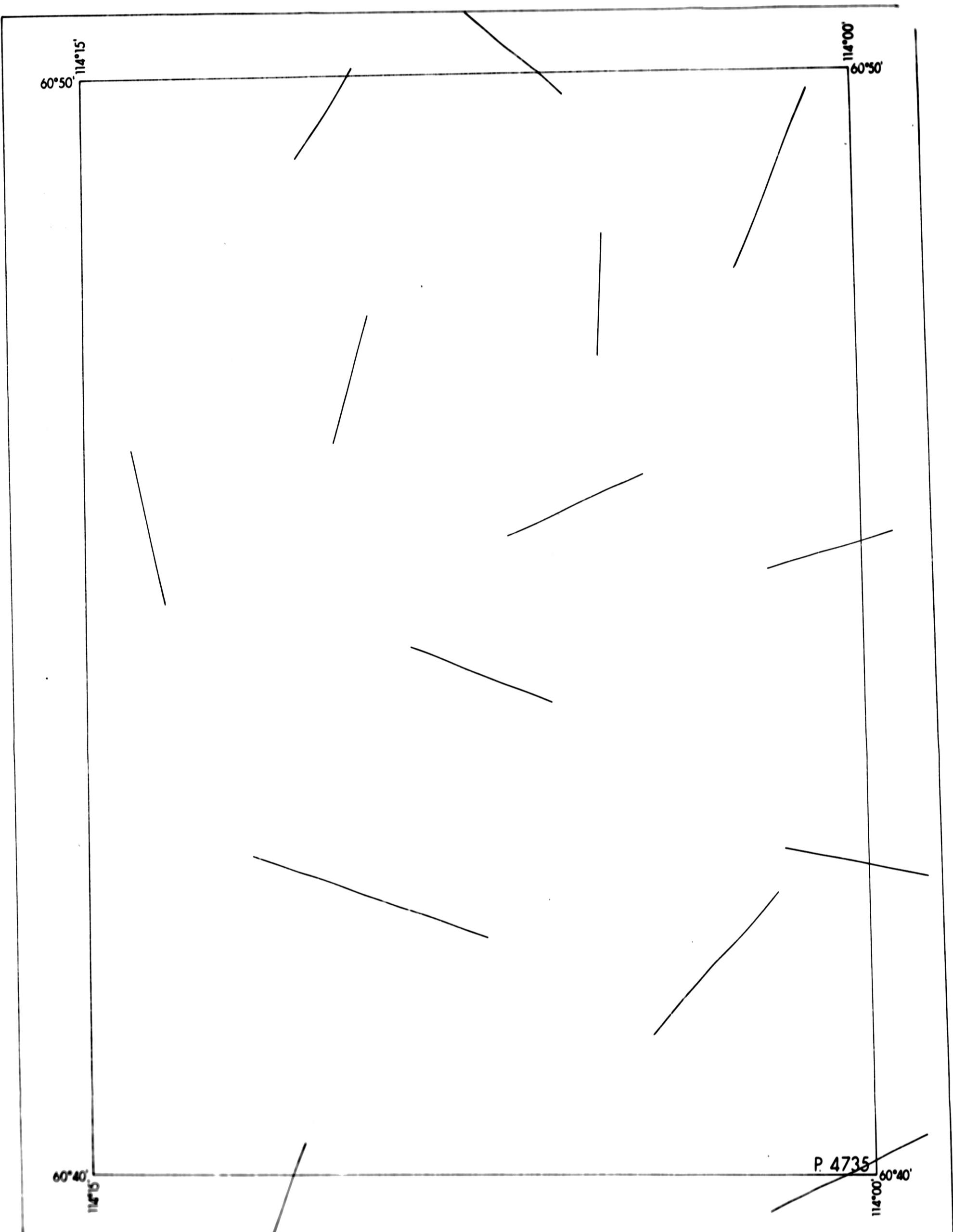
HAMAN, P.J.

- "Geomechanics Applied to Fracture Analysis on Aerial Photographs"., West. Can. Res. Publications Series 2 No. 2, (1964).

NORRIS, A.W.

- "Stratigraphy of Middle Devonian and Older Palaeozoic Rocks of the Great Slave Lake Region, Northwest Territories". Geo. Sur. of Can., Memoir 322. (1965)

CARSON HOLDINGS LTD

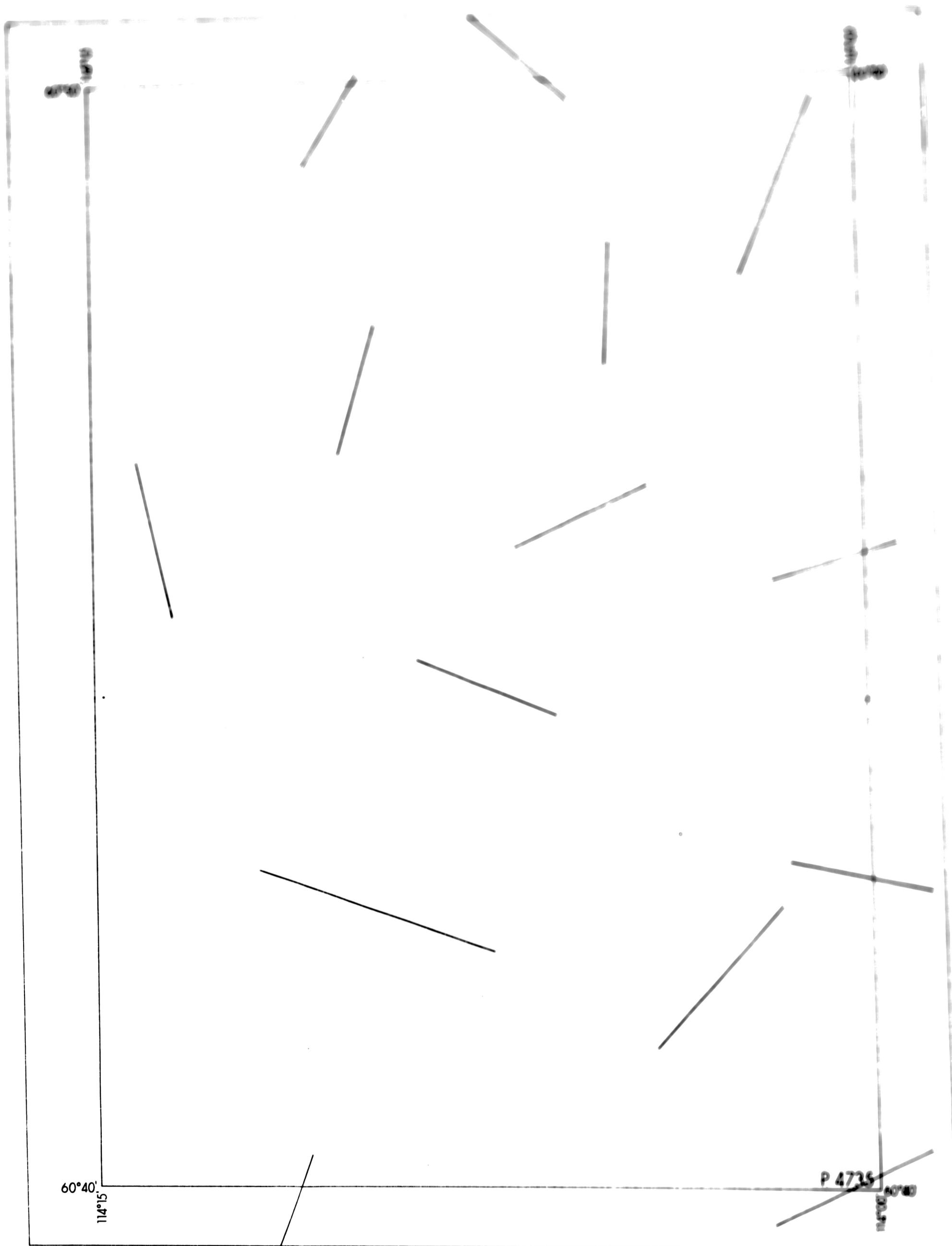

P & N.G. PERMIT 4735

654-2-4-7

SCALE IN MILES

THIS IS AN UNCONTROLLED MINERAL AND SURVEYOR'S MAP
ACCURACY UNKNOWN

CARSON HOLDINGS LTD

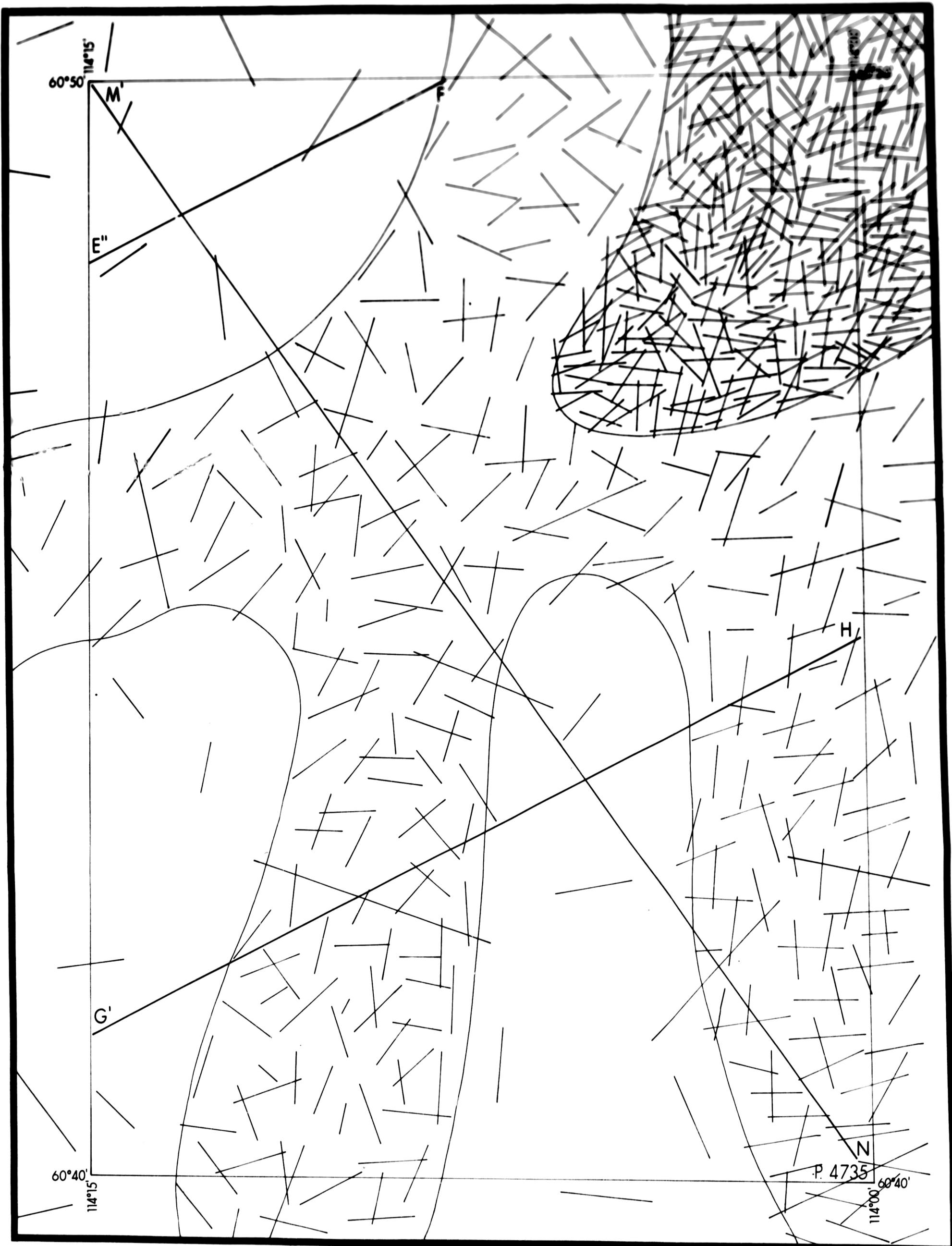

P & NG PERMIT 4735

MEGA FRACTURE PATTERN

60°-50°-40°

SCALE IN MILES

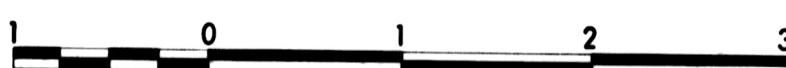
CARSON HOLDINGS LTD.


P. & N.G. PERMIT 4735

MEGA FRACTURE PATTERN

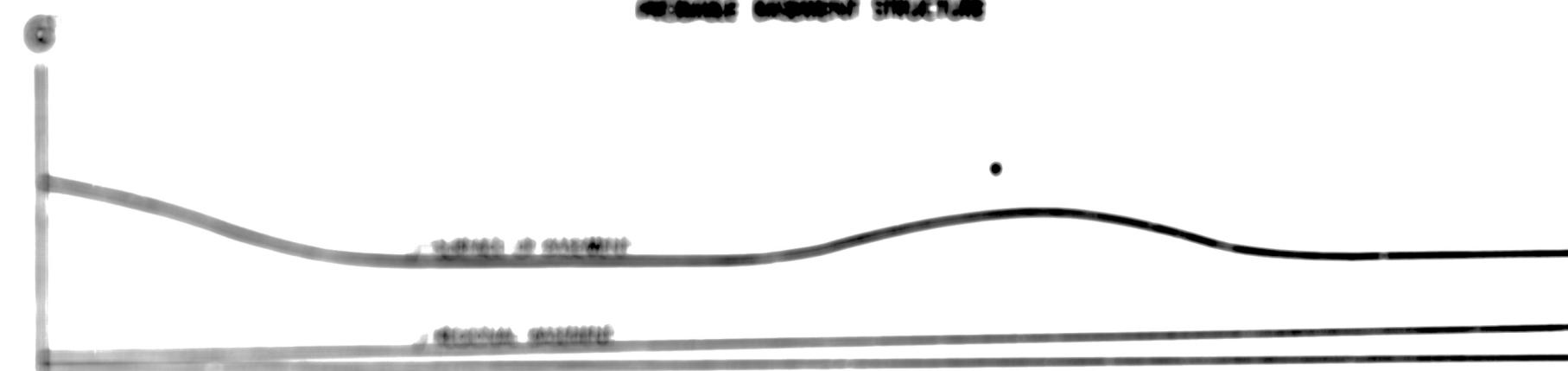
65V-2447

SCALE IN MILES


CARSON HOLDINGS LTD.

P. & N.G. PERMIT 4735

TOTAL FRACTURE PATTERN


654-2-4-7

SCALE IN MILES

- LOW DENSITY
- NORMAL DENSITY
- HIGH DENSITY

MINERAL MASSIVE STRUCTURE

H

•

TURBID DEPOSIT

STATION

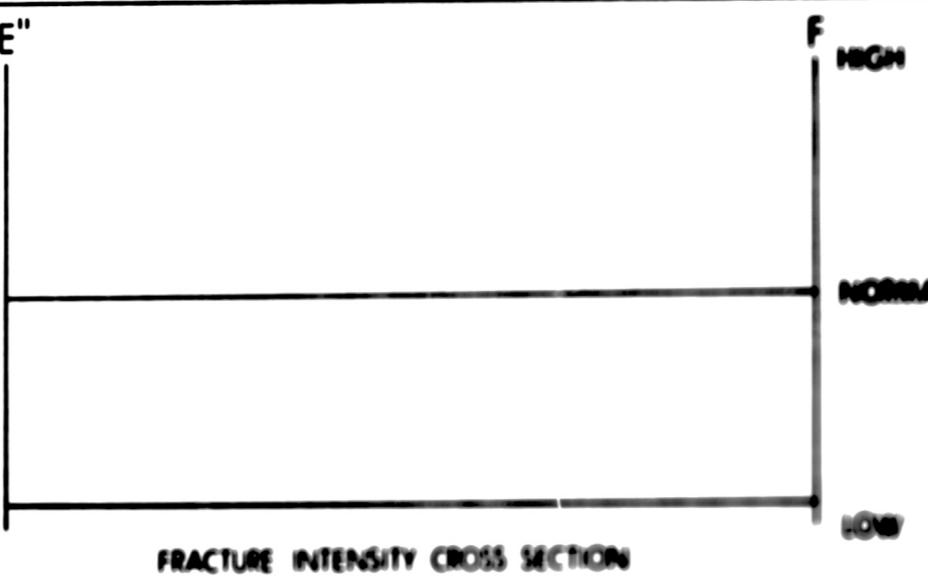
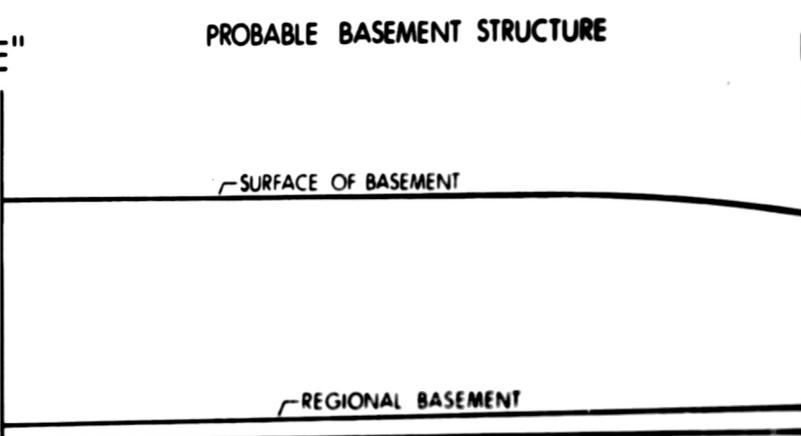
H

HIGH

NORMAL

LOW

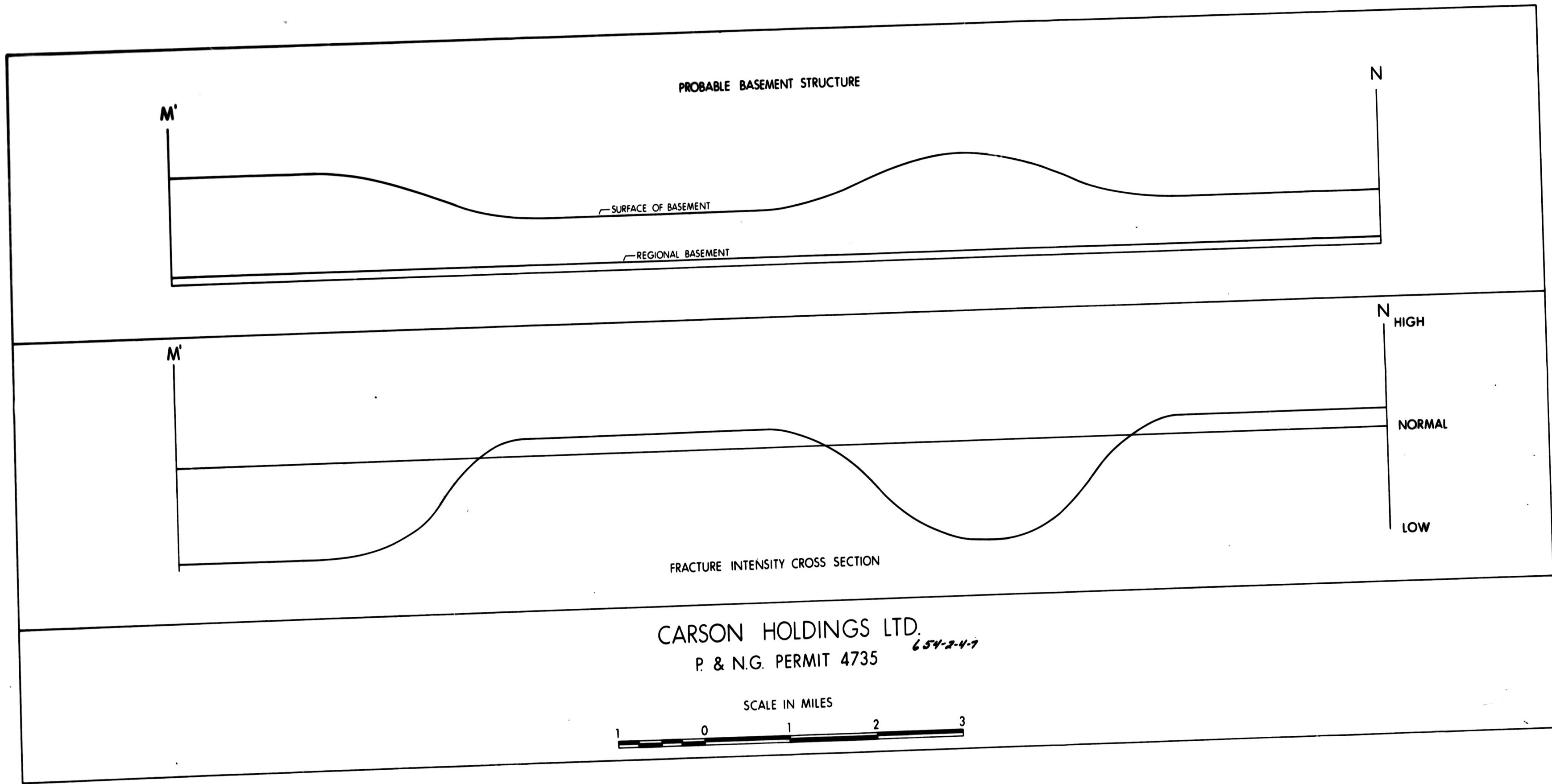
MINERALS INTENSITY CROSS SECTION



CARSON HOLDINGS LTD.

P & NG PERMIT 4735

6000-0-0-0

SCALE IN MILES



CARSON HOLDINGS LTD
P & NG PERMIT 4735

SCALE IN MILES

