

158

GRAVITY METER EXPLORATION COMPANY

1221 ESPERON BUILDING
HOUSTON 2, TEXAS

PHONE **—CAPITOL 5010**

CABLE **TORBALEX**

INTERPRETATION OF AEROMAGNETIC SURVEY

OF

BLOCK II, NORTHWEST TERRITORIES, CANADA

FOR

AEROMAGNETIC SURVEYS, LIMITED
AND ASSOCIATES

APRIL 13, 1953

SUMMARY

This report covers the interpretation of the aeromagnetic survey of Block II, Northwest Territories, included within longitudes $170^{\circ} 40' W.$ - $120^{\circ} 40' W.$ and latitudes $60^{\circ} 28' N.$ - $61^{\circ} 10' N.$ The area is mapped at scale $1" : 1$ mile, and the observed data are presented on four maps: Northwest, Northeast, Southwest, and Southeast.

A structural map of the regional configuration of the basement surface, contoured at an interval of 1000 feet (subbase datum) at a scale of $1" : 3$ miles, has been prepared entirely from magnetic depth estimates made on intrabasement anomalies. Residual anomalies suggesting local relief of the basement surface are superimposed on the observed data. Outlines of the postulated basement disturbances are shown within each anomaly and are also included on the Basement Structural Contour Map.

The basement map indicates that the basement surface is conspicuously flat over the major portion of the survey at a general level of -3000 feet. This flatness is disturbed primarily by a relatively rapid thickening of the sedimentary section in the southwestern corner of the survey where the basement depth deepens to -6000 feet. A secondary disturbance to the flattening is a synclinal axis trending northward near the eastern edge of the survey along which the basement deepens to -4000 feet.

The area is indicated by the magnetic data to have an unusually large amount of local basement disturbances. Eighty-nine local residual anomalies are resolved. Fifteen of these are graded good, twenty-five fair, and forty-nine poor.

A Second Vertical Derivative Map, scale $1" : 1$ mile was also prepared to assist in the computation of magnetic depth estimates and to aid in the resolution of the residual

anomalies. This map is colored red and yellow. A more or less accurate generalization is the fact that the basement rocks under the red areas will be more highly polarized or contain more ferromagnetic minerals than the adjacent yellow areas. The derivative map shows in a very striking fashion that these basement petrographic units are aligned north-westerly. This alignment gives rise to the so called northwesterly basement "grain".

Note that the outlines of the eighty nine local basement disturbances are superimposed on the derivative map.

CONTENTS

Introduction	Pages 4 - 5
Observed Aeromagnetic Maps (Sheets NW, NE, SW, SE)	Page 5
Second Vertical Derivative Map (Sheets NW, NE, SW, SE)	Pages 5 - 6
Basement Structural Contour Map	Page 6
The Residual Magnetic Anomalies	Pages 7 - 10

MAPS

Observed Aeromagnetic Map, with local anomalies superimposed, Sheets NW, NE, SW, SE, Scale 1" = 1 mi.; observed data contoured at an interval of 10 gammas; residual anomalies contoured at an interval of 5 gammas.

Second Vertical Derivative Map, with outlines of local areas of interest superimposed. Sheets NW, NE, SW, SE, scale 1" = 1 mi.; contour interval 2×10^{-15} cgs.

Basement Structural Contour Map, with structural basement contours (interval 1000 ft. datum, sea level), individual magnetic depth estimates, and local areas of interest superimposed on a composite of the four observed magnetic maps; scale 1" = 3 mi.

INTRODUCTION:

The interpretation of the aeromagnetic data attempts to resolve the observed magnetic anomalies into two categories intrabasement and suprabasement anomalies. The intrabasement anomalies are those which, because of their large areal size and large amplitude, must originate from large magnetization contrasts within the basement (i.e., igneous or metamorphic) rocks. These large magnetization contrasts are assumed to originate at the basement surface and to extend infinitely downward with vertical sides. With these assumptions, estimates of the depths to the tops of these anomalously magnetized bodies may be made or, conversely, the thickness of the sedimentary section may be estimated.

After these large features are resolved and are employed for the determination of the sedimentary thickness, residual anomalies remain which may be placed in other categories. The category of principal interest is the suprabasement type, anomalies which are of such shape and amplitude that they can be assumed to rise from vertically thin sheets of magnetized rock, for example, from relief of the basement surface. Another group of anomalies include disturbances from the ground surface. These produce sharp and erratic anomalies which are easily separable from those related to basement rocks.

The analysis is based on the study of the observed data, both the observed maps and the flight profiles, together with a second vertical derivative map. The second vertical derivative approximates the curvature of the observed magnetic field, and areas shaded red on the derivative map are areas of positive curvature, those shaded yellow, of negative curvature. All observed anomalies have curvature or derivative anomalies, and, in general, the large derivative anomalies, large in area and in amplitude, are the derivative anomalies of the large observed, or intrabasement, anomalies. Also, in a general way, the small and sharp derivative features are anomalies which are not intrabasement in origin and which, therefore, may be indicative of local basement relief, surface disturbances, and other sundry

causes. Therefore, the derivative map assists in the resolution of the intrabasement and suprabasement features although it is at the same time affected by any other anomalies that may be present.

THE OBSERVED AEROMAGNETIC MAPS (Charts NW, NE, SW, and SE):

The observed magnetic data of the four sheets are not dominated by any particular set of features but are, on the otherhand, an almost uninterrupted series of anomalies. The presence of so many anomalies is attributed to the relatively small basement depth and to the great magnetic heterogeneity of the basement.

The eighty nine residual magnetic features are superimposed on the observed magnetic maps. These will be discussed in the last section.

THE SECOND VERTICAL DERIVATIVE AEROMAGNETIC MAP (Sheets NW, NE, SW and SE):

These maps, colored red and yellow, are prepared by a grid calculation for the second vertical derivative. The derivative approximates the curvature of an anomaly so that derivative maxima coincide, for the most part, with observed maxima. Likewise, the derivative minima coincide with observed minima. Also, the zero derivative occurs approximately over the edge of the magnetic disturbance. Therefore, the red areas are, in a general way, superimposed over basement rock units that contain more ferromagnetic minerals than the adjacent rocks. These rock units are the main source of the magnetic anomalies, and the derivative maps delineate these disturbances much more clearly than the observed maps.

The northwesterly orientation of the greater part of the intrabasement rock units is very conspicuous on the derivative map. This banding creates the so called "grain" of the basement. This grain is not structural in origin but must be derived from petrogenetic variations of the basement rock. However, the orientation of most of these features may be the result of regional adjustments of the intrabasement rock units.

The outlines of the local basement disturbances have been reproduced on the derivative maps. Sometimes intrabasement units have corresponding structural relief. For example, residual anomaly 38 F on Sheet NE. In other cases the residual feature transects the intrabasement features as, for example, 54 P on Sheet SW.

It should be emphasized that the spacing of the grid used in the calculation of the derivatives was selected to emphasize the intrabasement anomalies rather than the suprabasement or structural type. It was considered more important to delineate the intrabasement features for the purpose of developing an accurate basement structural contour map. Therefore, the basement map is the most important result of this analysis.

BASMENT STRUCTURAL CONTOUR MAP:

The four sheets of the observed aeromagnetic data were joined together to form the base map for the basement map. The composite map is at scale 1" = 3 miles.

The individual magnetic depth estimates are shown on this map, graded good, fair, and poor with three, two, and one underline respectively. A fourth category is that group with the suffix "S" which means that the estimates were made on residual anomalies, that is on a supra- rather than a intrabasement anomaly.

The estimates were computed without regard to any other geophysical or geological data, and they have been contoured without consideration of any other data. The contours show that the major portion of the survey is at a general level of -2000 feet. The basement deepens quite rapidly from this flat area in the southwestern corner of the survey to a level of -6000 feet. In addition, a synclinal axis apparently runs northward through the eastern portion of the survey where the basement deepens to -4000 feet.

The area in the southwestern corner of the survey, which is a shelf zone between the flat area to the northeast and the basement to the southwest, is the most interesting regional feature developed.

THE RESIDUAL MAGNETIC ANOMALIES (Sheets NW, NE, SW, and SE):

The residual magnetic anomalies are superimposed on the observed magnetic data and are contoured at an interval of 5 gammas. In addition to the contours, the periphery of the corresponding area of interest is shown. In some cases this periphery is simply a fault trace. Again, the anomalies are graded G, F, and C for good, fair, and poor.

The analysis attempts to isolate every magnetic anomaly that has been resolved into its proper category. If an anomaly is considered to be subbasement, it serves as a basis for estimating basement depths. Other anomalies must be put into the subbasement category, indicating basement structure, and into miscellaneous categories, such as near surface disturbances. Of course, the subbasement type of anomaly can be caused by sheets of magnetic material within the basement as well as on the surface of the basement. Therefore, the subbasement, or the residual anomaly, does not necessarily mean that basement structure is present. Further effort must be made through geophysical and geological studies to choose the residual anomalies that are most likely to originate from basement structure and to have unimpaired sedimentary structure.

The grading of the anomalies is a step in this selective process. The anomalies can be graded on the basis of their magnetic dependability but those that are high graded are believed to have some geological merit as well as good magnetic dependability. For example, the good anomalies are chosen with due consideration to their location on the Basement Structural Contour Map.

Table I, below, gives some of the pertinent facts about each anomaly section, aiting that these facts may be useful in the future employment of the anomalies.

TABLE I

No.*	Location	Residual Anomalies		Derivative Correspondence	Basement Depth(Ft.)**
		Amplitude	Orientation		
1 P	NW	5	N S	Fair	2000
2 P	NW	15	N S	None	2000
3 P	NW	25	NE	None	2000
4 P	NW	10	NW	Poor	2000
5 P	NW	30	NW	Fair	2000
6 F	NW	10	None	Good	2200
7 P	NW	15	N S	None	2500
8 P	NW	10	WNW	None	2000
9 F	NW	15	N S	Fair	2000
10 F	NW	15	NW	Poor	2000
11 P	NW	10	N S	Fair	2400
12 P	NW	10	None	None	2600
13 F	NW	5	N S	Good	2400
14 G	NW	10	N S	None	2800
15 P	NW	10	NW	Poor	2200
16 P	NW	10	N S	Poor	2700
17 P	NW	5	NE	Fair	2300
18 G	NW	10	NNE	Fair	2600
19 G	NW	25	NNE	Fair	2600
20 P	NW	10	N S	None	2500
21 G	NW	10	NW	Good	2800
22 F	NW	10	NW	Poor	2600
23 P	NW	10	NE	None	1900
24 P	NW	10	NW	Poor	2100
25 P	NW	5	None	Good	2100
26 P	NW	20	N-S	Poor	1800
27 P	NW	15	NNE	None	2200
28 P	NW	5	NW	None	2400
29 G	NE	10	NW	Fair	2000
30 F	NE	15	NW	Good	2400
31 G	NE	15	NW	Good	2500
32 F	NE	10	NW	Good	2400
33 P	NE	10	NW	None	4000
34 G	NE	25	N-S	None	2600
35 P	NE	5	NW	None	2000
36 P	NE	0	NW	Fair	2000
37 P	NE	5	NW	Poor	2300
38 F	NE	20	NW	Good	2500
39 G	NE	20	NE	Good	2500
40 G	NE	35	NW	Good	2200
41 P	NE	5	NE	Good	2000

* G = Good, F = Fair, P = Poor

** Basement Structural Contour Map

No. *	Location	Amplitude	Orienteation	Derivative Correspondence	Basement Depth (Pt.)**
42 P	NE	5	NE	None	2300
43 P	N	5	NW	Good	2800
44 F	N	5	NW	Good	2900
45 P	N	5	NW	Fair	2600
46 P	N	10	NW	None	2400
47 P	N	10	N	None	2000
48 P	SW	5	NW	Good	2100
49 P	SW	10	N	Good	2500
50 P	SW	5	NW	Good	2500
51 P	SW	10	N	Good	2000
52 G	SW	10	N S	Good	2200
53 P	SW	5	N S	None	2000
54 P	SW	5	NE	None	2000
55 P	SW	20	N	Good	2500
56 P	SW	5	NW	None	6000
57 G	SW	10	NW	Good	3700
58 F	SW	25	NW	Good	2400
59 P	SW	5	NW	Good	-3500
60 G	SW	20	NW	Good	4700
61 P	SW	10	N	Good	4700
62 P	SW	5	NW	None	2300
63 P	SW	5	NW	Good	2600
64 F	SW	10	NN E	Good	3300
65 P	SW	5	NW	Good	3000
66 P	SW	5	NNW	Fair	3000
67 G	SW	10	N S	Good	2800
68 G	SE	10	N	Good	2800
69 P	SE	17	N	Good	2600
70 P	SE	10	NW	Good	2100
71 P	SE	5	N	None	1100
72 P	SE	15	NW	Good	3000
73 P	SE	10	NN	Good	3500
74 P	SE	20	N S	Good	2400
75 P	SE	10	NN	Good	3500
76 P	SE	12	NE	Good	3000
77 P	SE	5	N	Good	2500
78 P	SE	20	NW	Good	2500
79 P	SE	10	N	Fair	2500
80 P	SE	10	NW	Good	1600
81 P	SE	5	N S	None	2000
82 P	SE	5	N S	None	7000
83 P	SE	20	N	Good	2600
84 P	SE	35	NNW	Fair	3200
85 P	SE	5	NNW	Fair	3200
86 G	SE	15	N S	Fair	3200

* G Good, F Fair, P Poor

** Basement Structural Contour Map

<u>No. *</u>	<u>Location</u>	<u>Amplitude</u>	<u>Orientation</u>	<u>Derivative Correspondence</u>	<u>Basement Depth (Ft.) **</u>
87 7	SE	20	N-S	Fair	2200
88 2	SE	14	NNW	Fair	3000
89 1	SE	10	NNW	Good	3000

TOTAL 1^o Good
 2^o Fair
 1^o Poor

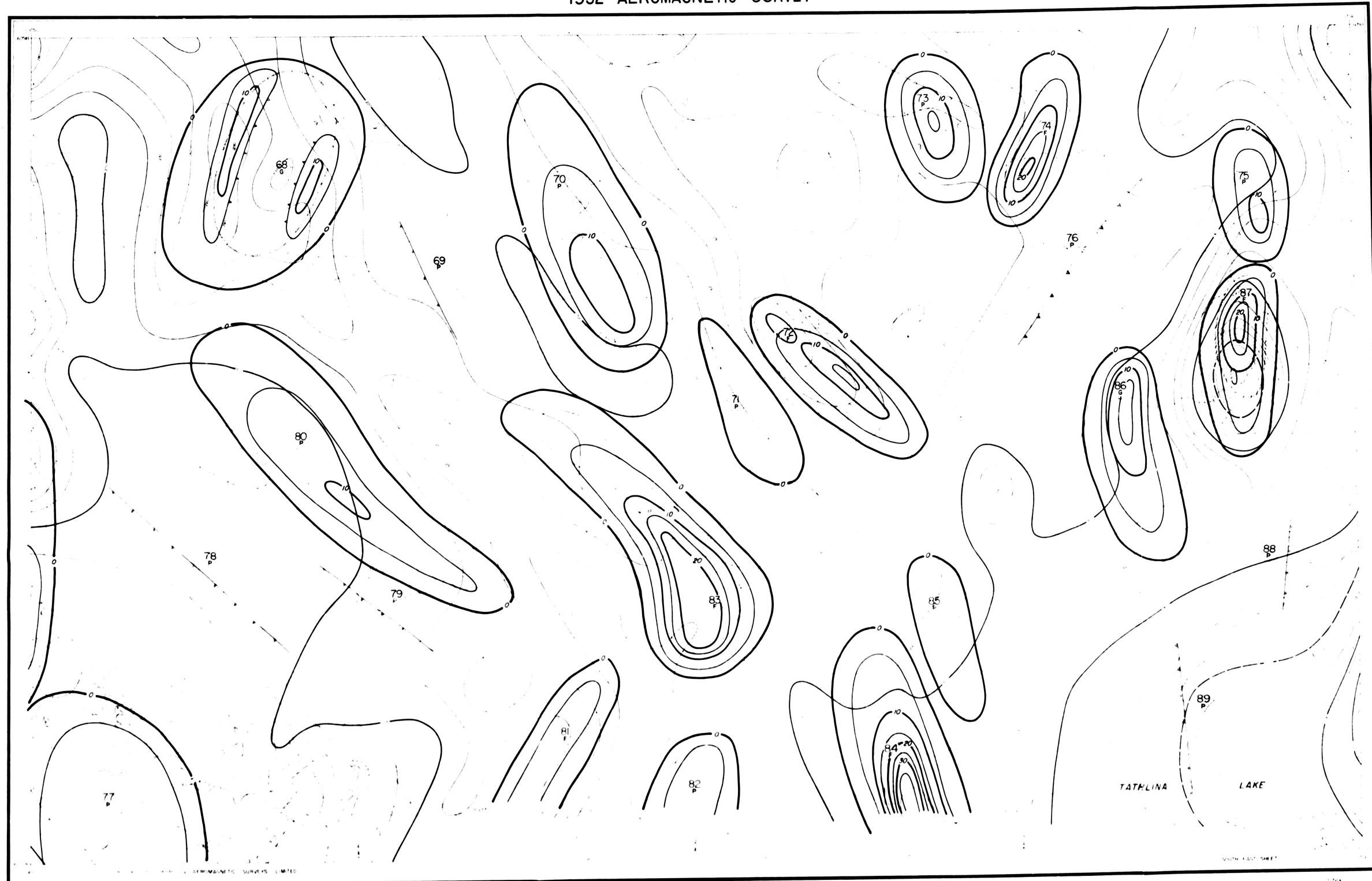
GRAVITY METER CORPORATION COMPANY

BY

Nelson C. Stenn

NCS:mn
 Encs.

PROVIDENCE AREA, NWT
1952 AEROMAGNETIC SURVEY

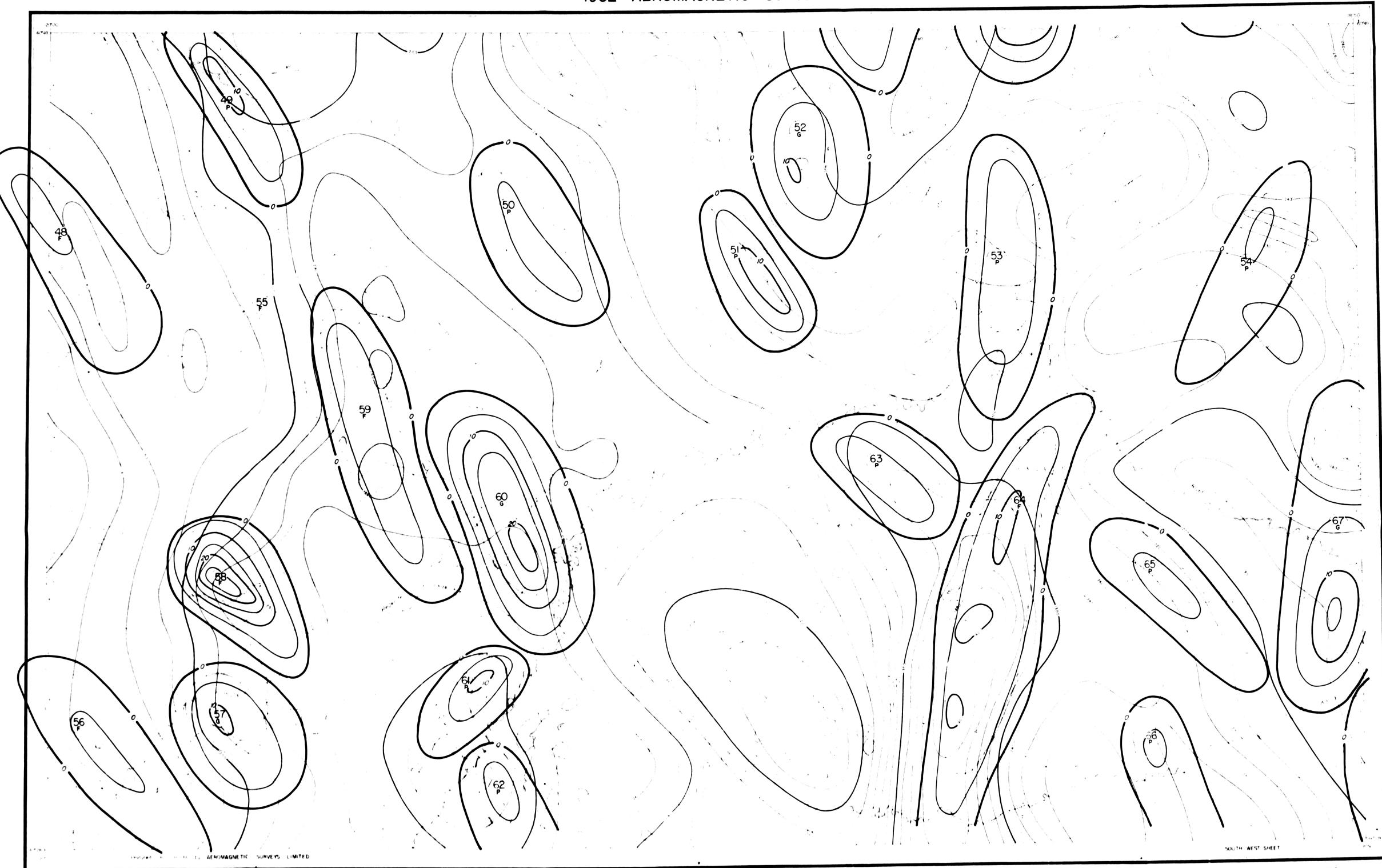


AREA OF POSSIBLE LOCAL BASEMENT RELIEF
G = GOOD F = FAIR P = POOR

-24 DEPTH ESTIMATE (FT 100)
GOOD FAIR POOR
5 LOCAL BASEMENT RELIEF

BASEMENT STRUCTURAL CONTOUR MAP
 INTERVAL 1000 FT. DATUM SEA LEVEL
 DERIVED FROM MAGNETIC DEPTH ESTIMATES

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY


AEROMAGNETIC SURVEYS LIMITED

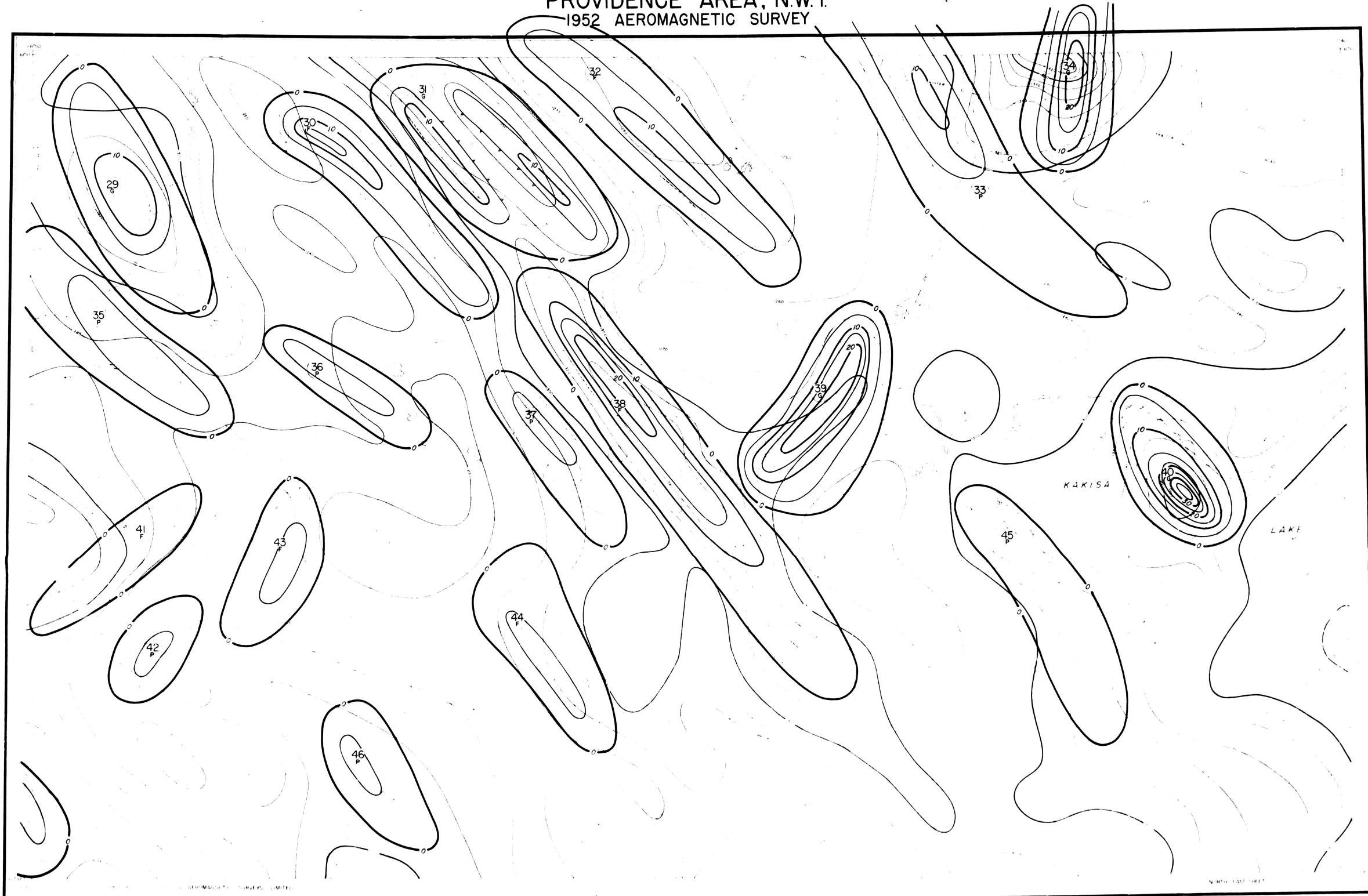
RESIDUAL MAGNETIC ANOMALIES
CONTOUR INTERVAL 5 GAMMAS
LOCAL AREA OF INTEREST
FAULT

INTERPRETED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS
REPORT APR. 3, 1953

508-2-7-2

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

PRINTED IN U.K. BY AEROMAGNETIC SURVEYS LIMITED

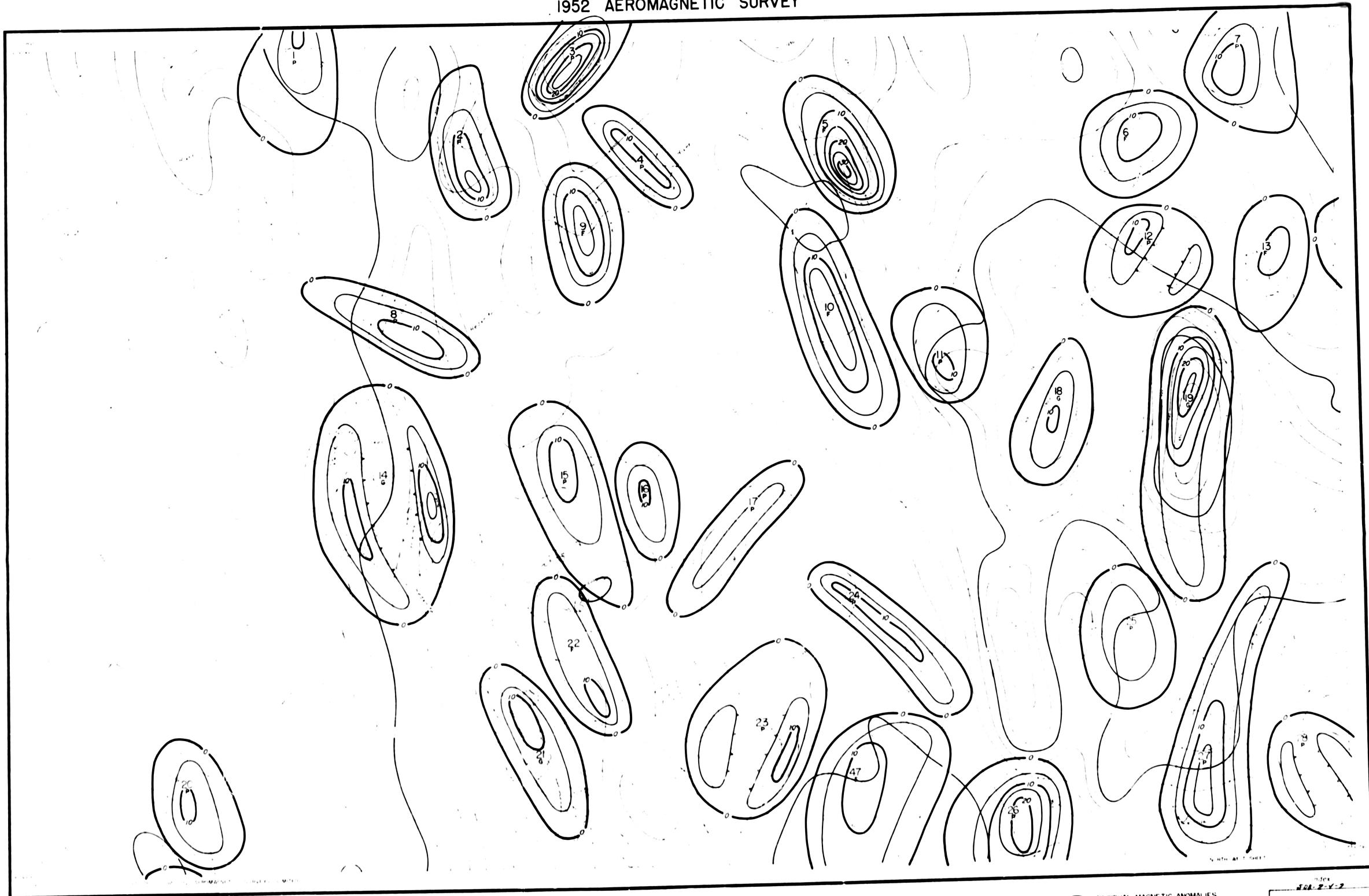

SOUTH MEET SWEET

RESIDUAL MAGNETIC ANOMALIES
CONTOUR INTERVAL 5 GAMMAS
LOCAL AREA OF INTEREST
FAULT

INTERPRETED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS REPORT APR 13, 1953

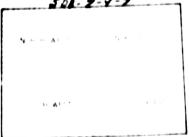
Index

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

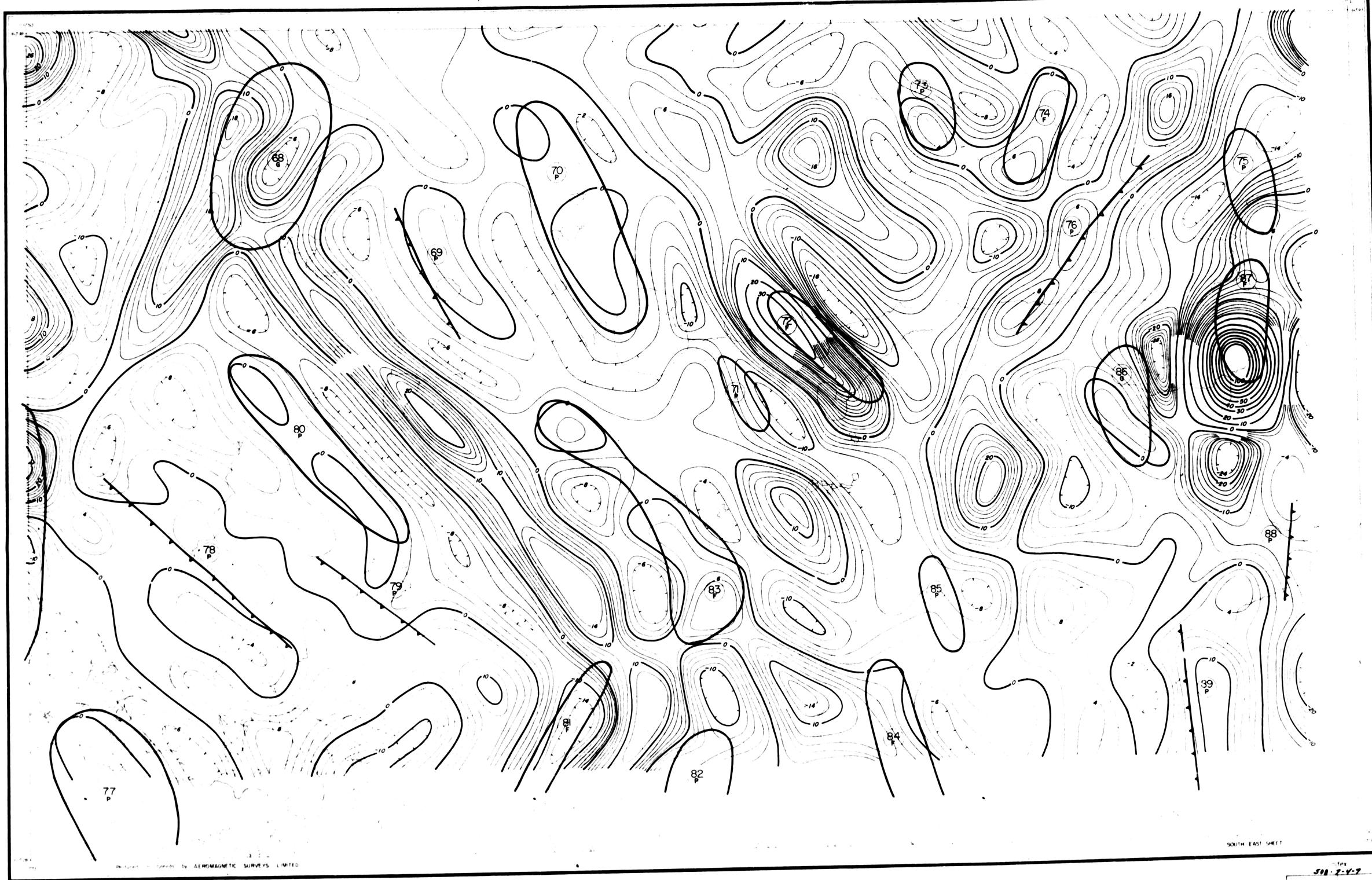


RESIDUAL MAGNETIC ANOMALIES
CONTOUR INTERVAL 5 GAMMAS
LOCAL AREA OF INTEREST
FAULT

INTERPRETED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS REPORT APR. 15, 1953


SEE 2-1-7

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY



RESIDUAL MAGNETIC ANOMALIES
CONTOUR INTERVAL 5 GAMMAS
LOCAL AREA OF INTEREST
FAULT

INTERPRETED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS
REPORT APR. 15, 1953

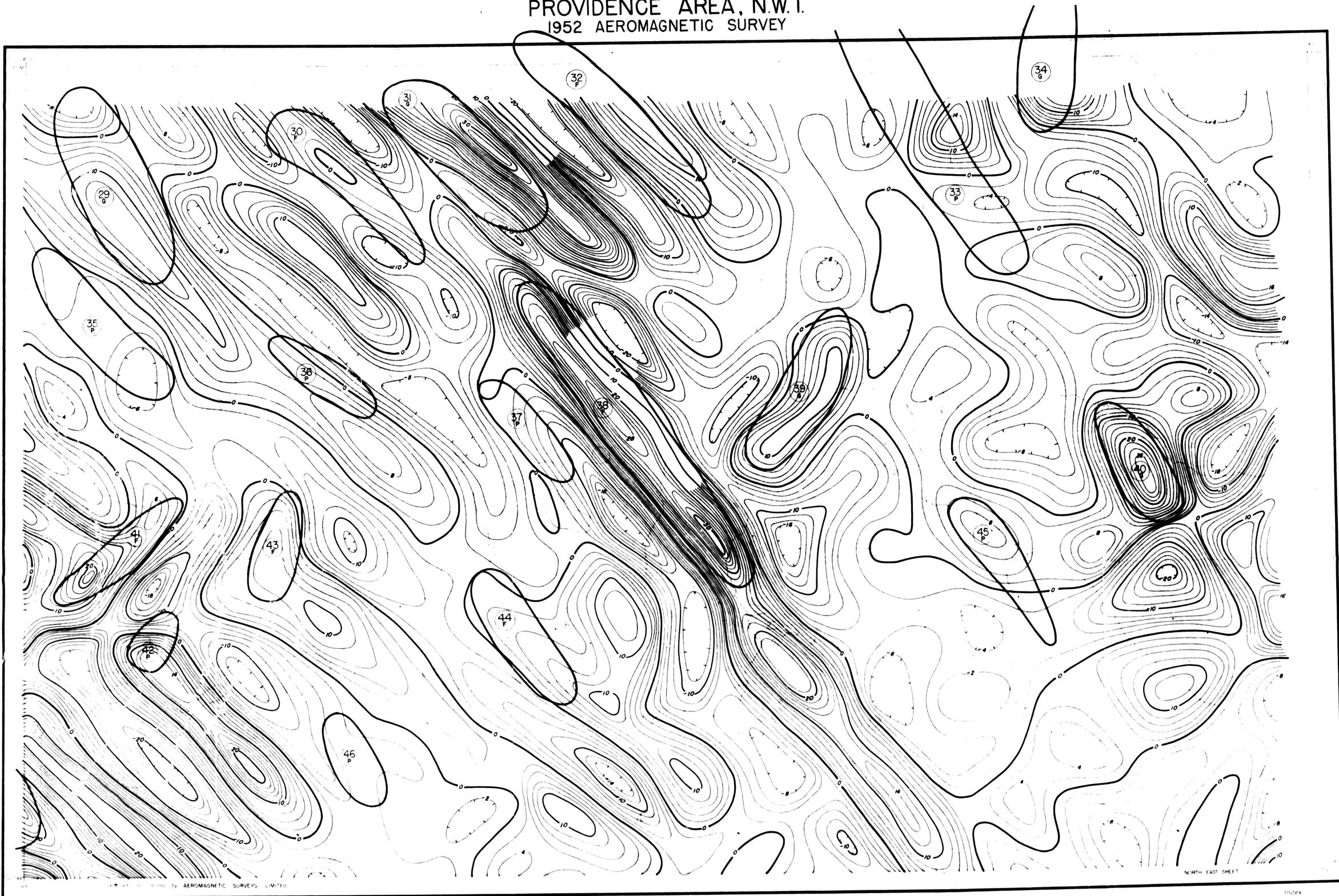
PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

Reprinted - Canada by AEROMAGNETIC SURVEYS LIMITED

SECOND VERTICAL DERIVATIVE MAP

CONTOUR INTERVAL 2×10^{-4} CGS

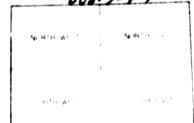
CALCULATED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS REPORT APRIL 19, 1953


Yesterdays
yesterday

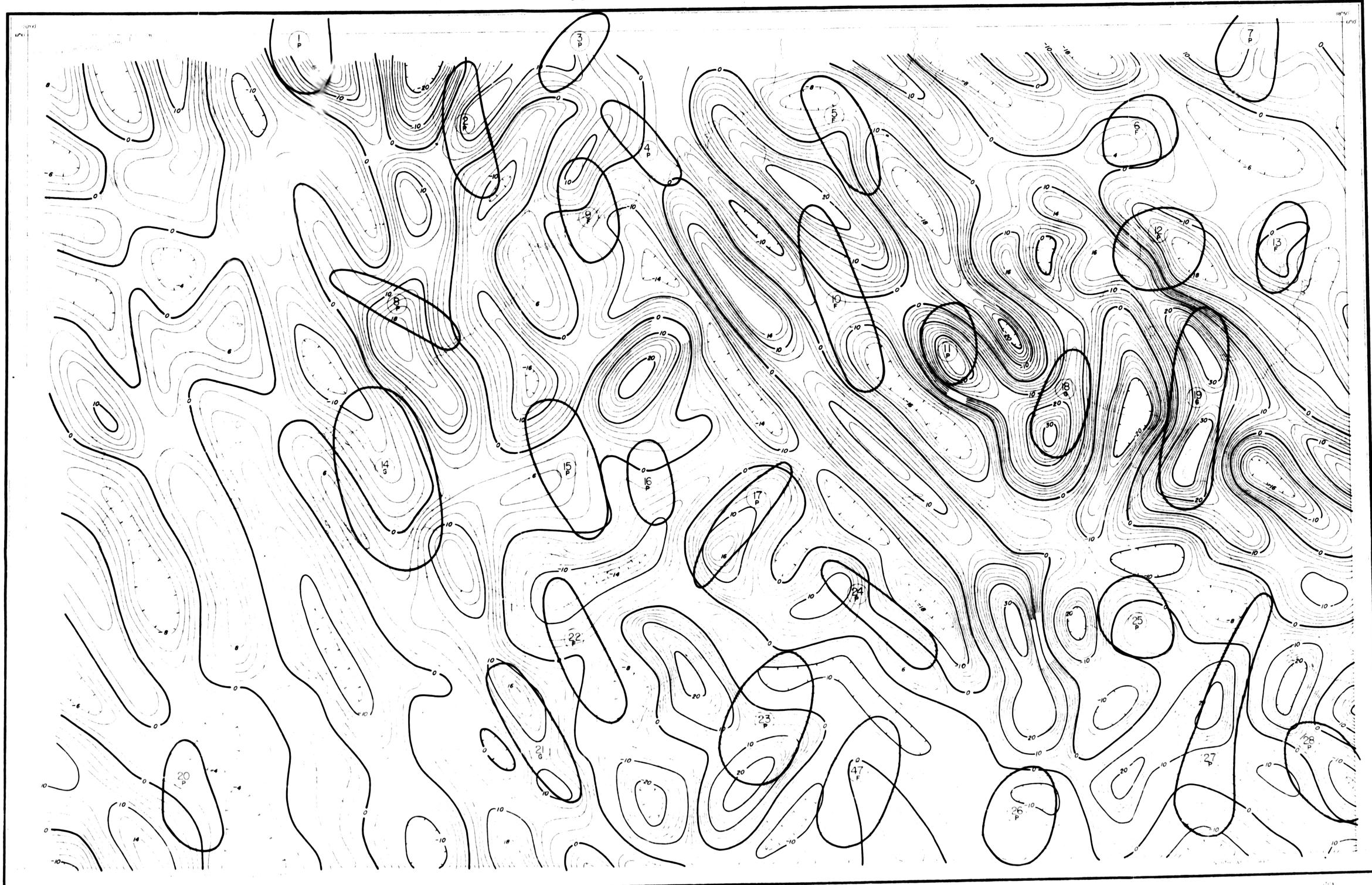
PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

MEAN FLIGHT LINE SPACING 10 MILES
ELEVATION 2000 FEET ABOVE SEA LEVEL
NO. 100 CONTOUR
NO. 200 CONTOUR
NO. 300 CONTOUR
MAGNETIC LINE
FLIGHT LINES

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY



SECOND VERTICAL DERIVATIVE MAP


CONTOUR INTERVAL 2×10^{-6} CGS

CALCULATED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS
REPORT APRIL 15, 1953

Index
508-2-V-7

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

SECOND VERTICAL DERIVATIVE MAP

CONTOUR INTERVAL 2×10^{-5} CGS

CALCULATED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS

508-7-4-7

158

GRAVITY METER EXPLORATION COMPANY

1821 ESPERON BUILDING
HOUSTON 2, TEXAS

PHONE CAPITOL 2012

CABLE TORBALEX

INTERPRETATION OF AEROMAGNETIC SURVEY

OF

BLOCK II, NORTHWEST TERRITORIES, CANADA

FOR

AEROMAGNETIC SURVEYS, LIMITED
AND ASSOCIATES

APRIL 13, 1953

SUMMARY

This report covers the interpretation of the aeromagnetic survey of Block II, Northwest Territories, included within longitudes $120^{\circ} 40' W.$ - $120^{\circ} 00' W.$ and latitudes $60^{\circ} 28' N.$ - $61^{\circ} 10' N.$ The area is mapped at scale $1" : 1$ mile, and the observed data are presented on four maps: Northwest, Northeast, Southwest, and Southeast.

A structural map of the regional configuration of the basement surface, contoured at an interval of 1000 feet (subsea datum) at a scale of $1" : 3$ miles, has been prepared entirely from magnetic depth estimates made on intrabasement anomalies. Residual anomalies suggesting local relief of the basement surface are superimposed on the observed data. Outlines of the postulated basement disturbances are shown within each anomaly and are also included on the Basement Structural Contour Map.

The basement map indicates that the basement surface is conspicuously flat over the major portion of the survey at a general level of -2000 feet. This flatness is disturbed primarily by a relatively rapid thickening of the sedimentary section in the south western corner of the survey where the basement depth deepens to -4000 feet. A secondary disturbance to the flattening is a synclinal axis trending northward near the eastern edge of the survey along which the basement deepens to -4000 feet.

The area is indicated by the magnetic data to have an unusually large amount of local basement disturbances. Eighty-nine local residual anomalies are received. Fifteen of these are graded good, twenty-five fair, and forty-nine poor.

A Second Vertical Derivative Map, scale $1" : 1$ mile was also prepared to assist in the computation of magnetic depth estimates and to aid in the resolution of the residual

anomalies. This map is colored red and yellow. A more or less accurate generalization is the fact that the basement rocks under the red areas will be more highly polarized or contain more ferromagnetic minerals than the adjacent yellow areas. The derivative map shows in a very striking fashion that these basement petrographic units are aligned north-westerly. This alignment gives rise to the so called northwesterly basement "grain".

Note that the outlines of the eighty nine local basement disturbances are superimposed on the derivative map.

CONTENTS

Introduction	ages 4 - 5
Observed Aeromagnetic Maps (Sheets NW, NE, SW, SE)	Page 5
Second Vertical Derivative Map (Sheets NW, NE, SW, SE)	Pages 5 - 6
Basement Structural Contour Map	Page 6
The Residual Magnetic Anomalies	Pages 7 - 10

MAPS

Observed Aeromagnetic Map, with local anomalies superimposed, Sheets NW, NE, SW, SE, scale 1" = 1 mi.; observed data contoured at an interval of 10 gammas; residual anomalies contoured at an interval of 5 gammas.

Second Vertical Derivative Map, with outlines of local areas of interest superimposed. Sheets NW, NE, SW, SE, scale 1" = 1 mi.; contour interval 2×10^{-15} cgs.

Basement Structural Contour Map, with structural basement contours (interval 1000 ft., datum, sea level), individual magnetic depth estimates, and local areas of interest superimposed on a composite of the four observed magnetic maps; scale 1" = 3 mi.

INTRODUCTION:

The interpretation of the aeromagnetic data attempts to resolve the observed magnetic anomalies into two categories intrabasement and suprabasement anomalies. The intrabasement anomalies are those which, because of their large areal size and large amplitude, must originate from large magnetization contrasts within the basement (i.e., igneous or metamorphic) rocks. These large magnetization contrasts are assumed to originate at the basement surface and to extend infinitely downward with vertical sides. With these assumptions, estimates of the depths to the tops of these anomalously magnetized bodies may be made or, conversely, the thickness of the sedimentary section may be estimated.

After these large features are resolved and are employed for the determination of the sedimentary thickness, residual anomalies remain which may be placed in other categories. The category of principal interest is the suprabasement type, anomalies which are of such shape and amplitude that they can be assumed to rise from vertically thin sheets of magnetized rock, for example, from relief of the basement surface. Another group of anomalies include disturbances from the ground surface. These produce sharp and erratic anomalies which are easily separable from those related to basement rocks.

The analysis is based on the study of the observed data, both the observed maps and the flight profiles, together with a second vertical derivative map. The second vertical derivative approximates the curvature of the observed magnetic field, and areas shaded red on the derivative map are areas of positive curvature, those shaded yellow, of negative curvature. All observed anomalies have curvature or derivative anomalies, and, in general, the large derivative anomalies, large in area and in amplitude, are the derivative anomalies of the large observed, or intrabasement, anomalies. Also, in a general way, the small and sharp derivative features are anomalies which are not intrabasement in origin and which, therefore, may be indicative of local basement relief, surface disturbances, and other sundry

causes. Therefore, the derivative map assists in the resolution of the intrabasement and suprabasement features although it is at the same time affected by any other anomalies that may be present.

THE OBSERVED AEROMAGNETIC MAP (Sheets NW, NE, SW, and SE):

The observed magnetic data of the four sheets are not dominated by any particular set of features but are, on the other hand, an almost unstructured series of anomalies. The presence of so many anomalies is attributed to the relatively small basement depth and to the great magnetic heterogeneity of the basement.

The eighty nine residual magnetic features are superimposed on the observed magnetic maps. These will be discussed in the last section.

THE SECOND VERTICAL DERIVATIVE AEROMAGNETIC MAP(Sheets NW, NE, SW and SE):

These maps, colored red and yellow, are prepared by a grid calculation for the second vertical derivative. The derivative approximates the curvature of an anomaly so that derivative maxima coincide, for the most part, with observed maxima. Likewise, the derivative minima coincide with observed minima. Also, the zero derivative occurs approximately over the edge of the magnetic disturbance. Therefore, the red areas are, in a general way, superimposed over basement rock units that contain more ferromagnetic minerals than the adjacent rocks. These rock units are the main source of the magnetic anomalies, and the derivative maps delineate these disturbances much more clearly than the observed maps.

The northwesterly orientation of the greater part of the intrabasement rock units is very conspicuous on the derivative map. This banding creates the so called "grain" of the basement. This grain is not structural in origin but must be derived from petrographic variations of the basement rock. However, the orientation of most of these features may be the result of regional adjustments of the intrabasement rock units.

The outlines of the local basement disturbances have been reproduced on the derivative maps. Sometimes intrabasement units have corresponding structural relief. For example, residual anomaly 38 F on Sheet NR. In other cases the residual feature transects the intrabasement features as, for example, 14 C on Sheet SW.

It should be emphasized that the spacing of the grid used in the calculation of the derivatives was selected to emphasize the intrabasement anomalies rather than the sunrabasement or structural type. It was considered more important to delineate the intrabasement features for the purpose of developing an accurate basement structural contour map. Therefore, the basement map is the most important result of this analysis.

BASEMENT STRUCTURAL CONTOUR MAP:

The four sheets of the observed aeromagnetic data were joined together to form the base map for the basement map. The composite map is at scale 1" = 3 miles.

The individual magnetic depth estimates are shown on this map, graded good, fair, and poor with three, two, and one underlines respectively. A fourth category is that group with the suffix "S" which means that the estimates were made on residual anomalies, that is on a series - rather than a intrabasement anomaly.

The estimates were computed without regard to any other geochemical or geological data, and they have been contoured without consideration of any other data. The contours show that the major portion of the survey is at a general level of -3000 feet. The base rises quite rapidly from this flat area in the southwestern corner of the survey to a level of -6000 feet. In addition, a synclinal axis apparently runs northward through the western portion of the survey where the basement deepens to -4000 feet.

The area in the southwestern corner of the survey, which is a shelf zone between the flat area to the northeast and the basement to the southwest, is the most interesting regional feature developed.

THE RESIDUAL MAGNETIC ANOMALIES (Sheets Nos. 100, 200, and 500)

The residual magnetic anomalies are superimposed on the observed magnetic data and are contoured at an interval of 5 gamma. In addition to the contours, the intensity of the anomalies is indicated on the contour lines. In this case this intensity is simply a fraction of a gamma, the anomalies are graded 0, 1/2, and 1 for good, fair, and poor.

The analysts attempt to label every magnetic anomaly that has been resolved into its proper category. If an anomaly is considered to be subsabsement, it serves as a basis for estimating basement depths. Other anomalies must be put into the subsabsement category, indicating basement structure, and into miscellaneous categories, such as near surface disturbances. Of course, the subsabsement type of anomaly can be caused by sheets of magnetic material within the basement as well as on the surface of the basement. Therefore, the subsabsement, or the residual anomaly, does not necessarily mean that basement structure is present. Further effort must be made through geophysical and geological studies to choose the residual anomalies that are most likely to originate from basement structure and to have significant sedimentary structure.

The grading of the anomalies is a step in this selective process. The anomalies can be graded on the basis of the magnetic dependability but those that are highly graded are believed to have some geological merit as well as good magnetic dependability. For example, the good anomalies are chosen with due consideration to their location on the Basement Structural Contour Map.

Table I, below, gives some of the pertinent facts about each anomaly indicating that these facts may be useful in the future employment of the anomalies.

TABLE I

Residual Anomalies				Derivative Correspondence	Basement Depth(Pt.)**
No. *	Location	Magnitude	Orientation		
1 P	NW	5	N S	Fair	2000
2 P	NW	15	N S	None	2000
3 P	NW	25	NP	None	2000
4 P	NW	10	NW	Poor	2000
5 P	NW	30	NW	Fair	2000
6 P	NW	10	None	Good	2200
7 P	NW	15	N S	None	2500
8 P	NW	10	ANS	None	2000
9 P	NW	15	N S	Fair	2000
10 P	NW	15	NW	Poor	2000
11 P	NW	10	N S	Fair	2400
12 P	NW	10	None	None	2600
13 F	NW	5	N S	Good	2400
14 G	NW	15	N S	None	2800
15 P	NW	10	NW	Poor	2200
16 P	NW	10	N S	Poor	2700
17 P	NW	5	NE	Fair	2800
18 G	NW	10	NNE	Fair	2600
19 G	NW	25	NNE	Fair	2600
20 P	NW	10	N S	None	2500
21 G	NW	10	NW	Good	2800
22 F	NW	10	NW	Poor	2600
23 P	NW	10	NE	None	1900
24 P	NW	10	NW	Poor	2100
25 P	NW	5	None	Good	2100
26 P	NE	20	N-S	Poor	1800
27 P	NW	15	NNE	None	2200
28 P	NW	5	NW	None	2400
29 G	NE	10	NW	Fair	2000
30 F	NE	15	NW	Good	2400
31 G	NE	15	NW	Good	2500
32 F	NE	10	NW	Good	2400
33 P	NE	10	NW	None	4000
34 G	NE	20	N S	None	2600
35 P	NE	5	NW	None	2000
36 P	NE	5	NW	Fair	2000
37 P	NE	5	NW	Poor	2300
38 F	NE	20	NW	Good	2500
39 G	NE	20	NE	Good	2500
40 G	NE	35	NW	Good	2200
41 P	NE	5	NE	Good	2800

* G = Good, F = Fair, P = Poor

** Basement Structural Contour Map

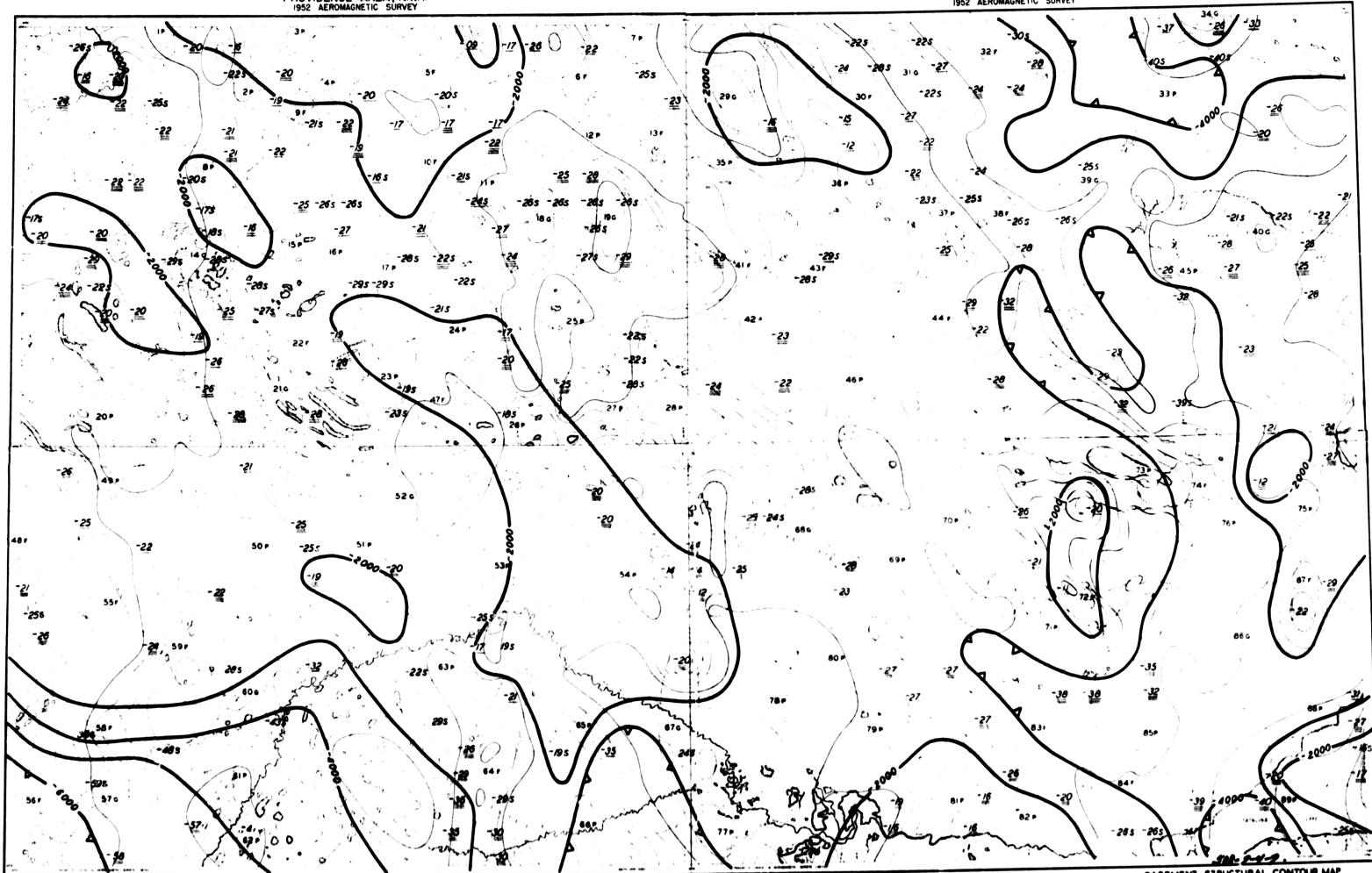
No. *	Location	Amplitude	Ori ^g ination	Derivative Correspondence	Basement Depth (Pt.) **
42 C	N	-	NW	None	2300
43 C	N	-	SW	Good	2800
44 C	N	-	NA	Good	2900
45 C	N	-	NE	Fair	4600
46 C	N	10	NW	None	3400
47 C	N	-	W	Fair	2000
48 C	SE	-	NW	Good	2800
49 C	SE	10	N	Good	2500
50 C	SE	-	NW	Good	2500
51 C	SE	10	N	Good	2000
52 C	SE	15	N S	Good	2200
53 C	SE	-	N	None	2000
54 C	SW	-	NE	None	2000
55 C	SW	40	N	Good	2500
56 C	SW	5	NW	None	6000
57 C	SW	10	NW	Good	3800
58 C	SW	25	NW	Good	2400
59 C	SW	-	NW	Good	3500
60 C	SW	20	NW	Good	4700
61 C	SW	10	N	Good	4700
62 C	SW	5	NW	None	2300
63 C	SW	-	NA	Good	2600
64 C	SW	10	NN	Good	3500
65 C	SW	-	NW	Fair	3000
66 C	SW	-	N S	Fair	2400
67 C	SW	10	NA	Good	2800
68 C	SW	10	N	Good	2800
69 C	SE	17	NW	Good	2600
70 C	SE	10	N	None	2100
71 C	SE	3	N	Good	1100
72 C	SE	15	NW	Good	3000
73 C	SE	10	NN	Good	1500
74 C	SE	20	NE	Fair	2400
75 C	SE	10	NN	Good	3500
76 C	SE	12	NE	Good	3000
77 C	SE	-	N	Good	2500
78 C	SE	20	NW	Good	2500
79 C	SE	10	N	Fair	2500
80 C	SE	10	NW	Good	1600
81 C	SE	-	NE	None	2000
82 C	SE	5	N S	Good	3000
83 C	SE	24	N	Good	2600
84 C	SE	35	NNW	Fair	3200
85 C	SE	-	NNW	Fair	3200
86 C	SE	15	N S	Fair	3200

* C Good, F Fair, P Poor
 ** Basement Structural Condition Map

<u>No. *</u>	<u>Location</u>	<u>Amplitude</u>	<u>Orientation</u>	<u>Derivative Correspondence</u>	<u>Basement Depth (Ft.) **</u>
87 F	S	20	N-S	Fair	2200
88 N	SE	14	NNW	Fair	3000
89	S	10	NNW	Good	3000

* 1 = Fair
 2 = Fair
 3 = Poor

G CAVITY MAPPING INVESTIGATION COUNTRY


BY

Nelson C. Greenland

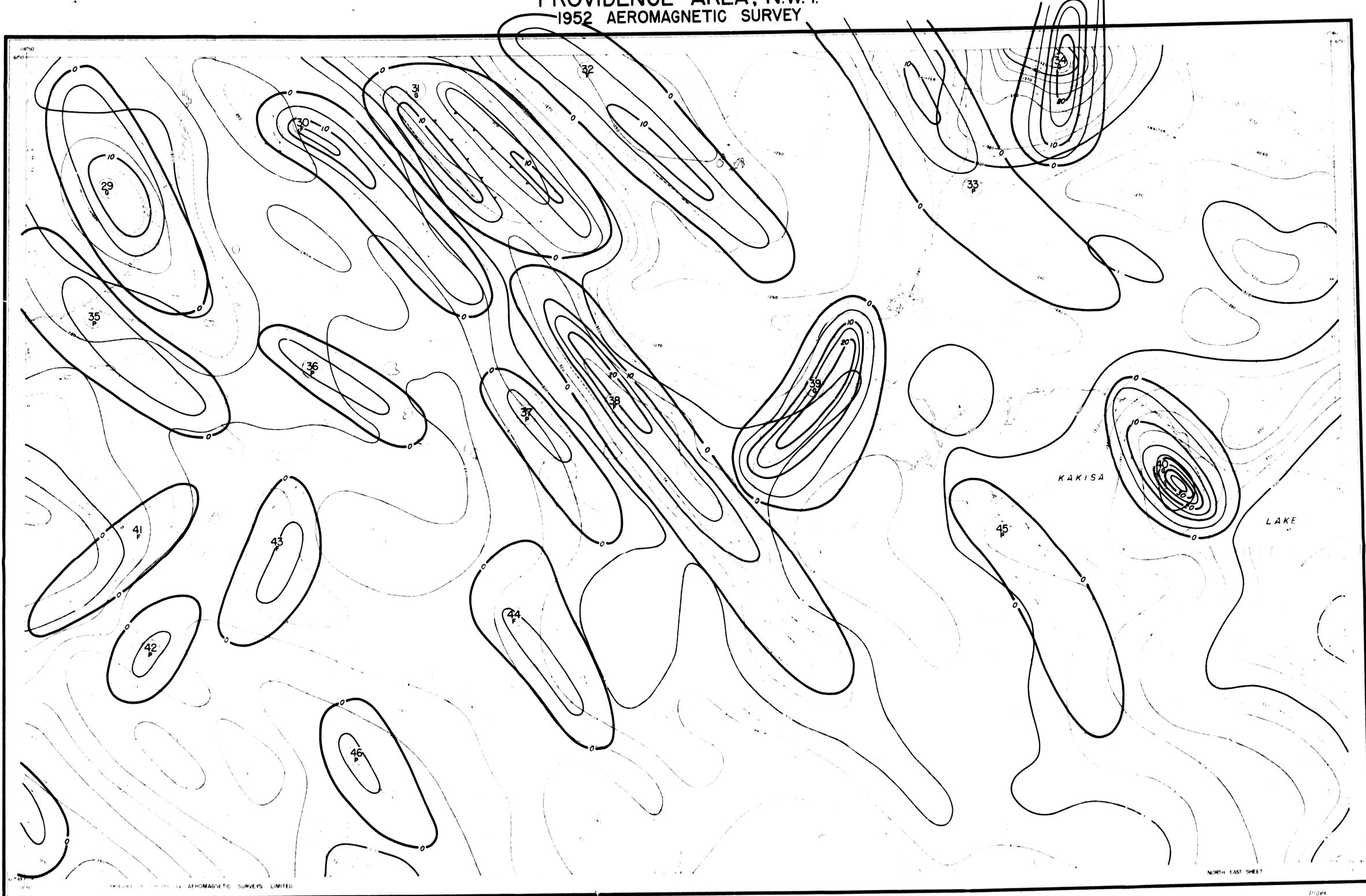
NCSun
Tues.

PROVIDENCE AREA, NWT
1952 AEROMAGNETIC SURVEY

PROVIDENCE AREA, NWT
1952 AEROMAGNETIC SURVEY

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

MEAN FLIGHT LINE SPACING - 10 MILES
ALTIMETER - 1000 FEET ABOVE SEA LEVEL
NO. 1 SURVEY LAYER
NO. 2 SURVEY LAYER
NO. 3 SURVEY LAYER
NO. 4 SURVEY LAYER
MAGNETIC LINE


SCALE
0 10 20 30 40 Miles

RESIDUAL MAGNETIC ANOMALIES
CONTOUR INTERVAL 5 GAMMAS
LOCAL AREA OF INTEREST
FAULT

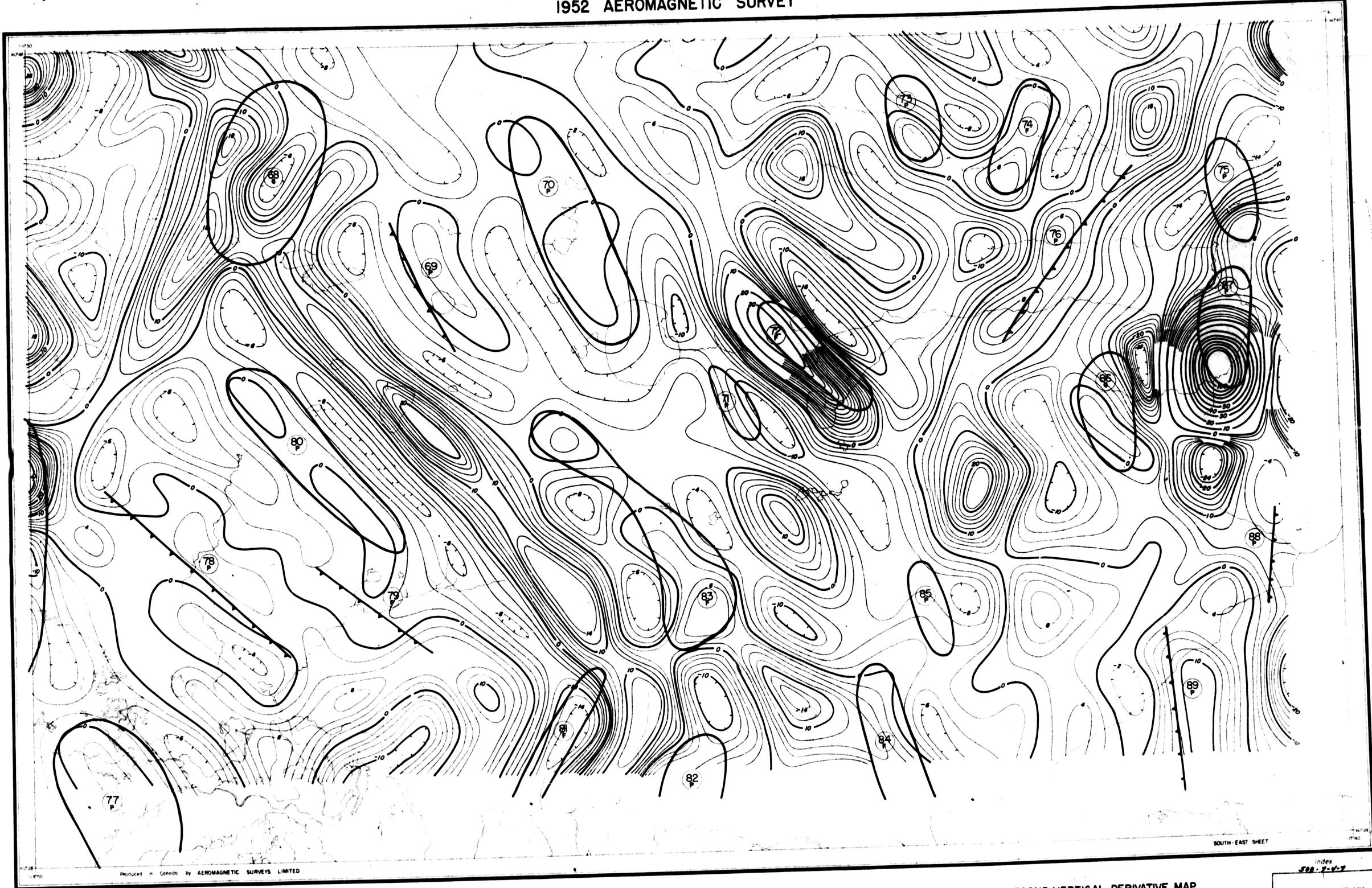
INTERPRETED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS REPORT APR 13, 1963

Index
SMA-7-2-7
NORTH EAST
NORTH WEST
SOUTH EAST
SOUTH WEST

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

RESIDUAL MAGNETIC ANOMALIES
CONTOUR INTERVAL 5 GAMMAS
LOCAL AREA OF INTEREST
FAULT

INTERPRETED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS REPORT APR. 13, 1953


Index
880-2-Y-2

NORTH WEST SHEET

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

PROVIDENCE AREA, N.W.T.
1952 AEROMAGNETIC SURVEY

Produced in Canada by AEROMAGNETIC SURVEYS LIMITED

BEAR FLIGHT LINE SPACING 15 MILES
 ALTITUDE 2500 FEET ABOVE SEA LEVEL
 500 GAMMA CONTOUR
 100 GAMMA CONTOUR
 50 GAMMA CONTOUR
 10 GAMMA CONTOUR
 5 GAMMA CONTOUR
 DISSOCIATION LOR
 FLIGHT LINES

SCALE
1 inch to 1 Mile

SECOND VERTICAL DERIVATIVE MAP

CONTOUR INTERVAL 2×10^{-10} CGS

CALCULATED BY
GRAVITY METER EXPLORATION COMPANY
HOUSTON, TEXAS REPORT APRIL 14, 1953

Index
500-7-4-2