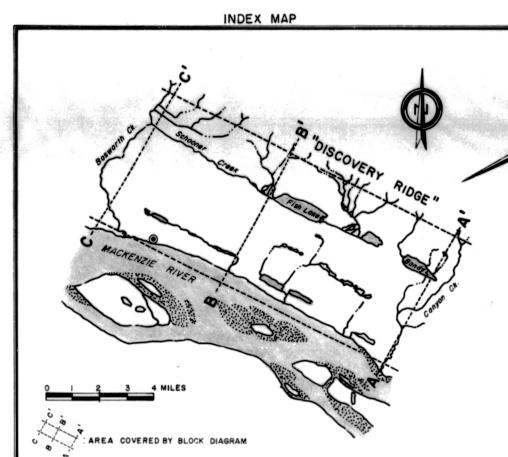
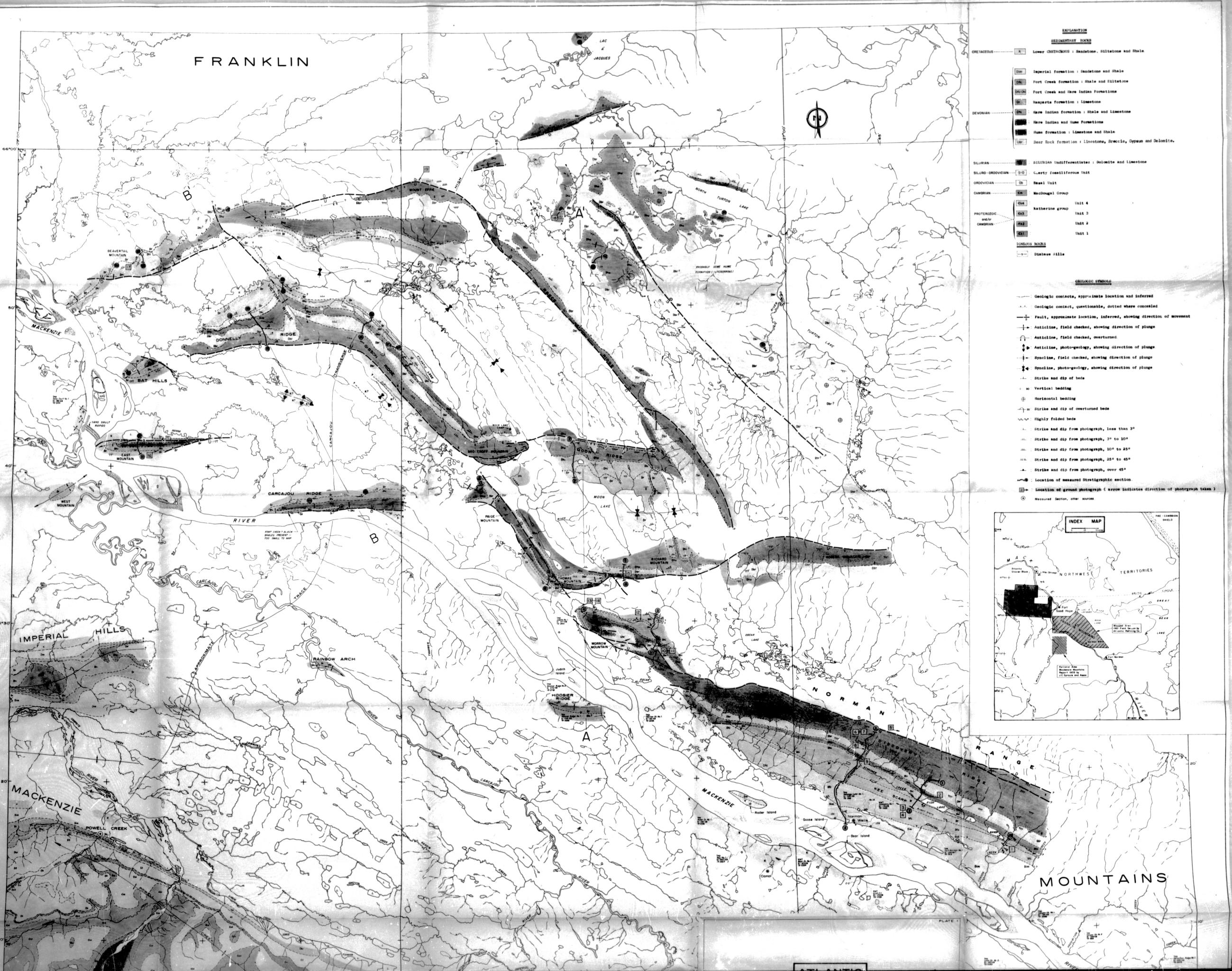
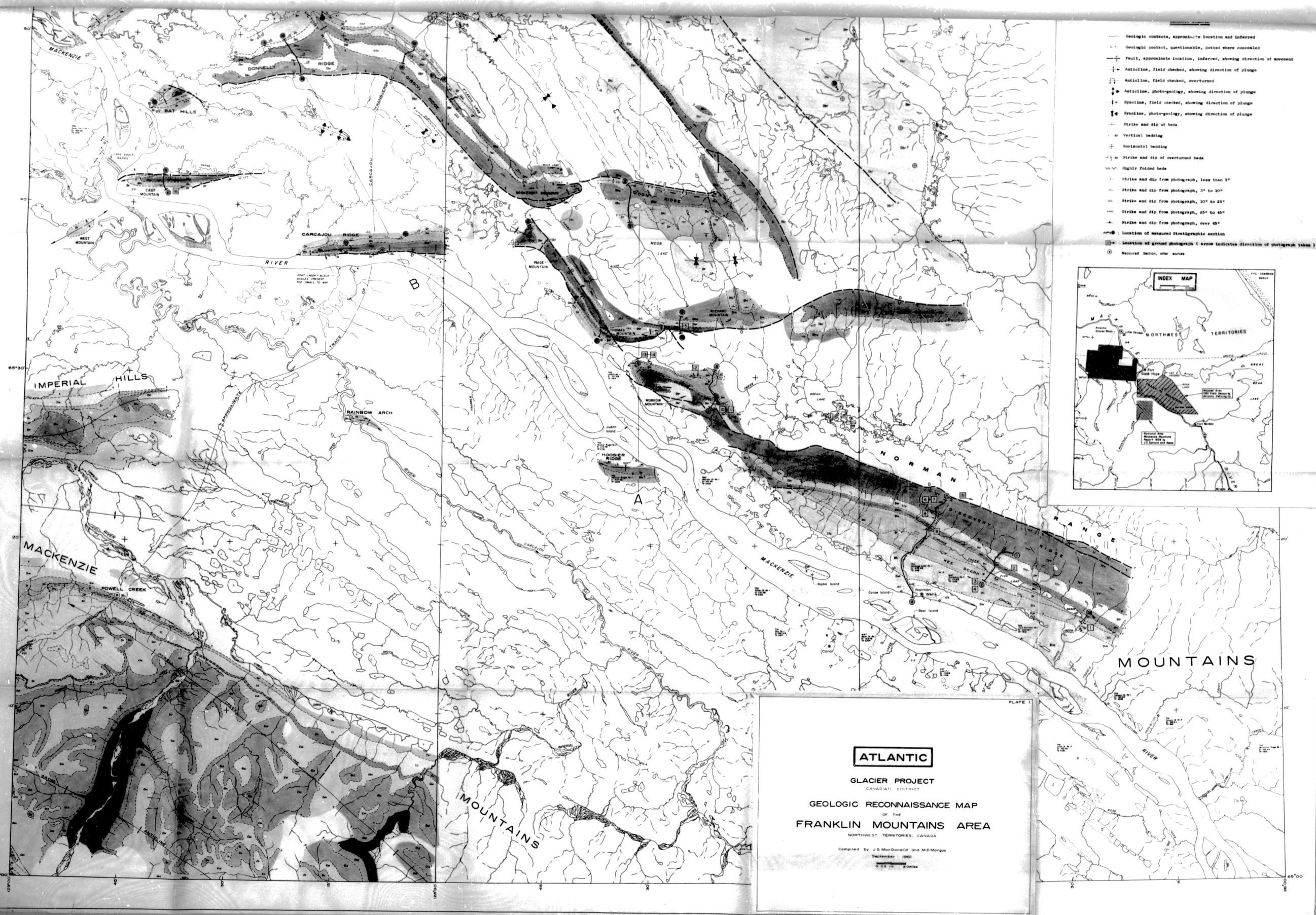


GENERALIZED BLOCK DIAGRAM OF THE "REEF"
BUILD-UP IN THE RAMPARTS FORMATION AT KEE SCARP,
JUST NORTHEAST OF NORMAN WELLS, N.W.T.



OCCURRENCE AND THICKNESS OF THE "REEF" LIMESTONE
FROM NORMAN WELLS "FIELD" AND AIRPORT QUARRY.
MAXIMUM BUILD-UP OF "REEF" AT KEE SCARP IS 250 (+) FEET;
MAXIMUM THICKNESS AT NORMAN WELLS IS 350-400 FEET.




Dip of beds approximate due to difference in horizontal and vertical scales.

Horizontal scale: 1" = 1 mile
Vertical scale: 1" = 0.5 mile
Vertical exaggeration = 2

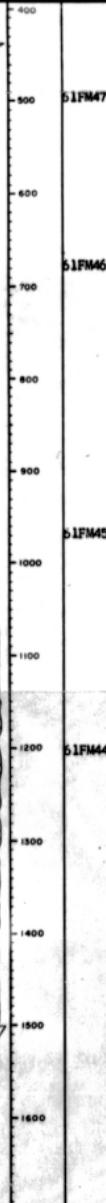
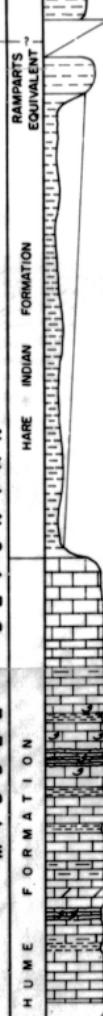
Drawn by: J.B. Trifaux

Stratigraphic section No. 26.

CANYON CREEK SECTION

Approx. $1\frac{1}{2}$ miles southeast of Norman Wells.
Lat. $65^{\circ} 16' N.$, Long. $126^{\circ} 28' W.$ (Approx.)

FRANKLIN MOUNTAINS AREA



J.S.McDonald, M.D.Mangus, V.A.Fisher, D.W.Holmes.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
N I A N	RAMPARTS EQUIVALENT	IMPERIAL FORMATION	000	51FM49	Ss, med-gr-grn, thin-bded, fg to vfg, ang, friable, mic & arg, good por.
				51FM48	Sh, blk, lam, tab-even bding, med-hd, has conchoidal frac, wthrs in brick-like stacks, has sulphur-yel bloom.
	FORT CREEK		100	51FM47	Sh, blk, thinly lam, tab-uneven bding, silty, soft, with some concretions of dk-gr-br, very dense ls, has bit. odor, wthrs dull gr-y. Possible lateral equivalent of the Ramparts.
	FORMATION			51FM46	Sh, lt-gr-grn, thin-bded, wthrs gr-grn; discontinuous outcrops.

D E V O N I A N

M I D D L E D E V O N I A N

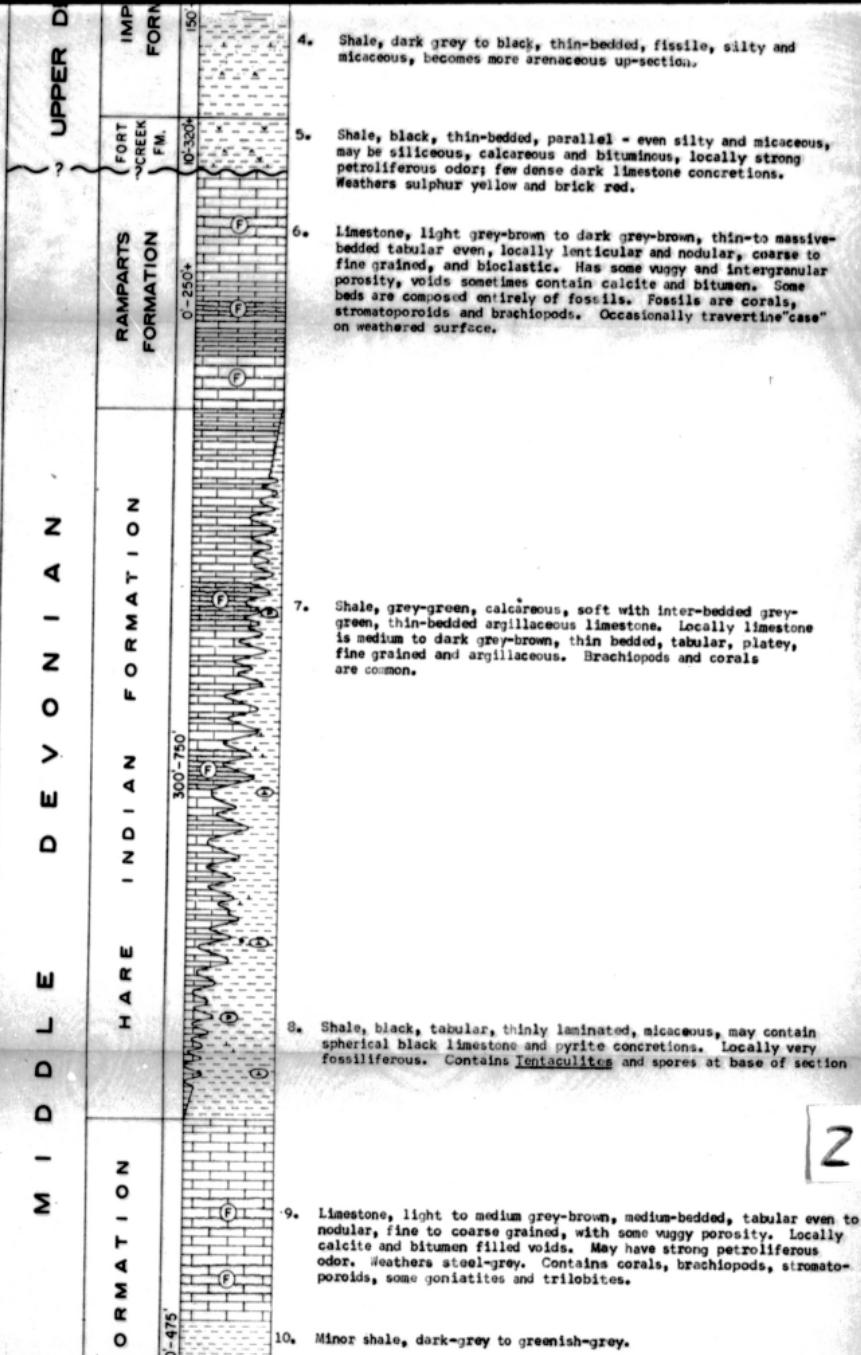
H U M E F O R M A T I O N

51FM47 Sh, blk, thinly lam, tab-uneven bding, slty, soft, with some concretions of dk-gr-br, very dense ls, has bit. odor, wthrs dull gr-y. Possible lateral equivalent of the Ramparts.

51FM46 Sh, lt-gr-grn, thin-bded, wthrs gr-grn; discontinuous outcrops.

51FM45 Sh, blk, thin-bded, tab-even, soft, mic, interbedded with ste, blk, thin-bded, hd, mic, and beds of blk ls. Contains some tentaculites.

51FM44 Ls, gr-br to dk-gr-br, thk-bded, tab-even, fg, hd, pelletoid & skeletal, vug por, voids contain calcite and silica; some corals.


PLATE 2.

COMPOSITE STRATIGRAPHIC SECTION
OF THE
FRANKLIN MOUNTAINS

MIDDLE DEVONIAN

UPPER D

D E V O

M I D D

L O W E R D E V O N I A N

B E A R R O C K F O R M A T I O N

200 - 700'

100 - 475'

J U M E H

F O R M A T I O N

6

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

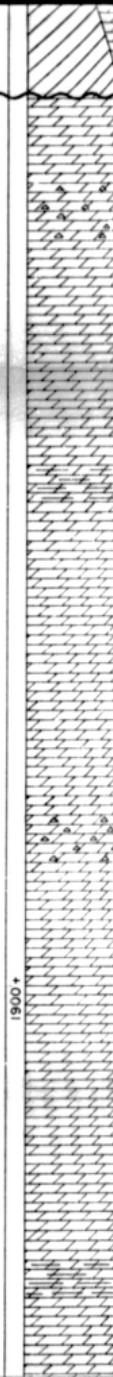
F

F

F

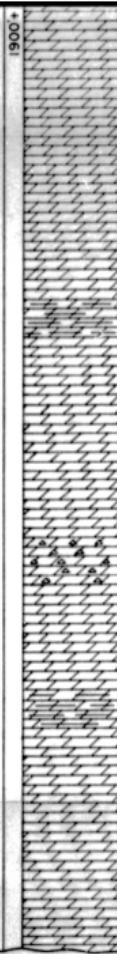
fossiliferous. Contains *leniaculites* and spores at base of section

9. Limestone, light to medium grey-brown, medium-bedded, tabular even to nodular, fine to coarse grained, with some vuggy porosity. Locally calcite and bitumen filled voids. May have strong petrolierous odor. Weathers steel-grey. Contains corals, brachiopods, stromatoporoids, some goniatites and trilobites.


10. Minor shale, dark-grey to greenish-grey.

11. Limestone, dark grey-brown, thin-to-medium bedded, tabular-even to nodular, fine to medium grained, vuggy porosity, some dolomitic limestone. Voids sometimes contain calcite and bitumen. Weathers steel-grey. Contains corals, stromatoporoids, and brachiopods.

12. Limestone and dolomite breccia, cemented by matrix of micro-breccia. Locally the Bear Rock may be bedded. Breccia fragments may range from fine grain to boulder size and vary in color from medium to dark-grey-brown. Hoodoo type weathering and a fetid H_2S odor are common.


Gypsum is present locally and may be found interbedded with dolomite. The gypsum is white to medium grey-brown, thick-bedded, thinly laminated, fine-grained, and silty.

S I L U R I A N

13. Dolomite light grey-green and purple to medium grey-brown, thick- to thin-bedded, tabular-even, laminated, fine to medium grained, fair vuggy and intergranular porosity; vugs may contain dolomite rhombohedrons. Local irregular rosettes of FeCO_3 and oolitic chert. Interbeds of dolomite with high argillaceous content.

S - L - C

Abstracted for
Geo-Science Data Index

Date _____

GLACIER PROJECT

Geological Report of the Franklin Mountains, Norman
Wells - Fort Good Hope Area, Northwest Territories,
Canada.

The Atlantic Refining Company

Co-authors:-
James S. MacDonald
Marvin D. Mangus

October, 1961.

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	
INTRODUCTION	1
STRATIGRAPHY	2
Table of Formations	2
Silurian	3
Silurian undifferentiated	3
Devonian	6
Lower Devonian	6
Bear Rock Formation	6
Middle Devonian	9
Hume Formation	9
Hare Indian Formation	12
Ramparts Formation	15
Upper Devonian	17
Fort Creek Formation	17
Imperial Formation	20
Cretaceous	23
Lower Cretaceous	23
Sans Sault Group	23
STRUCTURAL GEOLOGY	24
GEOLOGIC HISTORY	28
PETROLEUM POTENTIAL	30
BIBLIOGRAPHY	32
PHOTOGRAPHS	1a
STRATIGRAPHIC SECTIONS	
Abbreviations	8a
Sections	

ILLUSTRATIONS

- Plate 1: Geologic Reconnaissance Map of the Franklin Mountains Area, Northwest Territories, Canada.
- Plate 2: Composite Stratigraphic Section of the Franklin Mountains.
- Plate 3: Generalized Block Diagram of the "Reef" buildup in the Ramparts Formation at Kee Scarp, just northeast of Norman Wells, N.W.T.

Figure 1: Index Map of Mapped Area.

Figure 2: Table of Devonian Nomenclature.

PHOTOGRAPHS

	<u>Page</u>
Photo 1: Fort Creek formation along Canyon Creek	1a
Photo 2: Aerial view looking west from Fish Lake along Kee Scarp Ridge.	1a
Photo 3: Fort Creek shale overlying the Ramparts "reef"; Airport Quarry.	1a
Photo 4: Coralline limestone of the Ramparts formation; Airport Quarry.	2a
Photo 5: Looking east along the fault scarp of Discovery Ridge; Silurian dolomite.	2a
Photo 6: Vugular Silurian dolomites; Discovery Ridge.	2a
Photo 7: Drusy quartz filled vugs in Silurian dolomite; Discovery Ridge.	3a
Photo 8: Brecciated dolomite and limestone of Bear Rock formation; Bosworth Creek.	3a
Photo 9: Hare Indian shale overlying Hume formation; Bosworth Creek.	3a
Photo 10: Hoodoo weathering of Bear Rock breccias; Oscar Creek Gap.	4a
Photo 11: Aragonite vein in Bear Rock breccias; Oscar Creek Gap.	4a

	<u>Page</u>
Photo 12: Weathered stromatoporoids and corals of the Ramparts formation; Oscar Creek Gap.	4a
Photo 13: Weathered reefoid beds of Ramparts formation; west end of Morrow Mountain.	5a
Photo 14: Panoramic view of "reef" beds of Ramparts formation; west end of Morrow Mountain.	5a
Photo 15: Encrusted gypsum beds of Bear Rock formation; Richard Mountain.	5a
Photo 15a: Sink holes in gypsumiferous Bear Rock formation; east of Richard Mountain.	6a
Photo 16: East Mountain looking west.	6a
Photo 16a: Fossiliferous unit of Hume formation; East Mountain.	6a
Photo 17: Platy limestone of Hare Indian formation; Beavertail Mountain.	7a
Photo 18: Typical exposure of fossiliferous Hume limestone; Glacial-Gut Lake.	7a
Photo 19: Fault Scarp at Mount Effie; Silurian dolomite; vertical displacement 1800 - 2300 feet.	7a

MEASURED STRATIGRAPHIC SECTIONS

1. Schooner Creek Section, approximately $5\frac{1}{2}$ miles northeast of Norman Wells (Silurian-Devonian).
2. Bosworth Creek Section, approximately $3\frac{1}{2}$ miles north of Norman Wells (Silurian-Devonian).
3. Oscar Creek Section, approximately $20\frac{1}{2}$ miles northwest of Norman Wells (Silurian-Devonian).
4. Morrow Mountain Section, approximately 14 miles southeast of Rock Lake Camp (Devonian).

5. Richard Mountain Section, approximately $13\frac{1}{2}$ miles southeast of Rock Lake Camp (Silurian-Devonian).
6. Thomas Mountain Section, approximately $11\frac{1}{2}$ miles southeast of Rock Lake Camp (Silurian-Devonian).
7. Moon Ridge Section, approximately 5 miles east of Rock Lake Camp (Devonian).
8. Paige Mountain Section, approximately 4 miles southwest of Rock Lake Camp (Devonian).
9. South Carcageou Mountain Section, approximately $13\frac{1}{2}$ miles southwest of Rock Lake Camp (Devonian).
10. Carcageou Ridge Section, approximately $13\frac{1}{2}$ miles southwest of Rock Lake Camp (Devonian).
11. East Mountain Section, approximately $27\frac{1}{2}$ miles southwest of Rock Lake Camp (Devonian).
12. Bat Hills Section, approximately $28\frac{1}{2}$ miles northwest of Rock Lake Camp (Devonian).
13. Loon Roost of Donnelly Ridge Section, approximately 22 miles northwest of Rock Lake Camp (Devonian).
14. Donnelly Ridge Section, approximately 20 miles northwest of Rock Lake Camp (Silurian-Devonian).
15. Victory Ridge Section, approximately 20 miles northwest of Rock Lake Camp (Devonian).
16. Swampy Section, approximately 13 miles northwest of Rock Lake Camp (Devonian).
17. Atlantic Lake Section, approximately $10\frac{1}{2}$ miles northwest of Rock Lake Camp (Devonian).
18. Wait-Awhile Lake Section, approximately 14 miles northeast of Rock Lake Camp (Devonian).
19. Turton River Section, approximately 20 miles northeast of Rock Lake Camp (Devonian).

20. North Turton Lake Section, approximately 22½ miles northeast of Rock Lake Camp (Devonian).
21. Glacial-But Lake Section, approximately 16½ miles northeast of Rock Lake Camp (Devonian).
22. East Beavertail Section, approximately 26½ miles northwest of Rock Lake Camp (Devonian).
23. Bulldog Lake Section, approximately 30 miles northwest of Rock Lake Camp (Devonian).
24. Beavertail Mountain Section, approximately 31½ miles northwest of Rock Lake Camp (Devonian).
25. Lac A Jacques, approximately 29 miles northeast of Rock Lake Camp (Devonian).
26. Canyon Creek Section, approximately 11½ miles southeast of Norman Wells (Devonian).

ABSTRACT

A geologic reconnaissance mapping program was carried out in the Franklin Mountains from Norman Wells to south of Fort Good Hope. The area covered lies roughly within 65°00' to 66°10' north latitude and 126°00' to 129°00' west longitude.

The total sedimentary column present is estimated at 9,000 to 10,000 feet thick. The oldest rocks examined were thought to be of Silurian age, and the youngest Lower Cretaceous. The greatest thickness of total section exposed is approximately 6,000 feet. The Middle Devonian strata, which includes the Norman Wells producing beds, range up to approximately 1,400 feet in thickness.

The Kee Scarp at Norman Wells and the producing "reef" in the Norman Wells oilfield were found to correlate with the "Ramparts" along the Mackenzie River just south of Fort Good Hope. The Ramparts formation thickens considerably off either flank of the northeast trending Carcajou transverse high. This ancestral high was instrumental in initiating lime deposition and reef growth in the Ramparts. It is believed to have also been the barrier or restriction which resulted in the Bear back evaporite basin.

There are two major disconformities: 1) between Devonian and Silurian; 2) between Cretaceous and Devonian; and two minor questionable disconformities: 1) between Hume and Bear back; 2) between Upper Devonian (Fort Creek) and Middle Devonian (Ramparts).

High-angle reverse faults and asymmetric folds, which trend principally northwest and west, are characteristic of these mountains. The present day structural pattern is the result of compressional Laramide disturbances which followed to some extent pre-existing lines of weakness.

The most favorable formations for petroleum reservoirs are the Devonian Ramparts and Hume formations and the basal sandstone of the Cretaceous Sans Sault group.

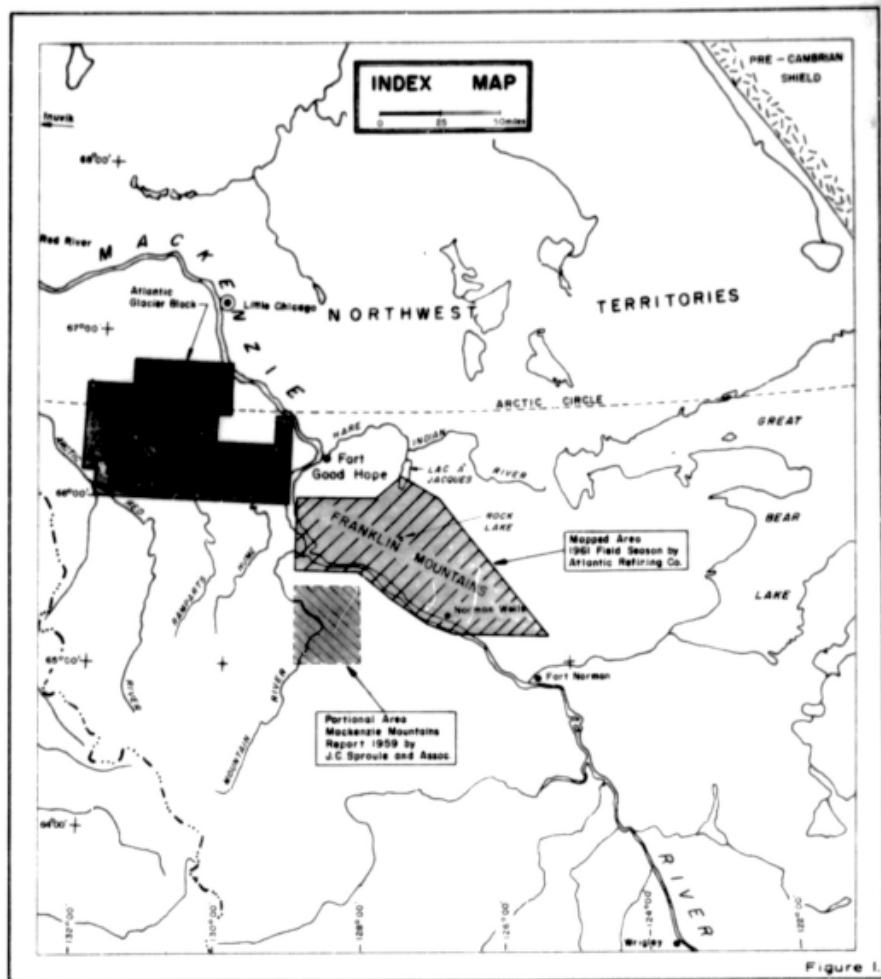


Figure 1

INTRODUCTION

The area covered in this report roughly lies between 65° 00' and 66° 10' north latitude and 126° 00' and 129° 00' west longitude, and covers an area of approximately 3,500 square miles.

A study of the Norman Wells to Fort Good Hope Area was undertaken to determine the geologic history of the northern Franklin Mountains. The Devonian strata have reef build-ups, and an attempt was made to map reef trends and facies relationships. In particular, there are good exposures of the Devonian Ramparts formation which correlate with the producing beds of the Norman Wells oil field. A detailed sampling of all Ramparts and lime outcrops was carried out by the field party. The study of the surface geology was begun as an aid in the interpretation of the subsurface geology underlying The Atlantic Refining Company's Glacier Block.

The field party consisted of the following: two Atlantic geologists, two temporary field assistants - Donald Holmes and Victor Fisher; a cook - Richard Chambers; a helicopter pilot - Allen Downey, deceased, (replaced later by J. Chagnollaud) and an engineer - L. Lawrence (replaced later by J. Warden). The helicopter was supplied by Foothills Aviation, Calgary. The Pacific Western Airlines "Beaver" aircraft based at Norman Wells was chartered, as needed, to move camp supplies and personnel.

A total of 6 weeks, beginning June 9, was spent in the field. The party stayed at the Imperial Oil and P.W.A.'s camps for the first three weeks and then moved to the Rock Lake field camp for the remainder of the season.

This report includes: one geologic map, one generalized stratigraphic section, twenty-six stratigraphic sections, twenty-one photos of typical outcrops and one block diagram of Ramparts Reef, (Kee Scarp).

Previous Investigations. G. S. Hume of the Geological Survey of Canada (1954), summarized the reports of the Anol project and early geologists in his publication. H. C. Lenz (1959) and H. C. Basset (1960) are the most recent reports available.

Acknowledgements. The fossil determinations were made by Dr. C. H. Crickmay of the Imperial Oil Research Laboratory, Calgary, Alberta. Mr. Jack Trifaux supervised the drafting and gave many helpful suggestions.

TECTONICITY

A group of eight sedimentary formations have been mapped in the Norman Wells - Fort Good Hope area of the Franklin Mountain. They range in age from Silurian to Lower Cretaceous and are discussed as follows:

TABLE OF FORMATIONS

<u>Age</u>	<u>Formation</u>	<u>Lithology</u>	<u>Maximum Thickness (feet)</u>
MESOZOIC			
Cretaceous			
Lower	Sans Sault group	Sandstone and shale	1,300
- UNCONFORMITY -			
PALEOZOIC			
Devonian			
Upper	Imperial formation	Sandstone and shale	700
	Fort Creek formation	Bituminous shale and siltstone	320 +

- UNCONFORMITY -

<u>Age</u>	<u>Formation</u>	<u>Lithology</u>	<u>Maximum Thickness</u>
PALEOZOIC (continued)			
Devonian			
Middle	Ramparts formation	Reefoid Limestone	250 +
	Hare Indian formation	Calcareous shale and limestone	750
	Hume formation	Limestone and minor shale	475
- UNCONFORMITY ? -			
Lower	Bear Rock formation	Dolomite, limestone, breccia and gypsum	700
- UNCONFORMITY -			
Silurian	Unnamed	Dolomite	1,900 +

Silurian

Silurian Undifferentiated

Name and Type Locality. The Silurian rocks discussed in this report are the oldest rocks in the mapped area. In the past, these beds were called the Mt. Ronning formation by T. A. Link and Canol geologists (Hume, 1954 pp. 14-20), but because of the lack of good faunal evidence and the incorrect correlations that have arisen in the past, the name Mt. Ronning was not used for this report.

Distribution. The Silurian rocks are exposed throughout most of the mapped area as low, askew, strike ridges which have been brought to the surface by faulting. These ridges vary from 6 to over 40 miles in length and from one-half to almost 8 miles across the strike.

Lithology and Thickness. Throughout the mapped area the Silurian is composed of relatively uniform dolomite with minor intercalated units of dolomitic limestone. The dolomite is usually light-to medium-grey-green, medium-to massive-bedded, fine-to coarse-grained, hard and sugary. The dolomite weathers a very characteristic steel-to-pinkish-steel-grey and can usually be distinguished from the Devonian carbonates by this property. Scattered sporadically through the dolomite are irregular ropy masses of chert which become more common near the top of the section.

The chert occurs in both the amorphous and oolitic form and varies from white to medium-grey. These cherty masses are several inches to 3 feet in length and one-quarter to 4 inches thick. The top of the section also becomes more vuggy (Photos 6 & 7). The vugs are usually bean or irregular shaped, but it is not uncommon for them to be spherical. They range in size from one-quarter to 2 inches in length, with 3/8 inches being the average. In many instances, the vug fillings resemble poorly and partially replaced fossils, the fillings being both coarse carbonates and quartz crystals.

In the Discovery Ridge and Robert Mountain areas, the occurrence of chert and vugs seem more noticeable and they are well exposed at the top of the section. These vugs differ slightly from the above mentioned; they range in size from one-quarter to three-quarters of an inch and are lined with drusy quartz. These vug linings weather out of the rock as sharp, rough protrusions above the surface of the dolomite. Locally, the dolomite shows good porosity, both vugular and intergranular, with field estimates as high as 12 to 15%. Intraformational breccia or conglomerate is also present at the top of the section at these two localities. The breccia consists of angular dolomite fragments that range in size from $\frac{1}{2}$ to $1\frac{1}{2}$ inches. The breccia or pebbles are considered to be the same dolomite as the matrix.

Near the top of the section the weathered expression of the smooth dip slopes of the Silurian change sharply. Here the topography becomes rough and hummocky like the overlying Bear Rock formation. From aerial photos, it is very difficult to distinguish the contact between the Bear Rock and Silurian. This change in weathering is thought to be the result of both brecciation and pre-Bear Rock erosion of the Silurian.

The interbedded dolomitic limestone is scattered sporadically throughout the dolomite. The limestone is usually light-greenish-grey to medium-grey-brown, fine-to medium-grained, re-crystallized and very hard. The rocks are thin-to medium-bedded, weather a medium-dove-grey, and are rough and sugary on the surface. The porosity is generally poor in the limestones.

Only partial sections of the Silurian rocks are exposed in the mapped area. The thickest section measured was in the vicinity of Discovery Ridge and along Bosworth Creek. At Discovery Ridge, 1,900+ feet of dolomite and minor dolomitic limestone were measured. A minimum thickness of 400+ feet was measured along a fault on Connelly Ridge, while a minimum of over 1,800+ feet was estimated at Gibson Peak and Mount Effie. We believe it is safe to assume that 2500 to 3000 feet of Silurian is not out of line for the mapped area.

Contact Relationships. The base of the Silurian carbonates was not seen. Neither was the contact between the overlying Devonian Bear Rock breccias and evaporites, but from existing regional evidence of other geologic investigations in adjacent areas and work done by Atlantic in the Mackenzie Mountains, it is assumed that the Silurian is unconformably overlain by the Lower Devonian Bear Rock formation.

Age and Correlation. No paleontological evidence was found in the

Silurian by the writers, but Niagaran age fauna found by Canol geologists (Hume 1954 pp. 14-20) substantiates the age of these beds as Middle Silurian.

It is possible to correlate at least partial equivalents of these beds southwest into and along the Mackenzie Mountains.

Dr. C. H. Crickmay told us that in the Franklins some fauna identified as Niagaran belong more properly to the Ordovician. This may then place much of the "Silurian" section in the Ordovician.

Devonian

For the convenience of the readers, a Devonian nomenclature and correlation chart has been incorporated into this report. This chart shows the correlation of the nomenclature used by J. C. Sproule and Associates for the stratigraphy of the Mackenzie Mountain Report, 1951, the nomenclature used by The Atlantic Refining Company in the Richardson Mountains - Knorr Range Report - 1960, and the nomenclature adopted for this report. (Figure 2)

Lower Devonian

Bear Rock Formation

Name and Type Locality. Canol Geologists (Hume 1954, p. 20) and Atlantic use the name "Bear Rock" to denote strata underlying the Hume formation and overlying the Silurian. The origin of the name is obscure. The type locality is at Bear Rock near Fort Norman at the junction of the Great Bear and Mackenzie Rivers.

Distribution. The Bear Rock formation is present throughout the mapped area. It is best exposed in narrow outcrop pattern along the dip slopes of the anticlinal and fault ridges. Other exposures occur as flat lying strata in the northeast corner of the mapped area.

TABLE OF DEVONIAN NOMENCLATURE

Atlantic Ref. Franklin Mountains Report - 1961	Lithology in report area	J. C. Sproule Mackenzie Mountains Report - 1960	Atlantic Refining Co. Richardson Mtns. - Knorr Range Report - 1960
Imperial Fm. (Dim)	Sandstone and shale	Imperial Fm.	Imperial Fm. Upper Fort Creek Fm.
Fort Creek Fm. (Dfc)	Black shale	Fort Creek Fm.	(Lower) Fort Creek Fm.
Ramparts Fm. (Dr)	Reefal limestone and bedded limestone	Upper limestone member	Not recognized
Hare Indian Fm. (Dhi)	Grey and green shale and some limestone Black shale	Ramparts Fm. Middle shale member	Hare Indian River shales
Hume Fm. (Dhu)	Bedded and reefoid limestone, dark shale		Grey massive bioclastic limestone
Not recognized		Lower limestone member	Lower Devonian shales Local reefing
Bear Rock Fm. (Dbr)	Dolomite and limestone, breccia and gypsum locally	Bear Rock Fm.	Not recognized in Richardson Mountains In Knorr Range - Bear Rock Fm.
Middle Devonian Faunal Zonation by Dr. C. H. Crickmay Ramparts Fm. - <u>Stringocephalus</u> Hare Indian Fm. - " <u>arctica</u> " Hume Fm. - (" <u>verrillii</u> " (" <u>adoceta</u> ")			
Figures: - 2			

Lithology and Thickness. Three major lithologic divisions of the Bear Rock ... may be mapped are as follows: 1) gypsum and anhydrite beds, 2) carbonate breccia and bedded carbonates, 3) bedded carbonates. The gypsum and anhydrite beds are located mainly east of a line drawn just to the east of Carcassou Ridge and extending in an arc from the northeast to the southeast. The carbonate breccias are present in a transition belt between the evaporite beds and the bedded carbonate beds to the west. The approximate western limit of the breccia is located along a line about 20 miles west of Fort Good Hope and extending southwesterly to a point about 20 miles west of Yadek Lake. West of this line, the Bear Rock is bedded carbonate. (Sproule, 1960, pp. 25-28).

The gypsum outcrops are badly weathered. The gypsum is white to light-grey, thin-bedded, soft and contains minor lenses of hard, micritic, dark-grey dolomite. Underlying the mapped area the brecciated zone consists of angular fragments of limestone and dolomite with dolomite predominating. The size of the individual fragments ranges from fine-grained to boulder. These fragments do not appear to have any particular orientation although some bedding planes are present. The bedding varies from thin to thick and laterally may be obliterated.

An even bedded dolomite may occur at the top of the Bear Rock formation and its thickness may vary from several feet to over 175 feet. This dolomite is usually medium-grey-brown, thin-to medium-bedded, fine-to medium-grained, micritic and hard. The rock weathers light-grey-brown and gritty on the surface.

The breccia is probably a collapse breccia, due partly to leaching

of the interbedded evaporites and partly to tectonism. The Garcajou transverse high occupies a position roughly paralleling the breccia-evaporite boundary. The occurrence of the breccia is coincident with a tectonic belt or zone.

The bedded carbonate unit was not examined in the field by the authors, but Sprout (1959 pp. 25-28) divides the Bear Rock west of the Gayna River into an upper limestone unit and lower dolomite unit. The description is as follows: "An upper limestone unit which is light grey to brown, thick-to massive-bedded, crypto-crystalline to lithographic, waxy, with scattered grains of white calcite, alternating with intervals of dark-brown, dense, platy limestone which is somewhat argillaceous and bituminous. The more massive beds show fine color lamination. The basal contact of the upper limestone member with the underlying brown, medium-bedded, fine-grained dolomites is locally abrupt, but more commonly is drawn within a zone of alternating brown weathering dolomite and light-grey weathering limestone beds."

The Bear Rock has an H_2S odor on freshly broken surfaces, and drill stem tests have recovered sulphurous water. Springs of sulphur water associated with the Bear Rock are fairly common throughout the mapped area. Along Moon ridge, Reece ridge and between Richard and Robert Mountains many sink holes and collapse features were seen.

In a bottle shaped belt from Norman Wells to East Mountain, the Bear Rock maintains a fairly constant thickness of roughly 300 feet. Outside this belt the Bear Rock thickens to over 600 feet. West of East Mountain there is a rapid basinward thickening of the Bear Rock strata.

Contact relationships. The contact with the underlying Silurian was not seen, but outside the mapped area the contact is sharp and disconform-

able. The contact with the overlying Hume limestones is distinct and sharp in those regions where the Bear Rock is composed of breccia and gypsum. In these areas where the upper Bear Rock beds are bedded carbonates, the contact with the overlying Hume is picked at the top of the uppermost occurrence of dolomite and the appearance of fossil-bearing beds. The contact with the overlying Hume may be disconformable.

Age and Correlation. No fossils were found in the Bear Rock strata by the field party. A Lower Devonian age or early Middle Devonian was assigned to fauna found in the Mackenzie Mountains. The writers prefer a Lower Devonian age for the Bear Rock. Present information is too limited for broad regional correlations at the present time, but Bear Rock strata were deposited widely throughout the Northwest Territories. These strata extend from the Pre-Cambrian shield into Yukon Territory, southward into Alberta and northeastern British Columbia and north to at least 68° north latitude.

Middle Devonian

Hume Formation

Name and Type Locality. H. G. Bassett (1960) introduced the name Hume for a succession of Middle Devonian limestone and shale which overlie the Bear Rock formation and underlie the Bare Indian formation. The type section is located on the east branch of the Hume River at 65° 20' 30" north latitude, 129° 58' 00" west longitude. The term Hume supersedes the name Lower limestone member, of the Rhapsody formation, which has been used in previous company reports (Figure 2).

Distribution. From Norman Falls to Last Mountain, in a northwest-early direction, the Hume beds have a tabular form and vary in thickness from 200 to 400 feet. These strata cover the mapped area from Lac A Jacques in the

north to Kelly Lake in the south and west to the Mackenzie River.

Lithology and Fossils. A detailed description of the Hume at the type locality is contained in Bassett's report (1963 p. 10).

In outcrop the Hume presents a characteristic undulating profile. In the Norman Wells area the Hume limestone is medium-to dark-grey-brown, sublithographic and locally fossiliferous. Calcite veining is common. The upper part of the section is marked by a cliff-forming limestone approximately 100 feet thick which is medium-to massive-bedded. The underlying beds are composed of predominantly grey shale and interbedded thin-bedded argillaceous limestone. Resting directly on the Bear Rock is a sequence of thin-bedded dark-grey-brown sublithographic limestone.

To the northwest of Moon Lake the strata appear to be more fossiliferous. Corals, stromatoporoids, bivalves, brachiopods, gastropods and trilobites are common. The fossil beds may have nodular bedding which in part is due to colonial corals upright in growth position and stromatoporoids in the shape of cabbage heads. The corals and stromatoporoids often have a strong bituminous odor and when cracked open the central core may contain bitumen. The massive beds are composed chiefly of bioclastic limestone and are generally fine-grained, medium-to dark-grey-brown and weather steel-grey.

Northwest of Moon Lake, predominantly ridge sections were measured. In the Norman Wells area most of the measured sections occurred along stream cuts. The difference in weathering characteristics contributes to the difference in appearance of Hume outcrops in these two areas.

Over the mapped area the Hume varies in thickness from 110 to 475 feet. The greatest thickness is developed immediately around Norman Wells and in the East Mountain area. West and south of East Mountain the Hume

thickens rapidly. A pronounced thinning occurs in the vicinity of Carcajou Mountain which separates Norman Wells area from East Mountain area.

Contact Relationships. The contact with the overlying Hare Indian is drawn at the base of a sequence of shales or thin bedded argillaceous limestones and the first occurrence of resistant cliff-forming limestone. Immediately overlying the Hume in the Norman Wells area a black shale is common and this contact appears to be sharp and conformable (Photo 9). A common fauna in the basal Hare Indian beds and upper Hume strata suggests these beds may be facies equivalents.

The base of the Hume is drawn at the first appearance of bedded dolomite, breccia or gypsum. The contact may be locally conformable and sharp. Very much of the mapped area the zone of contact is eroded and underlies valleys. In Carcajou Canyon and in the Gamblin Mountains the contact with the Bear Rock is sharp, and irregularities along it were interpreted as indicative of a disconformity (Hume 1954, p. 21).

Age and Correlation. A Middle Devonian "verrilli" and "adoceta" fauna are common in Hume strata. The following fauna were collected: 61 FCI Billingsastraea verrilli, Spinulitypa dysmorphosticta, Atrypa arctica, Spinulicosta aff. stainbrookii. 61 FMgR Atrypa operantia, Schuchertella adoceta, 61 FMg20 Billingsastraea trichomisca, Utaratulia acupicta, Mesophyllum sp., Juchella sp. 61 FMg1 Billingsastraea trichomisca, Favosites cf. helderbergiae adoceta sp., Alveolites sp.n., Atrypa operantia, Spinatrypa andersonensis, Schuchertella adoceta; 61 FMg57 Striatopora sp., Billingsastraea Verrilli spinatrypa sp., Atrypa arctica, Ambothyrida sublineata, bucnelia, 61 FMg70 Hedrophylum sp., Schuchertella adoceta, 61 FMg120 Schuchertella

thickens rapidly. A pronounced thinning occurs in the vicinity of Carcajou Mountain which separates Norman Wells area from East Mountain area.

Contact Relationship. The contact with the overlying Hare Indian is drawn at the base of a sequence of shales or thin bedded argillaceous limestones and the first occurrence of resistant cliff-forming limestone. Immediately overlying the Hume in the Norman Wells area a black shale is common and this contact appears to be sharp and conformable (Photo 9). A common fauna in the basal Hare Indian beds and upper Hume strata suggests these beds may be facies equivalents.

The base of the Hume is drawn at the first appearance of bedded dolomite, breccia or gypsum. The contact may be locally conformable and sharp. Over much of the mapped area the zone of contact is eroded and underlies valleys. In Carcajou Canyon and in the Gambill Mountains the contact with the Bear Rock is sharp, and irregularities along it were interpreted as indicative of a disconformity (Hume 1954, p. 21).

Age and Correlation. A Middle Devonian "verrilli" and "adoceta" fauna are common in Hume strata. The following fauna were collected: 61 FCI Billingsastraea verrilli, Miniatryna dysmorphostrata, Atryna arctica, Spinulicosta aff. stainbrooki. 61 FMgR Atryna operanta, Schuchertella adoceta, 61 FMg20 Billingsastraea trichomisca, Utaratuis acutipcta, Mesophyllum sp. Buchelia sp. 61 FM21 Billingsastraea trichomisca, Favosites cf. helderbergiae aukopora sp. Alveolites sp.n., Atryna operanta, Spinatryna andersonensis, Schuchertella adoceta; 61 FMg57 Stromatopora sp., Billingsastraea Verrilli spinatryna sp., Atryna arctica, Ambovyris sublineata buchelia, 61 FM70 Hedrophylum sp. Schuchertella adoceta, 61 FM20 Schuchertella

adoceta, 61 FM 126 Alveolites sp.n., 61 FM131 Acanthophyllum sp., Thamnopora sp., Spinatrypa cf. andersonensis, Atrypa cf. operanta ambothyris sp. Keticularia sp.

The Hume formation is one of the most widespread units of the Devonian. It has been reported in the Anderson River country within the Arctic circle and south in the Nahanni River country of the Southern Territories. These strata may also be traced west from the Franklin Mountains across the Mackenzie Mountains and into the Ogilvies near the Alaskan border. It may be correlated with the Nahanni formation and the Presqu'ile dolomite of Great Slave Lake.

Hare Indian Formation

Name and Type Locality. Kindle and Bosworth (1921) first described the Hare Indian formation at the Hare Indian River near its junction with the Mackenzie River by Fort Good Hope. Hume (1954) described a more complete section of the same stratigraphic interval from exposures in a canyon of the Mountain River at Imperial Anticline. In this report, Hume's type section is considered to be more representative.

Distribution. The Hare Indian is present throughout the mapped area. Outcrops in the Franklin Mountains are spotty and it underlies a conspicuous valley between cliffs formed by Hume and Ramparts limestones. Along Bosworth and Canyon Creeks there are small outcrops of the basal black shale. In the stream beds, chips of greenish-grey calcareous shale may be found. Along Beavertail Mountain, the Bat Hills and East Mountain there are spotty outcrops of platy argillaceous Hare Indian limestone.

Lithology and Thickness. The Hare Indian shale is soft, grey-green and strongly calcareous and has some interbedded thin-bedded, grey-green, argillaceous, limestone. Many of the highly weathered outcrops have

an abundant Middle Devonian "arctica" fauna lying on the surface. In the Beavertail Mountain area a characteristic grey-green platy argillaceous limestone is present. The Hare Indian may have a soft black shale at the base which is present at Bosworth and Canyon Creek. This shale very often contains Tentaculites. Very few outcrops of this black shale have been preserved. In the lower part of the Hare Indian, spores have been found in subsurface samples.

The thickness of the Hare Indian may vary from 100 to 600 feet. A sausage-shaped thick occurs in the Norman Wells-Judith Island area (from subsurface and surface sections). West of East Mountain, there is a gradual basinward thickening. Between East Mountain and Norman Wells, in the vicinity of Carcassou Mountain, there is a pronounced thinning of the Hare Indian.

Contact Relationships. The contact with the overlying Ramparts is gradational and it is generally placed at the base of a predominantly limestone sequence. In the general area north of Moon Lake and in several sections, the top beds of the Hare Indian consisted of nodular, fossiliferous, thin-bedded limestone. These beds were overlain by a more massive Ramparts limestone of similar lithology. The contact is drawn at the base of the massive limestone where large brachiopods (Stringocephalus chasmognathus) were found.

The contact with the underlying Hume is placed at the base of the Hare Indian black or grey shale and the top of the Hume massive limestone. This contact appears to be generally sharp and conformable, although strata mapped as Hume and as Hare Indian on the basis of their

lithologies were found to contain a common fauna, (i.e. 61 FM130, 61 FM127, 61 FM123, 61 FMg40). Thus, the contact between Hare Indian and Hume may have a similar gradational relationship as the Hare Indian-Ramparts contact.

In the region of Carcajou Mountain and along the trend of the Carcajou transverse high (Plate 1) there appears to be coincident thinning and thickening of the Ramparts, Hare Indian, and Hume formations. It is thought that the Carcajou Transverse high has had a marked influence on sedimentation and initiated facies changes in the Hare Indian.

Age and Correlation. The Hare Indian very often contains a rich Middle Devonian "arctica" fauna. The following fossils were collected: 61 FMg30, Paralelopoma sp., Caunopora sp., Favosites sp., Alveolites, Spinatrypa sp., Atrypa arctica, Paracyclaspis sp., Dechenella, 61 FM 130, Favosites cf. helderbergiae, Thamnopora sp., Spinatrypa dysmorphostriata, Atrypa Arctica, 61 FM23A Thamnopora cf. limitaris, Spinatrypa cf. andersenensis, 61 FMg 24, Metriophyllum Thamnopora cf. limitaris, Spinatrypa sp., Ambothyris meristoides, Paracyclaspis sp., Dechenella sp., 61 FM106 Stromatoporoidea, Caunopora sp., Metriophyllum sp., indet. Spinatrypa sp. indet., 61 FM122 Thamnopora sp., Leiorhynchus sp., Pugnoides sp., Ambothyris meristoides, 61 FM128 Pugnoides sp., Ambothyris meristoides, A. sublineata.

Regionally, a similar fauna has been collected from bituminous limy shales of the Pine Point formation at its type locality on Great Slave Lake and also in the Hare Indian shales, western Mackenzie Mountains and Knorr Range. It is found as far south as Fort Simpson and may be traced west across the Mackenzies and into the Richardson Mountains. None has been reported north of the 66° latitude and its eastern limit north of Norman Wells is defined roughly by longitude 127°.

Ramparts Formation

Name and Type Locality. The type section for Ramparts is located at the "Ramparts" along the Mackenzie River just southwest of Fort Good Hope. Hume (1954, p. 27) designated this limestone exposure as "Ramparts". Campbell (Sproule, 1959, p. 20) has given a summary description of the type section in his report. This name will supersede the name Upper limestone member of the Ramparts formation previously used by The Atlantic Refining Company. (Figure 2).

Distribution. The Ramparts extends in a northwesterly direction from Norman Wells in the south to approximately 67° north latitude. These strata occupy a band which is 80 miles wide in the south and tapers to 40 miles in the north.

Lithology and Thickness. In outcrop the Ramparts is usually represented by a massive cliff-forming limestone, which is very often underlain by less resistant thin-bedded nodular limestone. The topographic form is generally lenticular which is an expression of both textural changes and thickness variation in the strata.

The Ramparts formation is thought to be primarily bioclastic and reefoid. The limestone is generally light-grey-brown, thin-to massive-bedded, moderately to very fossiliferous. Some beds consist almost wholly of corals and stromatoporoids and may have numerous very thin black shale partings. The individual fossil or fossil fragments may range in size from pebble to boulder. These beds are probably reefal or represent reef build-ups. The finer bioclastic beds may have grain sizes ranging from very fine-grained to coarse and may possibly represent off-reef bioclastic.

In the Canyon Creek section (No. 26) southeast of Norman Wells the Ramparts limestone is missing. At the same stratigraphic interval as the Ramparts, a black shale is present. The lithology of this shale is similar to the Fort Creek, but because no Ramparts limestone is present it may be a lateral time equivalent of the Ramparts.

The Ramparts is divided into a lower and upper unit. The separation is made on the occurrence of a thin black shale unit. The upper and lower units are similar in lithology and can be correlated from the type locality into the subsurface at Norman Wells.

A maximum build-up occurs in the following two areas: 1) Norman Wells - Judith Island; 2) Powell Creek - East Mountain. The Norman Wells - Judith Island build-up is sausage-shaped and attains a thickness in excess of 400 feet. Within \pm 6.5 miles the Ramparts beds may thin from over 500 to 0 feet. In the Powell Creek - East Mountain area the Ramparts appears to be more tabular and may exceed 500 feet in thickness. Along the Mountain River just south of the Imperial Anticline a thickness of over 800 feet has been reported. This is a structurally complex area and a thickness of over 800 feet may not represent the depositional thickness.

Contact Relationships: The contact between the Ramparts and the underlying Hare Indian shale is generally gradational. The Hare Indian shale grades laterally into limestones with a lithology similar to the Ramparts. The contact has been picked on the occurrence of Stringocephalus cf., chasmognathus and at the base of a predominantly limestone sequence.

The overlying Fort Creek shale has a sharp contact with the Ramparts. The contact is thought to be disconformable. At the Airport Quarry northeast of Norman Wells the Fort Creek shale appears to slightly truncate the Ramparts limestone (Photo No. 3). These strata thin

over the Ramparts "highs" and thicken in the "lows". Downstream from Fort Good Hope and in a wide area north to Little Chicago there is a basal Fort Creek sandstone. In the same general area erosional truncation may be demonstrated. There is, therefore, good regional evidence for a disconformity, (Hume, 1954, pp. 34 - 40).

Age and Correlation. The index fossil Stringocephalus cf., chasmognathus is characteristic of the lower beds of the Ramparts. Fossils collected in the Ramparts are as follows: Stringocephalus cf., chasmognathus; 61 FC1, 61 FM₁25, 61 FM26, 61 FM76, 61 FM108, OW246 Favosites (Sproule 1960) sp., 61 FMg25, Alveolites vallorum 61 FM26, 61 FM108 Carverynchus cf. cristatus 61 FM76, Ambothyris meristoides 61 FM76. In addition, the following fauna have been collected: Stromatoporoid indet., Acanthophyllum sp., Thamnopora sp., Spinatryna sp., Reticularia sp. n.

The Ramparts beds may be correlated with the Elk Point Group of Northern Alberta and British Columbia.

Upper Devonian

Fort Creek Formation

Name and Type Locality. The Fort Creek formation was first described and named by Kindle and Bosworth in 1921 on Thunder River (Fort Creek on old maps, Hume 1954 p.34). This river joins the Mackenzie River about 120 miles downstream from Fort Good Hope.

The name Fort Creek, as used in this report, is restricted to the black bituminous shales that directly overlie the Ramparts formation.

Distribution. In the mapped area the exposures of Fort Creek occur as very sparse and sporadic stream cuts in glacial mantled lowlands. The best exposures crop out in stream cuts along the south flank of

Discovery Ridge from Canyon to Bosworth Creek. Other exposures examined are located at the "hairpin bend" at Oscar Creek Gap, Carcajou Ridge, and just south of Brokenoff Mountain.

Lithology and Thickness The Fort Creek formation is one of the most distinctive lithologic units in the mapped area. The strata are predominantly black pyritic shales with minor interbeds of hard black siltstone and locally siliceous mudstone. These rock types indicate a very stagnant environment.

In general, the shales are black, fissile, chippy, and hard, with occasional finely disseminated pyrite crystals. Locally, the shale is slightly to moderately calcareous, contains black carbonaceous material, and may emit a strong, pungent, petroliferous odor on heating. Commonly associated with the shale are small ($\frac{1}{2}$ to 4 inches), hard, discoid, ironstone concretions. The concretions are usually non-calcareous and weather rusty red.

The shales usually weather a light-pearl-grey to black, and along many of the bedding and joint planes small rusty selenite crystals and alum "blossoms" may occur. A very diagnostic feature of the Fort Creek is the way it weathers in the form of cubical stacks or chimneys which are usually covered by a sulphur yellow and white efflorescent bloom. Where the shales have been burned by forest fires, they weather bright brick-red to vermillion.

The associated mudstone is black, micaceous, locally siliceous, and has a metallic tinkle when the rocks and talus are scattered about. The siltstone weathers a buff-grey to medium-light-grey and is silty to sugary on the surface.

The thickest measured section of Fort Creek shale was located on Canyon Creek. This section is 320+ feet. In the Franklin Mountains area the Fort Creek varies in thickness from 100 to 320+ feet. This variation in thickness is mentioned by Boggs in the subsurface at the Norman Wells field (Hume 1954, p. 91). The variation is probably due to the pinching and swelling of the Ramparts, and where the Ramparts limestone reaches its maximum thickness it is very likely that the Fort Creek thins considerably.

Contact Relationships. The lower contact of the Fort Creek was placed at the sharp lithologic break between the black shales and the light colored carbonates of the Ramparts formation. The writers believe this contact is disconformable. From evidence seen in the Airport Quarry, the Fort Creek appears to slightly truncate the top of Ramparts and rest on it with small angular discordance, (Photo 3). Stelck (Canol Report No. 18 p. 16) reports that the contact between the Ft. Creek and Ramparts was seen in this general area and he considers it disconformable. Although not conclusive, this disconformity is also suggested by the sharp break in lithology. In the western Mackenzies and Knorr Range where the Ramparts is missing, the Fort Creek rests with angular discordance (44°) on the Hare Indian formation (MacDonald and Manjus, 1960, pp. 27-28).

The upper contact of the Fort Creek with Imperial is thought to be conformable and gradational, with the contact drawn between the black Fort Creek shales and the dark-grey-green shales of the above formation.

Age and Correlation. Although no conclusive biota has been found in the Fort Creek, it is placed at the base of the Upper Devonian. The reasons for this being two-fold:

1. There is a sharp lithologic and environmental break between the Fort Creek and the underlying Middle Devonian carbonate -- this could be a time break.
2. The Fort Creek underlies rocks of a definite Upper Devonian age.

The Fort Creek can be correlated throughout the mapped area and south and westward along the Mackenzie and Richardson Mountains, and along to Olgivie Mountains to the Alaskan boundary.

Imperial Formation:

Name and Type Locality. The Imperial strata were first named "Bosworth" by Kindle and Bosworth (Hume, 1954, p. 40), but because of poor exposures both a new name and type locality was suggested by T. A. Link. Hume (1954, p. 40) applied the name Imperial to a group of interbedded sandstones and shales at a new type locality. This type section is along the northeast flank of the Imperial Hills on the Imperial River, which is about 10 miles southwest of the junction of the Imperial and Carcajou Rivers, Northwest Territories.

Distribution. The Imperial is found outcropping in small isolated exposures throughout the area. Along Canyon and Bosworth Creeks, near their confluence with the Mackenzie River, it is lithologically similar to the Lower Cretaceous, and small outcrops are difficult to differentiate.

Lithology and Thickness. The Imperial formation consists of a rather monotonous sequence of shale, sandstone and siltstone. This formation includes the shale and fine-grained sandstone that were formerly mapped as part of the Fort Creek formation.

The shale is usually dark-grey to olive-grey-green, clayey to silty and soft to hard. The shale is chippy and has a fair amount of fucoidal markings and weathers grey-brown to dark-rusty-brown.

The intercalated sandstone is medium-to dark-grey-green to grey-brown, and is fine-to medium-grained. The rocks are thin-to massive-bedded with much cross-bedding and occasional ripple marks. The sandstone is medium-hard to hard, angular; splitting and breaking into irregular shaped plates and blocks. The rock is dirty and micaceous, with carbonaceous specks; fucoidal marks and flow casts are common. The rocks weather a dark rusty red-brown and fairly rough on the surfaces.

The siltstone is predominantly dark-grey-green to dark-grey, thin-bedded, hard, micaceous and locally siliceous. These strata have a conchoidal fracture and contain flow casts, ripple marks, and fucoidal markings. Occasionally, the siltstone is slightly calcareous. The rock weathers a medium-greenish-grey-brown.

Only an estimation of the thickness was made because of poor exposures of the Imperial. The estimate is 175 to 700 feet. In the Norman Wells field, Boggs states 437 to 700 feet of Imperial is present in the subsurface (Hume 1960, p. 42). From this variation in thickness, it seems apparent that the change is probably due to erosion in local

areas prior to Lower Cretaceous deposition. Therefore, it is fairly reasonable to assume that such a variation in thickness of the Imperial should be expected over the mapped area, and in places could be locally absent. This local variation in thickness is further substantiated by field work done in the Mackenzie and Richardson Mountains (MacDonald and Mangus, 1960, pp 28-31).

Contact Relationships. The base of the Imperial formation is drawn at the top of the black bituminous shale of the Fort Creek. This contact is both conformable and gradational. Some geologists believe this contact to be disconformable (Basset, 1960, pp. 26-27). If there is a disconformity in which a long hiatus was involved, it probably occurred higher in the section and possibly in the Snake River area and west. (MacDonald and Mangus, 1960 pp 28-31).

The upper contact is considered to be an unconformity, with the Lower Cretaceous beds truncating the Imperial formation.

Age and Correlation. Although no fossils were found in the Imperial by the party, previous work does show Upper Devonian age for the formation. Spirifer disjunctus sp., crinoids, plant remains and other Upper Devonian fossils have been found in the area (Hume 1954, p. 41). These sediments can be correlated with similar rocks of the same age in the Mackenzie and Richardson Mountains. (MacDonald and Mangus, 1960, pp. 22-31).

Lower Cretaceous

Sans Sault Group

Name and Type Locality. The Sans Sault group is the name applied by the Canol geologists to the Lower Cretaceous rocks in the Norman Wells - Franklin Mountains area (Hume 1954, p. 47). The type locality is at the Sans Sault Rapids on the Mackenzie River some 70 miles down river from Norman Wells. The name Sans Sault group is used in the report only. The Lower Cretaceous symbol is used in the illustrations.

Distribution. Because most of the time in the field was spent studying the Middle Devonian limestones, only a cursory examination was made of the Cretaceous sediments. For the most part, the Sans Sault rocks are widely scattered and poorly exposed.

Lithology and Thickness. The Sans Sault group is a series of marine shale, sandstone and siltstone.

The best examined outcrops were on the south side of the Mackenzie River in the vicinity of Carcajou Ridge. Here the rocks were predominantly marine shale, with interbeds of sandstone and siltstone.

The shale is dark-grey to black, clayey to silty, chippy, medium-hard and slightly fossiliferous. The rock is slightly to moderately micaceous and contains numerous fucoidal markings. Scattered throughout the shale are hard rusty weathering ironstone concretions, which range in size from 2 to 6 inches. This shale type comprises about 60 per cent of the outcrop.

The intercalated sandstone is medium-grey, thin-to medium-bedded, and very fine-to fine-grained, with poor to very poor porosity. The sandstone is very hard and fractures in angular pieces. It weathers a medium-grey-brown to rusty red. Locally, the sandstone is thinly laminated and cross-bedded.

The siltstone is medium-grey to dark-greenish-grey-brown, thin-bedded, thinly laminated and micaceous. The rock contains numerous fucoidal, oscillation and ripple marks. The siltstone is very hard, locally siliceous, and fractures in hard angular pieces.

From previous surface and sub-surface work the Sans Sault is estimated to be 150 to 1300 feet thick.

Age and Correlation. The age of the Sans Sault group is considered to be Lower Cretaceous. Fossils found by the authors indicate the Albian stage of Lower Cretaceous age. Specimen 61 FM 73F was identified as Inoceramus aff. dowlingi.

These beds are thought to be correlative with some of the Lower Cretaceous rocks in the Peel Plateau and Peel River area. The basal beds of the Sans Sault group are thought to be correlative with the basal sands of Atlantic's Glacier Block and Lower Cretaceous Unit 3, in the Peel River area (MacDonald and Mangu, 1960 pp. 30-40). The upper more shaly units of the Sans Sault group are correlative to Lower Cretaceous Unit 4 in the Peel River area (Mac Donald and Mangu, 1960, pp. 40-41.).

STRUCTURAL GEOLOGY

The Franklin Mountains trend northwest from Norman Wells to Carcajou Ridge, and then swing in a westerly arc. These mountains lie between the Interior Plains to the east and the Mackenzie Plain and basin on the west. The present-day arch-like form and structure is the result of compressive stresses which occurred during Laramide disturbances.

The most outstanding topographic form is the long, parallel sinuous ridges which have steep scarp faces bordering one side. These scarps are mainly the result of high angle reverse faults. Some of the ridges are asymmetric anticlines with faulting along the steeply dipping limb. Along the scarp faces remnant outcrops of near vertical beds may be found which represent the remains of steeply-dipping anticlinal limbs. From Carcajou Ridge north to Beavertail Mountain the paralleling folds all plunge westward and at the Mackenzie River disappear under Cretaceous strata.

From photo interpretation two prominent synclines have been mapped between two sets of ridges: Gibson Ridge - Mt. Effie, Reece Ridge and Moon Ridge - Richard Mountain. These synclinal areas are well covered and outcrops are scarce. A thin mantle of Pleistocene covers probable Upper Devonian and Lower Cretaceous strata. No Upper Cretaceous or Tertiary sediments were found in these lowland areas. The covered lowland areas between ridges are in large part synclinal and faulting is probably present.

Some of the principal structures of the Franklin Mountains are thought to be caused by deep seated or basement block faulting. Goodman (1951) mentioned large tilted fault blocks and named in particular the trap-door type and the scissors or pivotal type. The scissors type fault may be seen in the field along Richard-Robert Mountains (Plate 1). In this type of fault, the upthrow passes into a down-throw along strike and on the same side of the fault.

Williams was the first to describe the structural pattern of the Franklin Mountains (Williams 1922) and it was later enlarged upon by Goodman (1951). It is generally believed that the Selwyn Mountains set the structural trend for the Franklin Mountains. The Selwyn Mountains were thought to be formed in Jurassic time and paralleling these mountains Cretaceous geosynclines were formed. These geosynclines probably were developed along newly formed Jurassic fault trends or along pre-existing zones of weakness occurring in the basement complex. The Jurassic mountains were subsequently worn down, furnishing the detritus for the Cretaceous sediments. During Laramide time, the eroded Jurassic mountains and structural features farther north were rejuvenated or modified by yielding to compressional forces along the pre-existing trends. Much overlapping, overriding and displacement could have taken place at depths along these faults without much surface reflection.

Evidence tending to indicate deep seated block faulting is as follows:

1. The Mackenzie Mountains are practically free of "Rocky Mountain" type of imbricate over-thrusting and over-turned folds. With this in mind, it is unlikely that over-thrusting would occur in the distant Franklin Mountains, which are 30 to 60 miles north of the Mackenzie Mountains.
2. With the exception of Imperial Hills, most of the beds are relatively undisturbed between the Mackenzie and Franklin Mountains.
3. The undisturbed nature of these rocks is structurally similar to the Peel Plateau. In both areas, the rocks in the

foreland areas of the Mackenzie and Richardson Mountains are also relatively undisturbed, indicating that most of the compressional forces building these mountains (if of great magnitude) were dissipated along pre-existing zones of weakness (MacDonald, J.S. and Mangus, W.D., 1960, pp. 43-46), rather than being strongly transmitted into the foreland areas.

4. North of the Franklin Mountain fault scarps, the adjacent beds are again flat lying, tending to indicate a dissipation of forces along deep seated block faults.
5. Another indicating of ancestral pre-Laramide basement movements is brought out by the basin variations of the Middle Devonian sediments. These show a pronounced thinning over a transverse structural high (Carcajou transverse high).

A major feature of interest is the Carcajou transverse high. The approximate trace of this high from Powell Creek in the Mackenzie Mountains to Mount Effie in the Franklin Mountains is plotted on the geologic map (Plate 1). It also marks the westward change in strike of the Franklin and Mackenzie Mountains. This emergent high has made a marked influence on sedimentation patterns. The Bear Rock evaporite basin lies to the east; the Ramparts bedded lime and reef sequence thickens off both flanks and pronounced thinning of several Middle Devonian intervals is present over the high.

A sharp disconformity is present between the Devonian and Silurian and another between the Lower Cretaceous and Devonian. These disconformities show evidence of long periods of uplift and erosion. A

minor disconformity is thought to separate the Fort Creek and Ramparts formations, and the Hume and Bear Rock formations. The minor disconformities are questionable in the mapped area, but there is regional evidence for their existence.

GEOLOGICAL HISTORY

The oldest rocks were mapped as Middle Silurian age. Foley (1944) found typical Niagaran fauna in outcrops in the Donnelly River area and Laudon (1944) found similar Niagaran fauna in the Oscar Creek area. These beds consist of marine dolomites and limestones, which are locally cherty and sparsely fossiliferous. The presence of reef building organisms such as corals suggest conditions were favorable for reef growth in the Silurian, but no reefs were found. The close of Silurian time was marked by widespread erosion and the contact with the overlying Devonian is disconformable.

The Silurian uplift and erosion was followed by deposition of the Lower Devonian Bear Rock carbonates and evaporites. The evaporites are limited to a shallow restricted basin bounded on the west by Carcajou transverse high. Over this high the Bear Rock consisted of carbonates with probably some interbedded evaporites. This may be classified as a transitional zone; still somewhat restricted but more open and favorable to carbonate deposition.

The early Middle Devonian was a period favorable for a rich and varied organic life and the deposition of limestones. The thick accumulations of interbedded limestone and reefal limestone with

attendant prolific fauna indicates relatively clear water and littoral, shallow water type deposition. These were periodic influxes of fine muds which interrupted the limestone and reef deposition. The Middle Devonian was followed by a period of non-deposition and in some areas gentle erosion.

An influx of fine clastics followed by coarser clastics marked the beginning of Upper Devonian time. In Upper Devonian, this area was one of subsidence in which marine deltaic sandstones and shales were deposited.

There is a gap in the geological record from Upper Devonian to Lower Cretaceous. No rocks of this time interval were found in the mapped area. Regional evidence suggests this area was high during the time-gap and a long period of non-deposition and erosion took place.

The beginning of Lower Cretaceous was marked by subsidence and the deposition of a transgressive basal marine sandstone. The deposition of sandstone and shale continued into Upper Cretaceous time. Over the mapped area only Lower Cretaceous (Albian) sediments are found.

In late Upper Cretaceous time, strong compressional movements began which are probably representative of the Laramide orogeny. A long period of severe erosion ensued, interrupted by the deposition locally, of some continental Tertiary sediments. Tertiary beds may be found south of the mapped area in the southeastern Franklin Mountains.

The Franklin Mountains were glaciated during the Pleistocene period.

PETROLEUM POTENTIAL

In the Norman Wells area the previously reported gas and oil seeps are still present along the Mackenzie River and Bosworth Creek. No new gas or oil seepages were found during the field season. Bitumen was found in Ramparts and Hume beds at several localities. The black shales of the Fort Creek and Hare Indian locally have a strong bituminous odor and are excellent source material for petroleum. The Bear Rock beds have a fetid odor which is probably due to sulphate-rich interstitial water.

The Lower Cretaceous basal sandstone would be an excellent reservoir rock if found with sufficient cover to provide an adequate seal. The Ramparts reefal and bedded limestone sequence is the primary objective in this region as these beds produce at Norman Wells. The thickness and permeability varies widely both laterally and vertically. Consequently, the optimum area for oil occurrence would be in those areas of greatest build-up, porosity and permeability. The Hume beds are richly fossiliferous locally, and have minor bituminous shale zones. The Hume contains reef-building organisms and if effective permeability is present these beds offer excellent reservoir potential. A small gas blow was obtained on drill stem test from these beds at the Glacier Ramparts No. 1 well just south of Fort Good Hope. The Bear Rock does not have associated petroleum source material but has excellent permeability and porosity. The Silurian strata have good wavy porosity developed locally and are disconformably overlain by the Bear Rock. There does appear to be a lack of source beds in the Silurian.

No favorable closed anticlinal structures were noted in the area for drilling. Some hidden closed structures may lie beneath the Oscar Creek and Chick Lake basins, but will only be located by subsurface methods.

BIBLIOGRAPHY

1. Bassett, H.C., 1960; "Devonian Stratigraphy of the Central Mackenzie River Region, Northwest Territories, Canada": Shell Oil Company of Canada, Limited.
2. Boggs, O.D., 1944; "The Subsurface Geology Report of the Norman Wells Pool": Imperial Oil Limited, Canol Project, Assignment No. 22.
3. Crickmay, C.H., 1957; "Elucidation of Some Western Canada Devonian Formations": Imperial Oil Limited, Calgary.
4. Foley, E.J., 1944; "Final Geologic Report on the Donnelly River Area, Northwest Territories": Imperial Oil Limited, Canol Project, Assignment No. 26.
5. Foley, E.J., et al, 1944; "Final Geological Report on the Oscar (Morrow) Creek Gap Area, Northwest Territories": Imperial Oil Limited, Canol Project Assignment No. 8.
6. Desjardins, L., 1944; "Aero-Geologic Report on the Oscar Basin Area, Northwest Territories": Imperial Oil Limited, Canol Project, Assignment No. 4.
7. Goodman, A.J., 1951; "Tectonics of East Side of Cordillera in Western Canada": Bull A.A.P.G.; Vol. 35, No. 4.
8. Hancock, P., 1944; "Final Geological Report on the Right Bank and Islands of the Mackenzie River, Norman Wells to Carcass Rock, Northwest Territories": Imperial Oil Limited, Canol Project, Assignment No. 39.
9. Harrison, J., 1944; "Preliminary and Final Report on the Hare Indian River, Northwest Territories": Imperial Oil Limited, Canol Project.
10. Hume, G.C., 1954; "The Lower Mackenzie River Area, Northwest Territories and Yukon": Geological Survey of Canada; Mem. 273.

11. Laudon, L.R., 1944; "Preliminary and Final Geological Report on the Oscar (Morrow) Creek Area, Northwest Territories": Imperial Oil Limited, Canol Project, Assignment No. 5.
12. Lenz, A.C., 1959; "Devonian Stratigraphy and Paleontology of Lower Mackenzie Valley Northwest Territories": Princeton University.
13. MacDonald, J.S. and Mangus, M.D. 1960; "Geologic Report of the Richardson Mountains - Knorr Range Area, Yukon - Northwest Territories, Canada": The Atlantic Refining Company, Glacier Project.
14. Parker, J.M., 1944; "Final Geological Report on the Carcassou Ridge - East Mountain Area, Northwest Territories": Imperial Oil Limited, Canol Project, Assignment No. 30.
15. Reid, W.M., 1944; "Final Geological Report on the Canyon Creek Area, Northwest Territories": Imperial Oil Limited, Canol Project, Assignment No. 22.
16. Smith, H.T.W., 1944; "Final Geological Report on Hanna River Area, Northwest Territories": Imperial Oil Limited, Canol Project, Assignment No. 2^r.
17. Sproule, J.C., et al, 1960; "Stratigraphy of the Northern Mackenzie Mountains, Northwest Territories and Yukon, Canada": The Atlantic Refining Company, Glacier Project.
18. Sproule, J.C. et al, 1959; "Geological Report of the Otaratue River Area, Northwest Territories": The Atlantic Refining Company, Glacier Project.
19. Stelck, C.R., 1944; "Final Geological Report on the Schooner Creek Area, Northwest Territories": Imperial Oil Limited, Canol Project, Preliminary Assignment No. 34.
20. Williams, M.Y. 1922; "Reconnaissance Across Northeastern British Columbia and the Geology of the Northern Extension of Franklin Mountains, N. B.C.": Geol. Survey Canada, Summ. Report 1922, Part 3, pp. 65 - 87.

PHOTOGRAPHS

Photo 1: Fort Creek formation
along Canyon Creek.

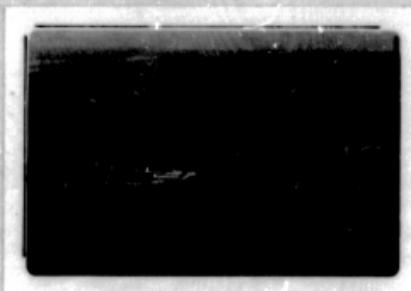


Photo 2: Aerial view looking
west from Fish Lake
along Kee Scarp Ridge.

Photo 3: Fort Creek shale overlying
the Ramparts "reef",
Airport Quarry. (Wall is
25 ft. high)

Photo 1: Fort Creek formation along Canyon Creek.

Photo 2: Aerial view looking west from Fish Lake along Redcarp Lake.

Photo 3: Fort Creek shale overlying the Ramparts "reef", Airport Quarry. (wall is 25 ft. high)

Photo 4: Coralline limestone of the Ramparts formation, Airport Quarry.

Photo 5: Looking east along the fault scarp of Discovery Ridge; Silurian dolomite.

Photo 6: Vugular Silurian dolomites; Discovery Ridge (6-inch scale).

Photo 4: Coralline limestone of the Tamarts formation, airport Quarry.

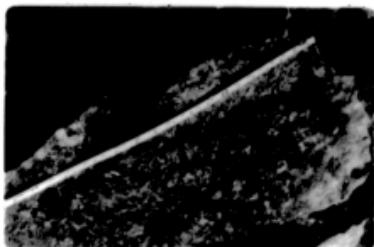


Photo 5: Looking east along the fault scars of Discovery Ridge; Silurian dolomite.

Photo 6: Vugular Silurian dolomites; Disc very thick (6-inch scale).

Photo 7: Drusy quartz filled vugs in Silurian dolomite; Discovery Ridge (6-inch scale).

Photo 8: Brecciated dolomite and limestone of Bear Rock formation; Bosworth Creek (6-inch scale).

Photo 9: Hare Indian shale overlying Hume formation; Bosworth Creek.

Photo 7: Drusy quartz filled vugs in Silurian dolomite; Discovery Ridge (6-inch scale).

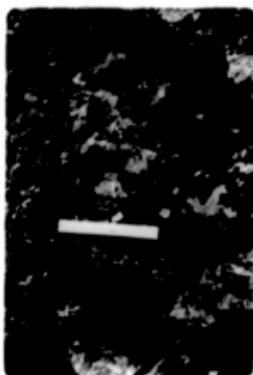


Photo 8: Brecciated dolomite and limestone of Bear Rock formation; Bosworth Creek (6-inch scale).

Photo 9: Hare Indian shale overlying Hume formation; Bosworth Creek.

Photo 10: Hoodoo weathering
of Bear Rock breccias;
Oscar Creek Gap.
(Stacks are 25 ft. high).

Photo 11: Aragonite vein in Bear
Rock breccias; Oscar
Creek Gap.

Photo 12: Weathered stromatoporoids and
corals of the Hamparts formation;
Oscar Creek Gap (6-
inch scale).

Photo 10: Hoodoo weathering
of Bear Rock breccias;
Oscar Creek Gap.
(Stacks are 2 $\frac{1}{2}$ ft. high).

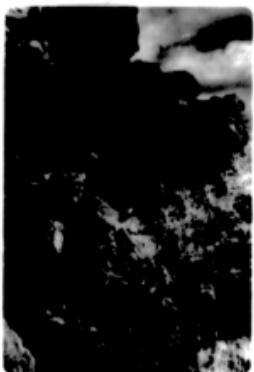


Photo 11: Aragonite vein in Bear
Rock breccias; Oscar
Creek Gap.

Photo 12: Weathered stromatoporoids and
corals of the Ramparts for-
mation; Oscar Creek Gap (6-
inch scale).

Photo 13: Weathered reefoid beds of
Ramparts formation;
west end of Morrow
Mountain. (Beds about
25 feet high).

Photo 14: Panoramic view of "reef" beds of Ramparts
formation; west end of Morrow Mountain.
(Scarp about 25 feet high).

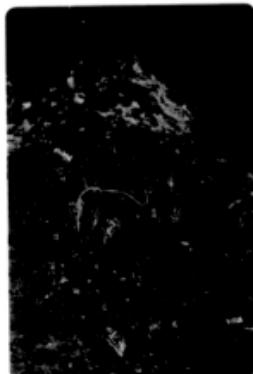


Photo 15: Encrusted gypsum beds of
Bear Rock formation;
Richard Mountain.

Photo 13: Weathered reefoid beds of
Ramparts formation;
west end of Morrow
Mountain. (Beds about
25 feet high).

Photo 14: Panoramic view of "reef" beds of Ramparts
formation; west end of Morrow Mountain.
(Scarp about 25 feet high).

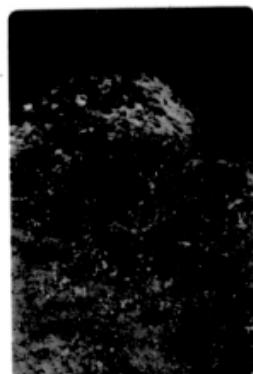


Photo 15: Encrusted pyritic beds of
Bear Rock formation;
Richard Mountain.

Photo 15a: Sink holes in gypsumiferous Bear Rock formation; east of Richard Mountain (Sink about 150 feet across, 50 feet deep).

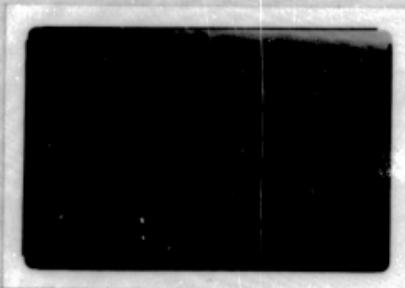


Photo 16: East Mountain looking west.

Photo 16a: Fossiliferous unit of Hume formation; East Mountain.

Photo 15a: Sink holes in gypsiferous Bear Rock formation; east of Richard Mountain (Sink about 150 feet across, 50 feet deep).

Photo 16: East Mountain looking west.

Photo 16a: Fossiliferous unit of Flume formation; East Mountain.

Photo 17: Platy limestone of Hare Indian formation; Beavertail Mountain.

Photo 18: Typical exposure of fossiliferous Hume limestone; Glacial Gut Lake.

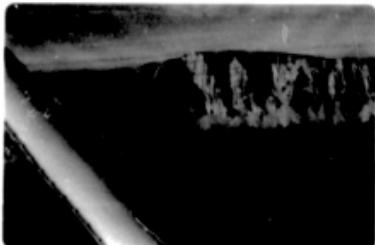


Photo 19: Fault scarp at Mount Effie; Silurian dolomite; vertical displacement 1800 - 2300 feet.

Photo 17: Platy limestone of Hare Indian formation; Beavertail Mountain.

Photo 18: Typical exposure of fossiliferous Hume limestone; Glacial - Gut Lake.

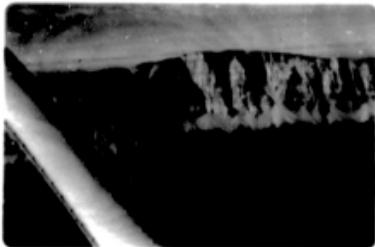


Photo 19: Fault scarp at Mount Effie; Silurian dolomite; vertical displacement 1000 - 2300 feet.

STRATIGRAPHIC SECTIONS

ABBREVIATIONS

ang	angular
arg	argillaceous
bd	bed
bded	bedded
bding	bedding
bit	bituminous
blk	black
bl	blue
bish	bluish
brach	brachiopod
br	brown
brsh	brownish
calc	calcareous
cg	coarse grain
cht	chert
cse	coarse
dk	dark
dol	dolomite
dolic	dolomitic
est	estimated
fg	fine grain
fos	fossiliferous
frs	fractures
frys	fragments
gr	grey
gran	granular
grn	green
grnsh	greenish
gyp	gypsum
hd	hard
interg	intergranular
lam	laminated
len	lenticular
lt	light
l	lithographic
ls	limestone

ABBREVIATIONS

mass	massive
mg	medium grain
nod	nodular
peb	pebble
petrol	petroliferous
por	porosity
ppp	pin point porosity
sh	shale
silty	silty
ss	sandstone
ste	siltstone
"stroms"	stromatoporoid
sub-1	sublithographic
subrd	subround
sys	system
tab	tabular
thk	thick
vfg	very fine grain
wh	white
wthred	weathered
wthrs	weathers
y	yellow

Stratigraphic section No. 1.

SCHOONER CREEK SECTION

Approx 5½ miles northeast of Norman Wells.
Lat. 68° 19' N., Long. 126° 40' W. (Approx.)

FRANKLIN MOUNTAINS AREA

M.D. Mongus, J.S. MacDonald.

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
ON		RAMPARTS FORMATION	000		
ON			100		
ON			200		
ON			300		
ON			400		
ON			500		
ON			600		
ON			700		
ON			800	51Fm10	
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	000		Ls, gr-br to dk-gr-br, thin-bded, tab-uneven, fg to cg, hd, highly foss, locally recrystallized calcite, fossils consist of "spaghetti" corals, stromatoporoids, crinoids, amphipore.
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	100		Covered.
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	200		
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	300		
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	400		
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	500		
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	600		
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	700		
MIDDLE	DEVONIAN	HARE INDIAN FORMATION	800		
ON			000		Covered, some gr-grn clay boils on surface.
ON			100		
ON			200		
ON			300		
ON			400		
ON			500		
ON			600		
ON			700		
ON			800		
ON			900		
ON			1000		
ON			1100		
ON			1200		
ON			1300		
ON			1400		
ON			1500		
ON			1600		
ON			1700		
ON			1800		
ON			1900		
ON			2000		
ON			2100		
ON			2200		
ON			2300		
ON			2400		
ON			2500		
ON			2600		
ON			2700		
ON			2800		
ON			2900		
ON			3000		
ON			3100		
ON			3200		
ON			3300		
ON			3400		
ON			3500		
ON			3600		
ON			3700		
ON			3800		
ON			3900		
ON			4000		
ON			4100		
ON			4200		
ON			4300		
ON			4400		
ON			4500		
ON			4600		
ON			4700		
ON			4800		
ON			4900		
ON			5000		
ON			5100		
ON			5200		
ON			5300		
ON			5400		
ON			5500		
ON			5600		
ON			5700		
ON			5800		
ON			5900		
ON			6000		
ON			6100		
ON			6200		
ON			6300		
ON			6400		
ON			6500		
ON			6600		
ON			6700		
ON			6800		
ON			6900		
ON			7000		
ON			7100		
ON			7200		
ON			7300		
ON			7400		
ON			7500		
ON			7600		
ON			7700		
ON			7800		
ON			7900		
ON			8000		
ON			8100		
ON			8200		
ON			8300		
ON			8400		
ON			8500		
ON			8600		
ON			8700		
ON			8800		
ON			8900		
ON			9000		
ON			9100		
ON			9200		
ON			9300		
ON			9400		
ON			9500		
ON			9600		
ON			9700		
ON			9800		
ON			9900		
ON			10000		
ON			10100		
ON			10200		
ON			10300		
ON			10400		
ON			10500		
ON			10600		
ON			10700		
ON			10800		
ON			10900		
ON			11000		
ON			11100		
ON			11200		
ON			11300		
ON			11400		
ON			11500		
ON			11600		
ON			11700		
ON			11800		
ON			11900		
ON			12000		
ON			12100		
ON			12200		
ON			12300		
ON			12400		
ON			12500		
ON			12600		
ON			12700		
ON			12800		
ON			12900		
ON			13000		
ON			13100		
ON			13200		
ON			13300		
ON			13400		
ON			13500		
ON			13600		
ON			13700		
ON			13800		
ON			13900		
ON			14000		
ON			14100		
ON			14200		
ON			14300		
ON			14400		
ON			14500		
ON			14600		
ON			14700		
ON			14800		
ON			14900		
ON			15000		
ON			15100		
ON			15200		
ON			15300		
ON			15400		
ON			15500		
ON			15600		
ON			15700		
ON			15800		
ON			15900		
ON			16000		
ON			16100		
ON			16200		
ON			16300		
ON			16400		
ON			16500		
ON			16600		
ON			16700		
ON			16800		
ON			16900		
ON			17000		
ON			17100		
ON			17200		
ON			17300		
ON			17400		
ON			17500		
ON			17600		
ON			17700		
ON			17800		
ON			17900		
ON			18000		
ON			18100		
ON			18200		
ON			18300		
ON			18400		
ON			18500		
ON			18600		
ON			18700		
ON			18800		
ON			18900		
ON			19000		
ON			19100		
ON			19200		
ON			19300		
ON			19400		
ON			19500		
ON			19600		
ON			19700		
ON			19800		
ON			19900		
ON			20000		
ON			20100		
ON			20200		
ON			20300		
ON			20400		
ON			20500		
ON			20600		
ON			20700		
ON			20800		
ON			20900		
ON			21000		
ON			21100		
ON			21200		
ON			21300		
ON			21400		
ON			21500		
ON			21600		
ON			21700		
ON			21800		
ON			21900		
ON			22000		
ON			22100		
ON			22200		
ON			22300		
ON			22400		
ON			22500		
ON			22600		
ON			22700		
ON			22800		
ON			22900		
ON			23000		
ON			23100		
ON			23200		
ON			23300		
ON			23400		
ON			23500		
ON			23600		
ON			23700		
ON			23800		
ON			23900		
ON			24000		
ON			24100		
ON			24200		
ON			24300		
ON			24400		
ON			24500		
ON			24600		
ON			24700		
ON			24800		
ON			24900		
ON			25000		
ON			25100		
ON			25200		
ON			25300		
ON			25400		
ON			25500		
ON			25600		
ON			25700		
ON			25800		
ON			25900		
ON			26000		
ON			26100		
ON			26200		
ON			26300		
ON			26400		
ON			26500		
ON			26600		
ON			26700		
ON			26800		
ON			26900		
ON			27000		
ON			27100		
ON			27200		
ON			27300		
ON			27400		
ON			27500		
ON			27600		
ON			27700		
ON			27800		
ON			27900		
ON			28000		
ON			28100		
ON			28200		
ON			28300		
ON			28400		
ON			28500		
ON			28600		
ON			28700		
ON			28800		
ON			28900		
ON			29000		
ON			29100		
ON			29200		
ON			29300		
ON			29400		
ON			29500		
ON			29600		
ON			29700		
ON			29800		
ON			29900		
ON			30000		
ON			30100		
ON			30200		
ON			30300		
ON			30400		
ON			30500		
ON			30600		
ON			30700		
ON			30800		
ON			30900		

SILURIAN	LOWER DEVONIAN	BEAR ROCK FORMATION	600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	61Mg10	Ls, med-gr-br, med-bded, hd, sub-l to l, wthrs lt-bl-gr with calcite veining.
				61Mg9 61Mg8	Ls, dk-gr-br, sub-l, thin-bded, foss, wthrs lt bl-gr.
					Covered.
				61Mg7 61Mg6	Ls, dk-gr-br, thin-med-bded, hd, vfg, some fossils.
					Covered.
					Ls, dk-gr-br, thin-bded, hd micritic, minor calcite.
					Est covered interval 400". Mostly mass ls and dolic breccia, much "travertine flow-stone" obliterating bding.
				61Mg5 61Mg4	Dol, dk-gr-br, thin-to med-bded, sly, cherty, wthrs maroonish-br; strong H_2S odor.
				61Mg3 61Mg2 61Mg1	Dol, med-gr-br, thin-bded, fg, drusy quartz filled vugs, wthrs med-gr-br.

Stratigraphic section No. 2

BOSWORTH CREEK

Approx 35 miles north of Norman Wells.
Lat. 65° 20' N., Long. 126° 52' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J.S. MacDonald, M.D. Mongus, V.A. Fisher, D.W. Holmes

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
N A U P P E R D E V O N I A N	IMPERIAL FM.				
			000		
			1		
			2		
			3		
			4		
			5		
			6		
			7		
			8		
			9		
			10		
			11		
			12		
			13		
			14		
			15		
			16		
			17		
			18		
			19		
			20		
			21		
			22		
			23		
			24		
			25		
			26		
			27		
			28		
			29		
			30		
			31		
			32		
			33		
			34		
			35		
			36		
			37		
			38		
			39		
			40		
			41		
			42		
			43		
			44		
			45		
			46		
			47		
			48		
			49		
			50		
			51		
			52		
			53		
			54		
			55		
			56		
			57		
			58		
			59		
			60		
			61		
			62		
			63		
			64		
			65		
			66		
			67		
			68		
			69		
			70		
			71		
			72		
			73		
			74		
			75		
			76		
			77		
			78		
			79		
			80		
			81		
			82		
			83		
			84		
			85		
			86		
			87		
			88		
			89		
			90		
			91		
			92		
			93		
			94		
			95		
			96		
			97		
			98		
			99		
			100		
			101		
			102		
			103		
			104		
			105		
			106		
			107		
			108		
			109		
			110		
			111		
			112		
			113		
			114		
			115		
			116		
			117		
			118		
			119		
			120		
			121		
			122		
			123		
			124		
			125		
			126		
			127		
			128		
			129		
			130		
			131		
			132		
			133		
			134		
			135		
			136		
			137		
			138		
			139		
			140		
			141		
			142		
			143		
			144		
			145		
			146		
			147		
			148		
			149		
			150		
			151		
			152		
			153		
			154		
			155		
			156		
			157		
			158		
			159		
			160		
			161		
			162		
			163		
			164		
			165		
			166		
			167		
			168		
			169		
			170		
			171		
			172		
			173		
			174		
			175		
			176		
			177		
			178		
			179		
			180		
			181		
			182		
			183		
			184		
			185		
			186		
			187		
			188		
			189		
			190		
			191		
			192		
			193		
			194		
			195		
			196		
			197		
			198		
			199		
			200		
			201		
			202		
			203		
			204		
			205		
			206		
			207		
			208		
			209		
			210		
			211		
			212		
			213		
			214		
			215		
			216		
			217		
			218		
			219		
			220		
			221		
			222		
			223		
			224		
			225		
			226		
			227		
			228		
			229		
			230		
			231		
			232		
			233		
			234		
			235		
			236		
			237		
			238		
			239		
			240		
			241		
			242		
			243		
			244		
			245		
			246		
			247		
			248		
			249		
			250		
			251		
			252		
			253		
			254		
			255		
			256		
			257		
			258		
			259		
			260		
			261		
			262		
			263		
			264		
			265		
			266		
			267		
			268		
			269		
			270		
			271		
			272		
			273		
			274		
			275		
			276		
			277		
			278		
			279		
			280		
			281		
			282		
			283		
			284		
			285		
			286		
			287		
			288		
			289		
			290		
			291		
			292		
			293		
			294		
			295		
			296		
			297		
			298		
			299		
			300		
			301		
			302		
			303		
			304		
			305		
			306		
			307		
			308		
			309		
			310		
			311		
			312		
			313		
			314		
			315		
			316		
			317		
			318		
			319		
			320		
			321		
			322		
			323		
			324		
			325		
			326		
			327		
			328		
			329		
			330		
			331		
			332		
			333		
			334		
			335		
			336		
			337		
			338		
			339		
			340		
			341		
			342		
			343		
			344		
			345		
			346		
			347		
			348		
			349		
			350		
			351		
			352		
			353		
			354		
			355		
			356		
			357		
			358		
			359		
			360		
			361		
			362		
			363		
			364		
			365		
			366		
			367		
			368		
			369		
			370</td		

N
O
V
E
M
I
D
D
E

RAMPARTS
FORMATION

HARE INDIAN FORMATION

HUME FORMATION

DEWK FORMATION

FOR

- 700
800
900
1000
1100
200
1300
1400
500
1600
1700
800
1800
1900
2000
- 61FM27 Sh, blk to br, very thin-bded, tab-even, sl calc, strong petrol odors; occasional spherical, blk, dense ls concrations.
61FM26 Ls, med-gr-br, very thin-bded, nod, fg to cg, hd, with corals. The contact with underlying sh partly covered.
61FM25 Ls, lt-gr-grn, very thin-bded, tab-even, soft, with carb specks toward base of unit. Contains tentaculites, spores and fucoidal markings with occasional lentils of shaly, silty ls; wthrd surface lt-br to dk-gr-grn and heckly.
61FM23 Sh, blk, tab-even, lam-bded and ls soft and mic. Contains tentaculites 23F, 24 and other fossils; also scattered spherical blk ls concs.
61FM23F Ls, med-gr-br, thin-bded, nod, vfg, hd, micritic.
Partly covered.
61FM22 Ls, lt-gr-br, thk-bded, tab-even, fg to cg, hd, micritic, vug por 5%; has some iron carbonate and calcite filling vugs.
61FM21 Ls, med-gr-br, thin-bded, nod, fg to vfg, hd, micritic, vug por 5%; with minor bit.; much recrystallized calcite with interbedded lt-gr-grn, lam, calc sh. Fossiliferous and contains brachiopods and corals.
61FM20 Ls, med-gr-br, thin-bded, tab-even, internally lam, vfg, hd, micritic; containing minor skeletal brachiopods.
61FM19 Ls, dk-gr-br, thin-bded, tab-even, internally lam, vfg, micritic; with minor skeletal brachiopods.
61FM18 Ls, lt-gr-br, gran to mg, med-hd, det, ppp and vug por (10%); wthrd surface gr-br, having travertine "case".

Brecciated limestone.

2
ct

LOWER DEVONIAN		
BEAR ROCK FORMATION		
		Brecciated limestone.
	2000	
	2100	61FM17 Ls, med-gr-br, gran to silt size, med hd, micritic, has vug interg por (10%), and wthrs yel-br and gr.
	2200	61FM16 Ls and dol, dk-gr-br, thin-bded, tab-uneven, fg to mg, ang, interg por 10%.
	2300	61FM15 Dol, lt-gr-br, thin-bded, tab-uneven, brecciated, gran to pep size frags, ang, det, part clay matrix with interbedded gr dol.
	2400	61FM14 Dol, lt-gr-br, thin-bded, tab-even, mg to cg, ang, interg por 10%.
	2500	
	2600	61FM13 Dol, lt-gr-br, thin-bded, lam, vfg, micritic, vug por 5%.
N		
	2700	
	2800	61FM12 Dol, lt-gr-grn to purple, thin-bded, tab-even, vfg, ang, hd, micritic por 5%, with 10% oolitic chert in irregular masses, locally irregular rosettes of $FeCo_3$.
	2900	
A		
	3000	Dol, med-gr-br, thin-bded, tab-uneven, fg, ang, hd.
	3100	61FM11 Dol, lt-gr-grn, thin-bded, tab-even, vfg, vug, hd, micritic.
	3200	61FM10 Dol, lt-gr-br, thin-bded, tab-uneven, fg, ang, hd, wthrs br.
	3300	
R		
	3400	61FM9 Dol, lt-gr-grn, thin, even-bded, internally lam, fg, ang; interbedded with vuggy, mottled red to purple, cg dol, 50' interval with por up to 15%.
	3500	61FM7 Dol, lt-gr-grn and purple, fg, thin even-bded, internally lam, micritic; scattered tiny vugs with dol rhombs, por 10%.

R	3100	61FM6,9	Dol, lt-gr-grn, thin, even-bded, internally lam, fg, ang; interbedded with vuggy, mottled red to purple, cg dol, 50' interval with por up to 15%.
D	3200	61FM7	Dol, lt-gr-grn and purple, fg, thin even-bded, internally lam, micritic; scattered tiny vugs with dol rhombs, por 10%.
L	3300		
	3400		
	3500	61FM5,6	Dol, lt-gr-br, thin even-bded, internally lam, vfg, hd, micritic, with lentils of oolitic chert.
	3600	61FM4	Dol, med-gr, very thin even-bded, mg, vug (vugs contain dol rhombs).
	3700		Dol, med-gr-br, with interbeds of shaly dol.
	3800	61FM3	Dol, med gr-br, very thin, even-bded, internally lam, vfg, hd, micritic.
S	3900	61FM1	Dol, lt-gr-br, thin even-bded, with thin parallel, even banding, vfg, hd; wthrd surface is mottled dk-gr and br.
	4000		Partly covered.
	4100		
	4200		

Stratigraphic section No. 3.

OSCAR CREEK

Approx. 20 miles northwest of Norman Wells.

Lat. 65° 29' N. Long. 127° 21' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J.S. MacDonald, M.D. Mongus, V.A. Fisher, D.W. Holmes.

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
U P P E R D E V O N I A N	U P P E R D E V O N I A N	G R E E K F O R T	0.00		Covered.
			100	61FM42	Est. thickness 135' (+). Sh, blk, thin-bded, parallel-even, mic, wthrs out in stacks and has yel-burnished-red color.
		R A M P A R T S F M.	200	61FM39	
			300	61FM41	61FM39 61FM41 Ls, lt-gr-br, thk-bded, tab-even, med-hd; ls foss. containing corals, brachiopods, and stromatoporoids; wthrs splotchy grn-gr and br. Has some inter-beds of blk sh, rich in brachiopods, and locally coquinoïd.
N	I N D I A N F O R M A T I O N		400	61FM36	Est thickness 135' - 200'.
I N D I A N F O R M A T I O N	H A R E	I N D I A N F O R M A T I O N	500		Ls, lt-gr-br, thk-bded, tab-even, med-hd, interg por 10% and foss. Foss are corals, stromatoporoids, brachiopods.
E			600		Est thickness 300' - 600'.
V			700	61FM37 61FM37P	Ls, dk-gr-br, thk-bded, tab-uneven, vfg, hd, arg, micritic, with a few stromatoporoids (?) and brachiopods.
E	V	I D D L E			
E	V	I D D L E			
E	V	I D D L E			

SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	300	Has some inter-beds of dk-gr-br, rich in stromatoporoids, and some coquinoïd.
						Est thickness 135' - 200'.
						Ls, lt-gr-br, thk-bded, tab-even, med-hd, interg por 10% and foss. Foss are corals, stromatoporoids, brachiopods.
						Est thickness 300' - 600'.
SILURIAN	DEVONIAN	LOWER DEVONIAN	BEAR ROCK FORMATION	HUME FORMATION	700	Ls, dk-gr-br, thk-bded, tab-uneven, vfg, hd, arg, micritic, with a few stromatoporoids (?) and brachiopods.
SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	800	Ls, med-gr-br, thk-bded, tab-uneven, vfg, hd, arg, micritic. Has abundant irregular calcite veining.
SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	900	Ls, med-gr-br, thin-bded, tab-uneven, fg, hd, ang, micritic.
SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	1000	Ls and dol, highly brecciated.
SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	1100	Ls and dol, dk-gr-br, thin, len-uneven bded, vfg to mg, vug-interg por (1%). Highly brecciated with ang frags varying in size. Wthrd surface is yel-br, hackly, uneven, some aragonite.
SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	1200	Dol, dk-gr-br, thin-bded, fg, hd, ang, vug-interg por (1%), minor bit. and veinlets of calcite.
SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	1300	Dol, dk-gr-br, thk-bded, fg, hd, vug por (1%), has sulphur odor and wthrd surface is yel-br, hackly.
SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	1400	Contact covered.
SILURIAN	DEVONIAN	MIDDLE DEVONIAN	INDIAN FORMATION	RAMPARTS FN	1500	Dol, lt-gr-purple, thk, tab-even bded, vfg, hd, micritic: contains qtz filled vugs which parallel bedding. Wthrs rough on surface.

Stratigraphic section No. 4.

MORROW MOUNTAIN

Approx. 14 miles southeast of Rock Lake Camp.
Lat. 65° 31' N. Long. 127° 33' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J.S. MacDonald, M.D. Mongus, V.A. Fisher, D.W. Holmes.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVONIAN MIDDLE DEVONIAN	RAMPARTS FORMATION		000 100 200 300	61FM43	<p>Le, lt-gr-br, thin-bded, tab-even, well-jointed, gran. to peb size corals in vfg det matrix; wtrs out into y-tan, brick-like stacks.</p> <p>Le, dk-gr-br, thin-bded, tab-even, vfg, det with some gran. to peb size corals hd, in part arg, "case" of travertine.</p> <p>Le., lt-gr-br, thk-bded, tab-even, vfg, with some cg to gran.det.</p> <p>Le, med-gr-br, thk-bded, nod, gran. to peb size fossils in vfg matrix, skeletal & det and coralline.</p>

Stratigraphic section No. 5.

RICHARD MOUNTAIN

Approx. 1/2 miles southeast of Rock Lake Camp.
Lat. 69° 53' N., Long. 127° 26' W. (Approx.)

FRANKLIN MOUNTAINS AREA

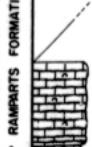
M.D.Mangus, D.W.Holmes.

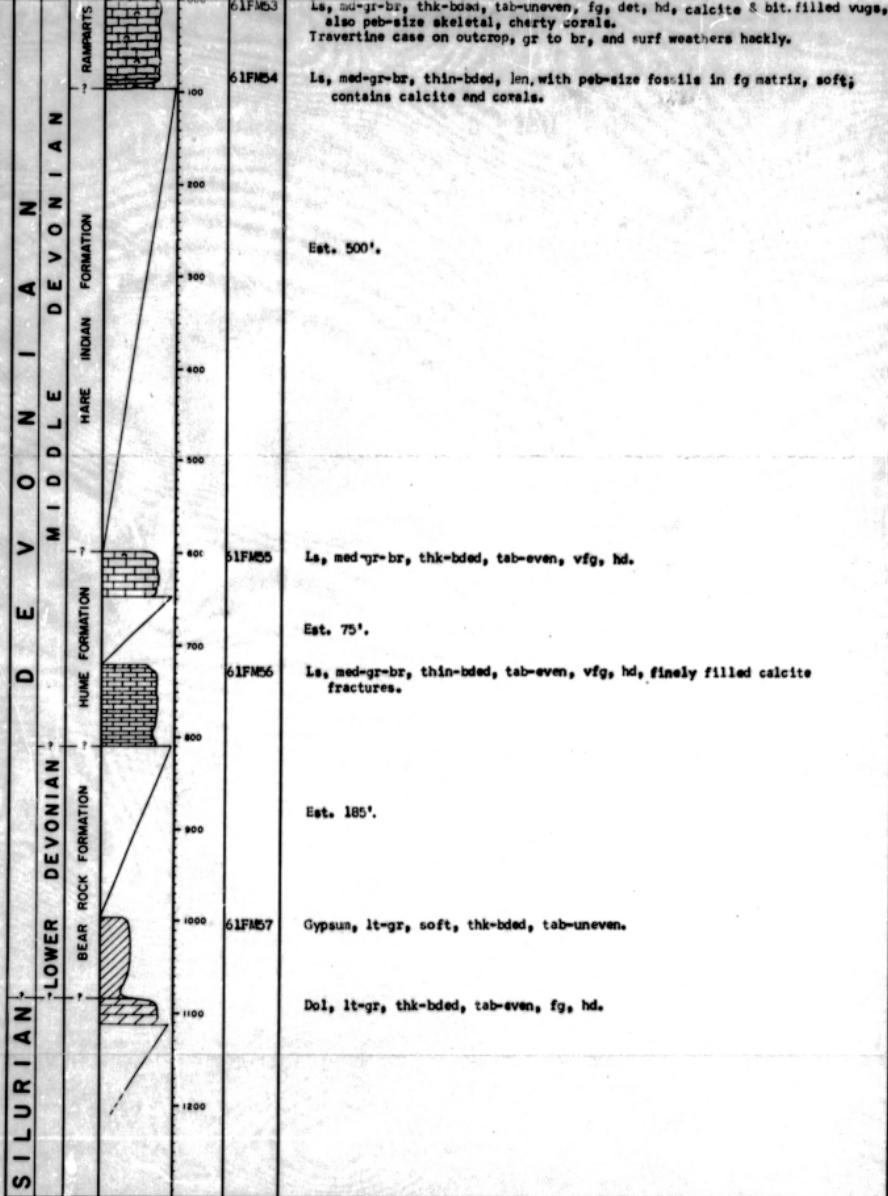
AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVONIAN		HUME FORMATION			
MIDDLE DEVONIAN			000	61FMg 14	ls, med-gr-br, thin tab-even beds, thinly lnm, hd, ang, vug and intergr wthrs lt-gr, rough, well jointed.
			100		Covered, ls talus, med-gr, fg, hd.
			200	61FMg 13	ls, dk-gr-br, thin, tab-even beds; thinly lnm, vug, ang, hd, silty micritic; wthrs lt-gr.
			300		Covered, dol and dolic lms talus; ls, med-gr-br, vfg.
LOWER DEVONIAN		BEAR ROCK FORMATION	7	61FMg 15	Dol, dk-gr-br, thk-bded, thinly lnm; silt, hd, ang, micritic; vug-intergr por voids contain calcite.
			300	61FMg 11	Gyp, lt-gr to wh, thin-even beds, thinly lnm, vfg, intergr por, soft, ang, v minor dol lenses, med-gr, hd, silty, ang, micritic; dol gypsiferous in parts.
			500		Covered, but lt-gr to wh gyp talus and gyp bearing mud.
			7		Covered, dol talus is believed to be Bear Rock formation.
			700	61FMg 10	Dol, lt-gr-grn, thk-even bds, thinly lnm, mg, hd, ang, micritic; Wthred surface dk-gr with scattered wh cht bands and nodules.

FRANKLIN MOUNTAINS AREA

M.D. Mongus. DW Holmes.

AGE	FML	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
SILURIAN	LOWER DEVONIAN	HUME FORMATION			
	MIDDLE DEVONIAN				
	UPPER DEVONIAN	BEAR ROCK FORMATION			
			000	61FMg 14	Le, med-gr-br, thin tab-even beds, thinly lam, hd, ang, vug and intergr wthrs lt-gr, rough, well jointed.
			100		Covered, ls talus, med-gr, fg, hd.
			200	61FMg 13	Le, dk-gr-br, thin, tab-even beds; thinly lam, vug, ang, hd, silty micritic; wthrs lt-gr.
			300		Covered, dol and dolic lms talus; ls, med-gr-br, vfg.
			400	61FMg 12	Dol, dk-gr-br, thk-blad, thinly lam; silt, hd, ang, micritic; vug-intergr por voids contain calcite.
			500	61FMg 11	Gyp, lt-gr to wh, thin-even beds, thinly lam, vfg, intergr por, soft, ang, v minor dol lenses, med-gr, hd, silty, ang, micritic; dol gypsiferous in parts.
			600		Covered, but lt-gr to wh gyp talus and gyp bearing mud.
			700	61FMg 10	Covered, dol talus is believed to be Bear Rock formation.
			800		Dol, lt-gr-grn, thk-even bds, thinly lam, sg, hd, ang, micritic; Wthrd surface dk-gr with scattered wh cht bands and nodules.
			900		


Stratigraphic section No. 6.


THOMAS MOUNTAIN

Approx. 1/2 miles southeast of Rock Lake Camp.
Lat. 69° 33' N, Long. 127° 37' W (Approx.)

FRANKLIN MOUNTAINS AREA

J.S. MacDonald, V.A. Fisher.

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
DEVONIAN	RAMPARTS FORMATION		000	61FM53	Ls, md-gr-br, thk-bded, tab-uneven, fg, det, hd, calcite & bit. filled vugs; also peb-size skeletal, cherty corals. Travertine case on outcrop, gr to br, and surf weathers hackly.
MIDDLE DEVONIAN			7	61FM54	Ls, md-gr-br, thin-bded, len, with peb-size fossils in fg matrix, soft; contains calcite and corals.
	INDIAN FORMATION		100		
			200		
			300		
			400		
			500		
			600		
			700		
	HARE FORMATION		7	61FM55	Ls, md-gr-br, thk-bded, tab-even, vfg, hd.
			75'		
	UME FORMATION		600	61FM56	Ls, md-gr-br, thin-bded, tab-even, vfg, hd, finely filled calcite fractures.

Stratigraphic section No. 7.

MOON RIDGE

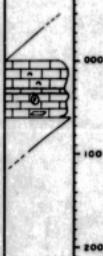
Approx. 6 miles east of Rock Lake Camp.
Lat. 65° 40' N., Long. 127° 35' W. (Approx.)

FRANKLIN MOUNTAINS AREA

M.D.Mongus, D.W.Holmes.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
V O N I A N	MIDDLE DEVONIAN	RAMPARTS FM. INDIAN FORMATION HARE	~900		Ls, med-gr-br, thin tab-even beds, thinly lam, ang, ang, hd, det, vug-intergr por, heckly wthrg, contains corals, stromatoporoids.
			100		Covered, shale in float, dk-gr-grn, slightly calc.
			200		
			300	61FMg20	Ls, dk-gr-br, thin nod-beds internally thinly lam, hd, ang, det, siltys contains coral cephalopods; whtys in fist-sized nodules.
			400		Covered, ls talus, dk-to med-gr-br, vfg.
			500		
			600	61FMg19	Dollic ls, med-gr-br, thk tab-even beds, internally thin lam, vug-intergr por, calcite filler, ang, hd, micritic; well jointed, occasional stylolites.
			700		Covered, dol talus, med-to dk-gr-br, vfg, vug, calcite filler.
			800		
			900		
			1000		Gyp, lt-gr, thk tab-even beds, internally thinly lam, fg, soft, ang. Det, med-gr-br, thin laminae beds, thinly lam, siltys, ang, hd, micritic.

LOWER DEVONIAN		MIDDLE	
BEAR	ROCK FORMATION	HUME	HARE
			200
			300
			400
			500
			600
			700
			800
			900
			1000
			1100
			1200
			1300
			1400
61FMg18	Ls, dk-gr-br, thin nod-beds internally thinly lam, hd, ang, det, silt; contains coral cephalopods; whtrs in fist-sized nodules.		
	Covered, ls talus, dk-to med-gr-br, vfg.		
61FMg19	Dolitic ls, med-gr-br, thk tab-even beds, internally thin lam, vug-intergr por, calcite filler, ang, hd, micritic; well jointed, occasional stylolites.		
	Covered, dol talus, med-to dk-gr-br, vfg; vug, calcite filler.		
	Gyp, lt-gr, thk tab-even beds, internally thinly lam, fg, soft, ang. Dol, med-gr-br, thin lam-uneven beds, thinly lam, silt, ang, hd, micritic.		
	Gyp, lt-gr-br, thk tab-even beds, lam, fg, ang, soft, finely interbedded wh and gr.		
	Dol, lt-gr-br, thin lam-uneven beds, silt, hd, ang, micritic.		
	Gyp, lt-gr, thin tab-even beds, color grades from lt-gr to br to wh.		
	Dol, dk-gr-br, thin tab-even beds, internally thinly lam, silt, hd, ang, micritic.		
	Gyp, lt-gr-br, thin tab-even beds, silt, ang, soft.		
	Gyp, wh, thk tab-even beds, fg, ang, soft.		
	Gyp, med-gr-br, thk tab-even beds, soft, silt.		
	Dol, med-gr-br, thin, lam-uneven beds, silt; lentils are 4" - 1' thk, 2" - 3" long.		
	Gyp, med-gr-br, thin tab-even beds, internally thinly lam, silt, soft, ang; whtrs wh to lt-gr, occasional dol lens.		
	Covered, gyp talus and gyp bearing mud.		


Stratigraphic section No. 8.

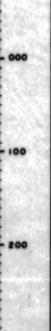
PAIGE MOUNTAIN

Approx. 41 miles southwest of Rock Lake Camp.
Lat. 65° 39' N, Long. 127° 46' W (Approx.)

FRANKLIN MOUNTAINS AREA

J. B. MacDonald, M. D. Mangus

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
DEVONIAN					
MIDDLE DEVONIAN	HUME FORMATION		000 100 200	61PM124 61PM123	Ls, med-gr, thk-bded, nod, vfg, secondary calcite, det, a few peb-size brachiopods and goniatites. Ls, dk-gr-br, thk-bded, fg, hd, much secondary calcite, det, locally nod. Ls, med-gr-br, tab-uneven, fg to cg, ang, det, coralline, irreg paper-thin lentils of blk sh; bit. odor, much calcite veining.


Stratigraphic section No. 8.

PAIGE MOUNTAIN

Approx. 4 miles southwest of Rock Lake Camp.
Lat. 65° 30' N., Long. 127° 40' W. (Approx.)

FRANKLIN MOUNTAINS AREA

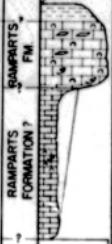
J. B. MacDonald, M.D. Mongus

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVONIAN					
MIDDLE DEVONIAN	HUME FORMATION		000 100 200	61PM124 61PM123	Ls, med-gr, thk-bded, nod, vfg, secondary calcite, det, a few peb-size brachiopods and goniatites. Ls, dk-gr-br, thk-bded, fg, hd, much secondary calcite, det, locally nod. Ls, med-gr-br, tab-uneven, fg to cg, ang, det, coraline, irreg paper-thin lentils of blk sh, bit. odor, much calcite veining.

Stratigraphic section No. 9

SOUTH CARCAJOU MOUNTAIN

Approx. 13 miles southwest of Rock Lake Camp
Lat. 65° 37' N., Long. 126° 09' W. (Approx.)


FRANKLIN MOUNTAINS AREA

J. S. MacDonald, V. A. Fisher.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
V					
O					
N					
N					
I					
A					
A					
N					
D	RAMPARTS FM.	Sh, blk, thin-bded, tab-even, mic. Ls, med-gr-br, thk-bded, tab-even, fg, hd, some calcite filled voids.	000	61FM64 61FM65	
L		Peb size fossils in fg matrix, corals.	100	61FM67 61FM68	
E	RAMPARTS FORMATION?	Ls, med-gr, thin-bded, peb size fossils in fg matrix; skeletal; loose por 12%; contains corals, brachiopods, gastropods.	200	61FM69	
E	INDIAN FORMATION	Est 650'.	300		
I			400		
N			500		
D			600		
E			700		

D E V O N I A N
M I D D L E D E V O N I A N

H U M E F O R M A T I O N H A R E I N D I A N F O R M A T I O N

61FM64
61FM55
61FM57
61FM58
61FM59

Sh, blk, thin-bded, tab-even, mic.
Ls, med-gr-br, thk-bded, tab-even, fg, hd, some calcite filled voids.
Peb size fossils in fg matrix, corals.
Ls, med-gr, thin-bded, peb size fossils in fg matrix; skeletal; loose
por 12%; contains corals, brachiopods, gastropods.

Est 650'.

61FM70F
61FM71
61FM68
61FM72
61FM72F

Ls, med-gr, thin-bded, nod, fg, med-hd, det with peb size fossils, skeletal; contains brachiopods.
Ls, med-gr, thk-bded, nod, fg, det, with peb size fossil fragments; calcite & bit. void fillers, strong petroleum odor, contains corals, stroma-toporoids, and brachiopods. Inter-bded lenticular blk sh which makes up 10% of unit.

CARCAJOU RIDGE

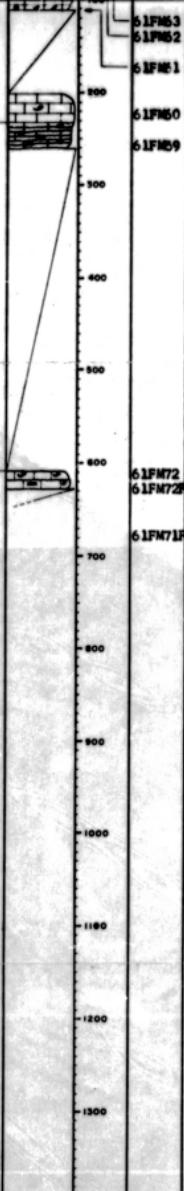
Approx. 1/2 miles southwest of Rock Lake Camp.
Lat. 60° 38' N. Long. 126° 10' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J.S. MacDonald, M.D. Mongeau, V.A. Fisher, D.W. Holmes.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
V O O N — D O L E D E V O N I A N	RAMPARTS FORMATION HARE FORMATION INDIAN FORMATION				
				61FMg267	Ls, med-gr-br, thk-bded, tab-even, made up of thin-lam, parallel-even, vfg, ang, hd, det, containing corals & brachiopods.
				61FMg227	Ls, dk-gr-br, thk-bded, tab-even, internally thinly lam, parallel-even, vfg, ang, hd, det, with an interg vug por which contains some bit and calcite. Contains brachiopods and corals.
				61FMg53	Ls, lt-gr-br, cg to mg, slightly friable, det material, has some corals.
				61FMg52	Ls, med-gr-br, thk-bded, nod, pb to fg, friable, skeletal & det material; made up of corals, crinoids, and brachiopods.
				61FMg51	Ls, med-gr-br, thin-bded, tab-uneven, vfg, hd micritic, with skeletal material which consists of corals and crinoids.
				61FMg50	Covered.
				61FMg59	Ls, med-gr-br, thk-bded, tab-uneven, internally thinly lam, parallel-uneven, fg to vfg, hd, det and skeletal material.
				61FM72	Ls, med-gr-br, thin-bded, nod, fg to vfg, hd, det and skeletal material. contains Horn corals and has H_2S odor when broken.
				61FM725	Covered.
				61FM71F	Ls, med-gr, thk-bded, nod, fg to pb, friable, det & skeletal; bit found within coral structure; interbed with blk calc sh. Contains corals, stromatoporoids and brachiopods.
					Fossils found on talus slope about 150' below above outcrop. Fossils consist of brachiopods and corals.

1 of


D E V O N I A N

MIDDLE DEVONIAN

HUME FORMATION

INDIAN FORMATION

RAMP

61FM53
 61FM52
 61FM61
 61FM60
 61FM69

Covered.
 ls, lt-gr-br, eg to mg, slightly friable, det material, has some corals.
 ls, med-gr-br, thk-bded, nod, pb to fg, friable, skeletal & det material;
 made up of corals, crinoids, and brachiopods.
 ls, med-gr-br, thin-bded, tab-uneven, vfg, hd micritic, with skeletal
 material which consists of corals and crinoids.
 Covered.
 ls, med-gr-br, thk-bded, tab-uneven, internally thinly lam, parallel-uneven,
 fg to vfg hd, det and skeletal material.
 ls, med-gr-br, thin-bded, nod, fg to vfg, hd, det and skeletal material.
 contains Horn corals and has H_2S odor when broken.

Covered.

61FM72
 61FM72
 61FM71F

ls, med-gr, thk-bded, nod, fg to pb, friable, det & skeletal; bit. found
 within coral structures; interbed with blk calc sh. Contains
 corals, stromatoporoids and brachiopods.
 Fossils found on talus slope about 150' below above outcrop. Fossils
 consist of brachiopods and corals.

Stratigraphic section No. 11.

EAST MOUNTAIN

Approx. 27 miles southwest of Rock Lake Camp
Lat. 65° 41' N., Long. 128° 41' W. (Approx.)

FRANKLIN MOUNTAINS AREA

M.D.Mengus, DW.Holmes.

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
DEVONIAN	RAMPARTS FORMATION				
MIDDLE DEVONIAN	INDIAN FORMATION				
MIDDLE DEVONIAN	HARE				
MIDDLE DEVONIAN	HUME FORMATION				
MISSISSIPPIAN					
61FMg35	000	Ls, med-gr-br, thk, tab-even beds made up of thin, parallel-even, fg, ang, hd det; some bit, wthrs lt gr, contains corals, stromatoporoids; has some bit, sh partings.			
61FMg34	100	Ls dk-gr-br, thk tab-even beds, internally thin parallel-even, fg, ang, hd, det, vug-interzg por; wthrs light dove gr, contains corals, and stromatoporoids.			
61FMg 32-33F	200	Ls, med-gr-br, thin, tab-even beds, internally thin parallel-even, silt, ang, hd, wthrs buff, contains brachiopods.			
	300				
	400	Covered, talus consisting of ls and sh which is thin, gr-grn, calc, and wthrs in large plates.			
	500	Ls, med-gr-br, thk, tab-even beds, internally thin parallel-even, fg, ang, hd, det; calcite and bit. filler; wthrs lt-blsh-gr, contains stromatoporoids, corals and brachiopods.			
	500	Covered, ls talus.			
	600	Ls, dk-gr-br, thin, nod beds, internally thin parallel-uneven, fg, ang, hd, contains crinoids, corals; mostly nod with some even 1" ls beds.			
	700	Covered, ls talus.			
	700	Ls, dolic, dk-gr-br, thin, tab-even beds, internally thin, parallel-even, silt, ang, hd, vug with calcite filler; wthrs blsh gr.			
	800	Covered, dol talus.			
	800	Dol, dk-gr-br, thin tab-even beds, internally thin-parallel, fg, ang, hd, micritic; wthrs blsh buff; intraformational breccia.			

DEVONIAN		NESS	NO.
LOWER DEVONIAN	BEAR ROCK FORMATION		
		000	61FMg35
	RAMPARTS FORMATION		
		100	61FMg34
		200	61FMg 32-33F
MIDDLE DEVONIAN	INDIAN FORMATION		
		300	
	HARE FORMATION		
		400	
		500	61FMg 30F-32
	HUME FORMATION		
		600	61FMg29
		700	61FMg28
UPPER DEVONIAN			
		800	
		900	
		1000	
		1100	

Ls, med-gr-br, thk, tab-even beds made up of thin, parallel - even, sg, ang, hd det; some bit., wthrs lt gr, contains corals, stromatoporoids; has some bit, sh partings.

Ls dk-gr-br, thk tab-even beds, internally thin parallel-even, fg, ang, hd, vug-interx por; wthrs light dove gr, contains corals, and stromatoporoids.

Ls, med-gr-br, thin, tab-even beds, internally thin parallel - even, slyt, ang, hd, wthrs buff, contains brachiopods.

Covered, talus consisting of ls and sh which is thin, gr-grn, calc, and wthrs in large plates.

Ls, med-gr-br, thk, tab-even beds, internally thin parallel-even, fg, ang, hd, det; calcite and bit. filler; wthrs lt-bish-gr, contains stromatoporoids, corals and brachiopods.

Covered, ls talus.

Ls, dk-gr-br, thin, nod beds, internally thin parallel-uneven, fg, ang, hd, contains crinoids, corals; mostly nod with some even 1' ls beds.

Covered, ls talus.

Ls, dolic, dk-gr-br, thin, tab-even beds, internally thin, parallel-even, slyt, ang, hd; vug with calcite filler; wthrs blsh gr.

Covered, dol talus.

Dol, dk-gr-br, thin tab-even beds, internally thin-parallel, fg, ang, hd, micritic; wthrs brash buff; intraformational breccia.

Stratigraphic section No. 12.

BAT HILLS

Approx. 28 miles northwest of Rock Lake Camp
Lat. 65° 46' N. Long. 128° 42' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J.S. MacDonald, V.A. Fisher.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVONIAN					
MIDDLE DEVONIAN	RAMPARTS FORMATION				
			000	61FM112	Ls, med-gr-br, mass, fg, hd, coral frags, secondary calcite, locally nod and hackly; gr travertine case covers rock features.
			100	61FM113	Ls, med-gr-br, mass, cg to peb size corals in fg matrix of det, "spaghetti" coral; 15% blk bit. paper-thin len-uneven sh.
			200	61FM114	Ls, med-gr, thk-bded, tab-even, fg, arg, det, wthrs blk.
			300		

Stratigraphic section No. 13

LOON ROOST OF DONNELLY RIDGE

Approx 22 miles northwest of Rock Lake Camp
Lat 65° 49' N. Long 126° 27' W (Approx)

FRANKLIN MOUNTAINS AREA

V.A. Fisher, R.W. Helmsen, J.S. MacDonald

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO	DESCRIPTION
DEVONIAN					
MIDDLE DEVONIAN	RAMPARTS FORMATION				
		out		61FF30 61FF34	Ls, med-gr-br, thin-bded, nod, vfg to mg, subrd, hd, micritic; det, contains corals, stromatoporoids, and crinoids.
				61FF44 61FF29	Ls, med-gr-br to lt-gr-br, thk-bded, tab-even, vfg to mg, subrd, hd, micritic & det; contains corals, stromatoporoids & crinoids; upper portion of unit appears to be more hackly.
			200	61FF50 61FF13	Ls, blk to med-gr-br, thk-bded, tab-even, fg to cg, subrd, hd, micritic & det; contains corals, stromatoporoids, crinoids and brachs; voids contain bit and calcite.
			300	61FF11 61FF4	Ls, med-gr-br to dk-br, thk-bded, tab-even, internally thinly lam, parallel-uneven, fg to mg, subrd, hd, micritic; contains corals & stromatoporoids.

Stratigraphic section No. 14.

DONNELLY RIDGE

Approx. 20 miles northwest of Rock Lake Camp.

Lat. 65° 49' N., Long. 128° 22' W. (Approx.)

FRANKLIN MOUNTAINS AREA

M.D.Mangus, D.W.Holmes.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVONIAN	RAMPARTS FORMATION		0-100	61FMg 77 61FM 62-76 61FMg 61	ls, lt to med-gr-br, med to mass-bded, "stroma" and corals. ls, lt to med-gr-br, med to mass-bded, highly coralline. ls, lt-med-gr-br, mass-bded, mostly "stroma".
MIDDLE DEVONIAN	RAMPARTS FORMATION		200		Covered, found ls talus on slope. Believe break in slope to be close to contact between Hare Indian sh and Ramparts.
MIDDLE DEVONIAN	HARE INDIAN FORMATION		300		Covered, found some sh, lt-gr-gzn and calc.
MIDDLE DEVONIAN	HARE FORMATION		400		Covered, some ls float.
MIDDLE DEVONIAN	HUME FORMATION		500	61FMg 48-52	ls, med-to dk-gr-br, fg to sub-l, med to mass-bded, foss with "stroma", corals, brachiopods and goniatites; beds wthre hckly.
MIDDLE DEVONIAN	HUME FORMATION		600		Covered.
MIDDLE DEVONIAN	HUME FORMATION		700	61FMg 47	ls, med-gr-br, med-bded, tab, det, rock wthre blsh-gr and rough on surface.
MIDDLE DEVONIAN	HUME FORMATION		800		Covered, ls and dol float, med-to dk-gr-br, fg, also some intra-formational egl.
MIDDLE DEVONIAN	HUME FORMATION		800	61FMg 60 61FMg 64	Dol, dk-gr to med-gr-br, med-bded, silty to fg, micritic with rare egl.

S I L U R I A N L O W E R D E V O N I A N		corels, brachipods and goniatites; beds wthr mucky.		
		DE	FORM	corels, brachipods and goniatites; beds wthr mucky.
		61FMg 47	HUME FORMATION	Covered.
		61FMg 45		Ls, med-gr-br, med-bded, tab, det, rock wthrs blsh-gr and rough on surface.
		61FMg 44	BEAR ROCK FORMATION	Covered, ls and dol float, med-to dk-gr-br, fg, also some intra-formational egg.
		61FMg 43		Dol, dk-gr to med-gr-br, med-bded, silty to fg, micritic with rare ppp. Rock wthrs dk-gr-br with gran surface.
		61FMg 42		Ls, med-gr-br, mass-bding, brecciated vugular wthring, soft with travertine "case" obliterating bding. Has typical "hoodoo" stack wthring. Breccia is both ls and dol.
		61FMg 41		Contact between Bear Rock and Silurian not seen, assumed to be unconformable.
		61FMg 40		Dol, med-gr-br, thin-to med-bded, fg, micritic, with some vugular por.
		61FMg 39		
		61FMg 38		
		61FMg 37		
		61FMg 36		
		61FMg 35		
		61FMg 34		
		61FMg 33		
		61FMg 32		
		61FMg 31		
		61FMg 30		
		61FMg 29		
		61FMg 28		
		61FMg 27		
		61FMg 26		
		61FMg 25		
		61FMg 24		
		61FMg 23		
		61FMg 22		
		61FMg 21		
		61FMg 20		
		61FMg 19		
		61FMg 18		
		61FMg 17		
		61FMg 16		
		61FMg 15		
		61FMg 14		
		61FMg 13		
		61FMg 12		
		61FMg 11		
		61FMg 10		
		61FMg 9		
		61FMg 8		
		61FMg 7		
		61FMg 6		
		61FMg 5		
		61FMg 4		
		61FMg 3		
		61FMg 2		
		61FMg 1		
		61FMg 0		

Stratigraphic section No. 15.

VICTORY RIDGE

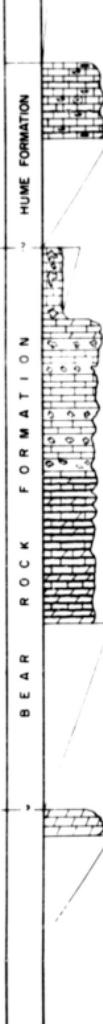
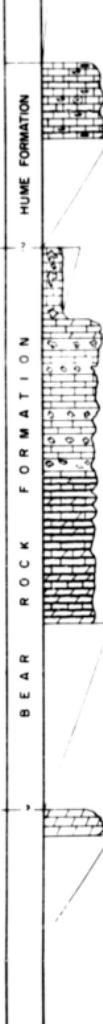
Approx. 20 miles northwest of Rock Lake Camp.
Lat. 68° 51' N., Long. 128° 18' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J. S. MacDonald V. A. Fisher.

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
D E V O N I A N	MIDDLE DEVONIAN	RAMPARTS FORMATION			
			000	61FM86	Ls, lt-gr-br, thk-bded, tab-even to sub-nod, hd, micritic; locally lenses of coral.
			100	61FM87	Ls, med gr-br, thk-bded, nod, fg, det, hd, peb-size skel. material and corals.
			200		
			300		

Stratigraphic section No. 16



SWAMPY SECTION

Approx 13 miles northwest of Rock Lake Camp.
Lat 68° 48' N, Long 128° 05' W (Approx)

FRANKLIN MOUNTAINS AREA

J. S. MacDonald, V. A. Fisher

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
ONIAN MIDDLE DEVONIAN	HARE INDIAN FORMATION RAMPARTS FORMATION			61FM76F 61FM75	<p>Ls, lt-gr-br, thk-bded, tab-even, fg, det, gran to peb size skeletal material, chiefly corals & brachiopods with 15% len blk sh, locally nod.</p> <p>Ls, med-gr-grn, thin-bded, nod, fg, ang, det, with peb size fossils, and large brachiopods.</p> <p>Covered, est 750'.</p> <p>61FM78</p> <p>Ls, dk-gr-br, thk-bded, tab-uneven, fg to cg, hd det & skeletal, contains corals and brachiopods; wthre steel gr.</p>

S I L U R I A N		
L O W E R D E V O N I A N	BEAR ROCK FORMATION	
M I D D E D E V O N I A N	HUME FORMATION	
H A R D		
<p>61FM78 Ls, dk-gr-br, thk-bded, tab-uneven, fg to cg, hd det & skeletal, contains corals and brachiopods; wthrs steel gr.</p> <p>61FM77 Covered, est 110'.</p> <p>61FM79 Ls, dk-gr-br, thk-bded, tab-uneven, vfg, det. Discontinuous outcrop.</p> <p>61FM80 Ls & dol, dk-gr-br, thk-bded, tab-even, internally lam, locally brecciated, fg, ang, hd, det, vug & interg por of 12%; ang frags vary in size from granule to boulder and matrix is fg to vfg.</p> <p>61FM81 Ls & dol, med-gr, thk-bded, tab-uneven, fg, med-hd, ang, det, vug and interg por 17%, vug pitted surface, discontinuous outcrop.</p> <p>Est 200' covered.</p> <p>61FM82 Dol, lt-gr, thk-bded, tab-even, fg, interg por 7%.</p>		

Stratigraphic section No. 17

ATLANTIC LAKE SECTION

Approx. 10 miles northwest of Rock Lake Camp
Lat. 65° 48' N., Long. 128° 01' W. (Approx.)

FRANKLIN MOUNTAINS AREA

V.A. Fisher, D.W. Holmes, J.S. MacDonald.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DE	MIDDLE DEVONIAN	RAMHARTS FM.			
EV	INDIAN FORMATION				
	HARE FORMATION				
	HUME FORMATION				
<p>Approx. thickness of Hare Indian 440'.</p>					
<p>61FC9UR-12UR ls, med-gr, thin-bded, tab-uneven, fg to mg, ang, hd, micritic & det; contains corals and stromatoporoids.</p>					
<p>61FC9UR-6UR ls, lt-gr, thin-bded, fg to mg, ang, hd, det & skeletal, contains corals and stromatoporoids.</p>					
<p>61FC3UR-5UR ls, med-gr, thk-bded, tab-uneven, homogeneous, fg to mg, ang, hd, det & skeletal, contains corals, stromatoporoids, some large brachs.</p>					
<p>61FC1UR-2UR ls, med-gr, thin-bded, nod, homogeneous, fg to mg, ang, hd, contains corals, stromatoporoids, and large brachs.</p>					
<p>61FC6-61PC1 ls, med-gr-br to lt-gr-br, thk-bded, tab-uneven, vfg to mg, subrd, hd, micritic & det; contains corals, stromatoporoids, brachs and trilobites.</p>					
<p>61PC1F ls, dk-gr, thin-bded, nod, vfg to mg, hd, subrd, micritic, contains corals and brachs.</p>					

Stratigraphic section No. 18.

WAIT-AWHILE LAKE

Approx. 14 miles northeast of Rock Lake Camp.
Lat. 65° 53' N. Long. 127° 30' W. (Approx.)

FRANKLIN MOUNTAINS AREA

M.D. Mousavi, D.W. Holmes

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVONIAN					
LOWER DEVONIAN					
MIDDLE DEVONIAN					
	HUME FORMATION		000		
			100	51FMg38	Ls, med-gr-br, massive-beded, fg, hackly weathering, contains brachiopods, goniatites, trilobites, and stromatoporeoids.
			100	51FMg39	Ls, same as above.
			200	51FMg40	
			?		Covered.
			?		
	BEAR ROCK FORMATION		300	51FMg37	Dol, dk-gr-br, thin to med-beded, fg, vug por, micritic, wthrs sugary on surface.
			300	51FMg36	
			400		
			500		
			600		
					Covered, dol, dk-gr-br, mg, talus. Believe this to be Bear Rock.

Stratigraphic section No. 19.

TURTON RIVER

Approx. 20 miles northeast of Rock Lake Camp.
Lat. 69° 47' N., Long. 127° 03' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J.S. MacDonald, M.D. Mongus

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVONIAN LOWER DEVONIAN	BEAR ROCK FORMATION				<p>000 61FM117 61FM116 61FM115 100 Ls, med-gr, thk-bded, tab-even, vfg; \pm 1% interg por. Ls, med-gr, thin-bded, tab-even, internally lln, vfg; \pm 1% interg por, arg, platy. Ls, dk-gr, thk-bded, tab-even, fg to mg, ang, hd, interg por \pm 1%, strong bit. odor.</p> <p>Covered, dol talus.</p>

Stratigraphic section No. 20.

NORTH TURTON LAKE

Approx. 22 miles northeast of Rock Lake Camp.
Lat. 65° 56' N., Long. 127° 09' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J. S. MacDonald, M.D. Mangus.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
Devonian	Middle Dev.	Hume Formation			
Lower Devonian	Lower Devonian	Bear Rock Formation			
			000	61FM119	Ls, med-gr-br, thk-bded, tab-even, vfg, hd, micritic, scattered peb-size brachiopods, sub-nod.
			100	61FM120F	Ls, med-gr-br, thin-bded, tab-even, vfg, micritic, well bded, wthrs like bricks with 15% inter-bded, blk, papery, chippy sh.
			200	61FM117	Dol, med-gr-br, thk-bded, tab-even, vfg, ang, hd, interg por ±10%, micritic; some paper thin bit, blk sh, strong bit. odor. Many sink holes locally.
			300		Covered, 270° dol talus.
			400		Sulphur spring at base.
			500		

Stratigraphic section No. 21.

GLACIAL - GUT LAKE

Approx. 1/2 miles northeast of Rock Lake Camp.
Lat. 65° 56' N., Long. 127° 35' W. (Approx.).

FRANKLIN MOUNTAINS AREA

M.D. Mongus, D.W. Holmes.

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
DEVOONIAN MIDDLE DEVONIAN	HUME FORMATION	<p>The diagram illustrates a vertical geological column. On the left, the column is labeled with 'DEVOONIAN' and 'MIDDLE DEVONIAN'. On the right, it is labeled 'HUME FORMATION'. Thicknesses are indicated in meters on the right side of the column, with values 000, 100, 200, and 300. Three specific sample locations are marked with horizontal lines and labeled: '61FMg53' at the top, '61FMg50' in the middle, and '61FMg57F' at the bottom. The column shows a general upward trend in thickness from the base to the top.</p>		61FMg53 to 61FMg50 to 61FMg57F	La, med-gr-br, mass-bded, rock wthrs hackly and lt-blsh-gr; fossil unit of Hume formation, contains brachiopods, goniatites, corals, and stromatoporoids.

Stratigraphic section No. 22.

EAST BEAVERTAIL

Approx 26 miles northwest of Rock Lake Camp.
Lat. 65° 56' N., Long. 128° 27' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J. R. MacDonald, M. D. Mangus

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVOONIAN	HARE INDIAN FORMATION			61FM129	Ls, dk-gr-br, very thin-bded, platy with a few fossil frags.
MIDDLE DEVONIAN	HUME FORMATION		000	61FM128	Ls, dk-gr-br, very thin-bded, tab-even, vfg, det with some gran to
			100	61FM127	peb size skel. fragments, brachiopods.
			200	61FM126	Ls, med-gr-br, mass-bded, vfg, det with gran to peb size skeletal
			300	61FM125	fragments, brachiopods, corals, stromatoporoids, with 10% len dk-
					gr-br, bit & arg ls.
					Ls, med-gr-br, mass-bded, vfg, det with peb size fragments and stromato-
					poroids, hackly surface.
					Ls, med-gr-br, mass-bded, nod, fg, det, with some skeletal fragments,
					corals, hackly surface.

Stratigraphic section No 23

BULLDOG LAKE

Approx. 30 miles northwest of Rock Lake Camp.
Lat 65° 53' N, Long 126° 41' W (Approx.)

FRANKLIN MOUNTAINS AREA

J S MacDonald, V A Fisher

AGE	FM.	LITHOLOGY	THICK-NESS	SAMPLE NO.	DESCRIPTION
DEVONIAN	MIDDLE DEVONIAN	RAMPARTS FORMATION		61MF96	Ls, dk-gr, thin-bded, tab-even, vfg, det. occasional peb size fossil frags; wthrs steel gr & br, hackly.
				100	Covered.
				61MF95	Ls, dk-gr-br, very thin-bded, tab-uneven, cg to mg, det & skeletal frags, few stromatoporoids; 7% interg por.
				61MF94	Ls, lt-gr-br, thin-bded, fg to cg, ang, soft, gran, det; interg por 17%; contains corals.
				61MF93	Ls, med-gr-br, thin-bded, mg to fg, ang; interg por 15%; skeletal & det., contains corals.
				61MF91	Ls, med-gr-br, thin-bded, tab-uneven, fg, ang, hd; vug por 15%; secondary calcite, wthrs hackly.
				90	Ls, med-gr-br, very thin-bded, peb to cg size fossils in fg to cg matrix, det. & skeletal; "spaghetti" corals.
				500	Covered.
				61MF89	Ls, dk-gr, thk-bded, tab-uneven, vfg, arg, with a few peb size brachiopods.
				61MF88	Ls, med-gr-br, thin-bded, nod, coarse to peb size corals & brachs in vfg, arg, det, matrix; some secondary calcite and questionable bit.
				400	Covered.
DEVONIAN	HUME FM.	HADE FORMATION		61MF97	Ls, med-gr-br, thin-bded, tab-even, platy, vfg, micritic.
				300	Covered.
				200	61MF101 Dol, dk-gr, thk-bded, tab-even, vfg, hd, ang.
				61MF100	Dol, lt-gr, thk-bded, tab-even, vfg; ppp (15%), some bit. in voids.
				61MF99	Dol, med-gr, thk-bded, tab-even, mg to cg, hd, ang; interg por 10%.
DEVONIAN	ROCK FORMATION			700	Covered.
				600	61MF98 Ls, lt-gr, brecciated, fg, soft, ang frags variable in size, vug por 17% det.

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
LOWER DEVONIAN	BEAR ROCK FORMATION				
			000	61MF96	Ls, dk-gr, thin-bded, tab-even, vfg, det. occasional peb size fossil frags; wthrs steel gr & br, hackly.
			100		Covered.
			200	61MF95	Ls, dk-gr-br, very thin-bded, tab-uneven, cg to mg, det & skeletal frags, few stromatoporids; 7% interg por.
			200	61MF94	Ls, lt-gr-br, thin-bded, fg to cg, ang, soft, gran, det; interg por 1%; contains corals.
			200	61MF93	Ls, med-gr-br, thin-bded, mg to fg, ang; interg por 1%; skeletal & det, contains corals.
			200	61MF92	Ls, med-gr-br, thin-bded, tab-uneven, fg, ang, hd; vug por 1%; secondary calcite, wthrs hackly.
			300	61MF91 90	Ls, med-gr-br, very thin-bded, peb to cg size fossils in fg to cg matrix, det. & skeletal; "spaghetti" corals.
			400	61MF89	Covered.
			400	61MF88	Ls, dk-gr, thk-bded, tab-uneven, vfg, arg, with a few peb size brachiopods.
			400		Ls, med-gr-br, thin-bded, nod, coarse to peb size corals & brachs in vfg, arg, det, matrix; some secondary calcite and questionable bit.
			500		Covered.
			600	61MF97	Ls, mod-gr-br, thin-bded, tab-even, platy, vfg, micritic.
			700		Covered.
			800	61MF101	Dol, dk-gr, thk-bded, tab-even, vfg, hd, ang.
			800	61MF100	Dol, lt-gr, thk-bded, tab-even, vfg; ppp (15%), some bit. in voids.
			800	61MF99	Dol, med-gr, thk-bded, tab-even, mg to cg, hd, ang; interg por 10%.
			900		Covered.
			1000	61MF98	Ls, lt-gr, brecciated, fg, soft, ang frags variable in size, vug por 1% det.

Stratigraphic section No. 24

BEAVERTAIL MOUNTAIN

Approx. 3½ miles northwest of Rock Lake Camp
Lat. 65° 53' N., Long. 128° 45' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J.S. MacDonald, V.A. Fisher

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DE MIDDLE DEVONIAN	RAMPARTS FORMATION			61FM112	Ls, lt-gr-br, thk-bded, len-uneven, skeletal, with fg matrix, coralline, sub-nod.
				61FM111	Ls, lt-gr-br, thk-bded, len-uneven, nod, pb to gran size corals in fg matrix.
				61FM110	Ls, lt-gr-br, mass-bding, fg, det, varied fracture pattern along strike.
				61FM109	Ls, lt-gr-br, thk-bded, tab-even, fg to cq, anq, med - hd, (skeletal debris), well developed frac. system normal to bding planes, wthrs yel-br, hackly.
				61FM108	Ls, med-gr-br, mass-bding, foss. with vfg matrix, corals & stromatoporoids of gran to boulder size, "spaghetti" coral, crinkly bding; about 5% interbedd blk, len-uneven, bit sh.
				61FM108F	Ls & sh, med-gr-br, thk-bded, tab-uneven, pb size foss. in fg matrix, brach & corals, det & skeletal, wthrs gr-br; ± 25% interbedd blk, thin bded sh. Covered.
				61FM106	Ls, dk-gr-br, mass, tab-even, mg to gran size, foss. in fg matrix, crinoids & corals, det & skeletal, wthrs hackly & yel-tan.
				61FM105	Ls, med-gr-br, tab-even, fg to vfg, det, occas. brach; wthrs yel-tan, silic, nod; interbedd med-gr spec red lenses of fg, blk wthring ls (± 15% of outcrop).
				61FM104	Ls, dk-gr-br, thin-bded, tab-even, fg, arg, det, blocky to platy, wthrs yel-tan.
				61FM103	Ls, med-gr-br, thin-bded, tab-even, vfg, arg, det, fucoidal markings on bding planes; blocky to platy, wthrs yel-tan.
				61FM102	Ls, lt-gr-br, thin-bded, tab-even, fg to vfg, hd, micritic, few corals; very well bded, blocky to platy, arg.
DE MIDDLE DEVONIAN	HARE INDIAN FORMATION				

Stratigraphic section No. 25.

LAC À JACQUES

Approx. 29 miles northeast of Rock Lake Camp.
Lat. 66° 07' N., Long. 127° 32' W. (Approx.)

FRANKLIN MOUNTAINS AREA

J. S. MacDonald, M.D. Manges

AGE	FM.	LITHOLOGY	THICKNESS	SAMPLE NO.	DESCRIPTION
DEVONIAN MIDDLE	HUME FORMATION		600 100 200	61FM1307	ls, med-gr-br, thin-bded, tab-uneven, vfg, det, with gran. to boulder size fossils, brachiopods, stromatoporoids, corals, goniatites; wthrs heckly.