

REPORT ON SURFACE GEOLOGY

ROCK RIVER AREA

Conducted By

D.G. Martin and N.G. Koch

During the period July 3 to September 5, 1957

and June 10 to July 30, 1958

on

WESTERN TERRITORIES PERMITS

No. 1409
No. 1410
No. 1411
No. 1412
No. 1413
No. 1434

Prepared By

G. F. Stansberry, P.Eng. (Alta.)
(Surface Geologist)

February 16, 1959

Surface Geological Maps and Section
Location Maps in Separate Folder

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
OUTCROPS AND TERRAIN	2
NATURE OF WORK	2
STRATIGRAPHY	2
STRUCTURAL GEOLOGY	7
BIBLIOGRAPHY	9

ENCLOSURES

#1	Surface Geological Map (1957) 1" - 8 miles	In Separate Folder	?
#2	Section Location Map (1957) 1" -12 miles	"	"
#3	Surface Geological Map (1958) 1" - 4 miles	"	"
#4	Section Location Map (1958) 1" - 4 miles	"	"

GEOLOGICAL REPORTS FXD-30 and FXD-40

INTRODUCTION

During the summer of 1957, surface geological investigations were carried out by a Pan American geological party in the Mackenzie River Area. This work was continued during the summer of 1958 to the north and west into the Peel Plateau Area. Stratigraphic work was emphasized and carried on in the north and eastern ranges of the Mackenzie Mountains and the northern Franklin Mountains. Structural mapping was done on the Peel Plateau where favourable structure for the accumulation of hydrocarbons was located.

The 1957 field party consisted of seven geologists with D. Q. Martin acting as party chief. Sub-party chiefs were H.G. Koch, T. Kawase, W. J. Pulop and W.O. Richmond. Assistance was given in the field by H. White and D. McLean. The following summer the field party consisted of six geologists with D. Q. Martin co-ordinating and H.G. Koch acting as party chief. K.E. Peterson was sub-party chief and able assistance was given in the field by H. Stevens, P. Smoor and B. Matsen. During both summers, supplies and foodstuffs were flown by Canadian Pacific Airlines from Edmonton to Norman Wells where Pan American's float-equipped Otter or Beaver was available to relay goods to our base camps. (Shown on Inclosures #2 and #4.) Canada Catering Company of Edmonton supplied the foodstuffs, cooks and kitchen equipment. A Bell model C-2 helicopter was contracted for both summers from Spartan Air Services of Ottawa, Ontario. Contact with commercial communication systems at Norman Wells was maintained by means of a 50-watt two-way radio. Where fly camping was found necessary in cases of excessive distances from base camp, contact with the fly camps to base camp was made by means of 2½-watt model B Chisholm radios.

Fossils collected in the field were identified by Dr. P.S. Warren and Dr. C.R. Steck of the University of Alberta Geological Department.

OUTCROPS AND TERRAIN

The area worked lies in mountainous country west of the Mackenzie River Plain and south of the Peel Plateau. Relief up to 5000 feet was encountered in the area. Most of the ridges were devoid of vegetation and offered good landing spots for a helicopter. Sections measured were fair to good and many measured from 4000 feet to 5000 feet in thickness. Forty-nine sections were located and studied and a total of 240,940 feet of section were measured.

NATURE OF WORK

The prime purpose of the work was to obtain as much knowledge as possible of the stratigraphy and structure in the mountains to the south of Pan American's Hume River acreage. An attempt to project such stratigraphy to the north towards the acreage and a study of the relation of the mountain structure to that of the Mackenzie Plain and Peel Plateau was made. Aerial reconnaissance for determining the position of base camps, locating measurable sections and noting structure present was carried out by Otter, Beaver and helicopter. Base maps and mosaics obtained from the Department of Mines and Technical Surveys were used for plotting. Sections were measured with a one hundred foot tape or five-foot staff. Detailed sampling (approximately one sample for 25 feet) of the sections for stratigraphic purposes was carried out. Dips and strikes were taken in the field by means of Brunton Compasses, and where more detail warranted, elevations were carried out along marker beds by means of Paulin Altimeters.

STRATIGRAPHY

During the two field seasons, rocks ranging from Cambrian to Cretaceous were examined. Emphasis was placed on beds of Middle Devonian, Silurian, and Ordovician age. Other beds were mapped in a reconnaissance manner.

Table of Formations

Age	Formation or Group	Lithology	Thickness	Remarks
Tertiary		Poorly consolidated clays, ss. and cgl. with lignite.	0-1050'	
Cretaceous	Upper Unit	Fine/med.grn. ss. with interbeds of siltst. and sh.	4400' $\frac{1}{2}$	Scarp-forming sands
	Lower Unit	Dk.gry. sh. with some silt. Some glauconite and bentonite bands. Ss. member with coal fragments at the base.	4600' $\frac{1}{2}$	
Upper Devonian	Imperial	Marine ss., siltst., and sh. 1000' $\frac{1}{2}$		
	Ft.Creek Fm.	Black shales, in places bitum., pyritic, siliceous, cherty.	1000-1400'	
Middle Devonian	Upper Ramparts	Reefoid and bioclastic ls., with some bioherms. "Off-reef" limy sh. facies.	0-700'	Kee Scarp equivalent?
	Middle Ramparts	Dense shaly ls., limy sh., and marl.	500-700'	Hare Indian sh. equiv.
	Lower Ramparts	Dense dk. gry. in places argill. and slightly bituminous ls.	0-1000'	
Lower Devonian	Bear Rock	Cavernous wea., dol. and ls. breccia.	200-600'	Conformable with overlying Ramparts.
	Un-named unit	Fine-coarse, xln. ls. and dol. in places bituminous.	0-900'	
Silurian- Ordovician	Ronning Group	Litho. to coarse xln., lt. gry. dol.	2000-3000'	Silurian and Ordovician may only be separated on paleontological evidence.
Ordovician		Siliceous Sandstone and argillites	600'	
Cambrian		Qtzite., ls., gypsum red green	base not seen.	

CAMBRIAN:

Beds consisting of quartzites, gypsum, red and green shales, and some carbonates compose the Cambrian in this area. Having no effective porosity these beds were not considered economic and only occasional reconnaissance mapping of Cambrian beds was carried out.

ORDOVICIAN-SILURIAN:

Ordovician-Silurian sediments are for the most part indivisible except on fossil evidence. In the west and south-west the lowermost unit consists of siliceous sandstone and argillites, which represents a deeper area of deposition than the carbonates to the east and north. The carbonate unit has been placed in the Ronning Group and consists mainly of dolomites with or without chert and some limestones. Porous Ordovician and Silurian dolomites are believed to underlie the central portion of the map area becoming dense to the east and changing facies to the west to a more argillaceous unit and into a graptolitic facies.

The carbonate beds appear to be a shelf-type with an open sea basin to the west. Contact with the overlying Lower Devonian is thought to be unconformable in the east, with continuous sedimentation from Silurian into Lower Devonian in the west. The Silurian-Ordovician carbonates are considered a favourable reservoir under the Hume River acreage and all wells drilled should penetrate the total section.

LOWER DEVONIAN (?):

At the end of Silurian time the sea withdrew only from the east and north of the map area. Hence from the Arctic Red River to the west sedimentation was changed only slightly and from zero to 1500 feet of Lower Devonian

(?) carbonates were deposited. Good vuggy and intercrystalline porosity occurs in the lower part of the section.

Towards the end of the Lower Devonian the subsidence of the southern part of the shelf area allowed the sea to advance over a Karst type surface in rocks of Silurian age. Hence, from somewhere between the Arctic Red and Hume Rivers the sediments change from a fine crystalline limestone and dolomite to a dolomite breccia (Bear Rock formation) with a limestone and dolomite matrix. The Bear Rock breccia is thus considered a facies of the lower part of what is usually termed the "Lower Ramparts". Fossil evidence now suggests that the Bear Rock is a mappable unit which lies disconformably on beds of Silurian age. East of the map area the Bear Rock beds are often a very gypsiferous dolomite. Abundant limestone sink-holes where the Bear Rock is the surface formation, and good water flow in Imperial Discovery #3 at Norman Wells indicates that both good porosity and permeability are developed in this formation in at least some areas in the general Hume River area.

MIDDLE DEVONIAN:

The deposition of the Lower Ramparts formation continued into Middle Devonian time. On the Anderson River (personal communication C.R. Stelck) north-east of the map area, and also in the Ogilvie Mountains, the base of the Middle Devonian is marked by an Ostracod horizon in which the Ostracods are up to three-quarters of an inch in diameter. However, the oldest recognizable Middle Devonian fauna in the map area is the Radiastrea arachne fauna.

Lower Ramparts type sedimentation ended with the deposition of a black, bituminous, fissile shale which is characterized by the fossil, Leiorhynchus castanea. The sea soon became limy and a very limy shale and marl was next laid down. This deposit constitutes the Middle Ramparts formation, and varies from 500 to 700 feet in thickness throughout the southern part of the map area. It quite probably thins to the north.

The Upper Ramparts formation is a reefoid and bioclastic limestone which remains approximately 700 feet thick along the Mackenzie Mountain front. This unit is considered equivalent to the Kee Scarp reef present at Norman Wells and thus is considered favourable for hydrocarbon entrapment such as is found in the Norman Wells field.

UPPER DEVONIAN:

Although the exact age and correlation of the Upper Ramparts, Kee Scarp, and Lower Fort Creek formations are still controversial, it is a definite fact that any Middle or Upper Devonian reef or reefoid reservoir rock underlying the map area will have an effective cap rock of Fort Creek shale.

The following table is the correlation of Devonian used in this report and believed to be correct from the field evidence collected in the area.

<u>This Report</u>	<u>Norman Wells Area</u>	<u>Age</u>
Fort Creek Shales	Upper Fort Creek Shale Bituminous Zone	Upper Devonian
Upper Ramparts Ls.	<u>Reef Ls.</u>	
Shaly base with <u>L. castanea</u> <u>var.</u>	Lower Fort Creek	Middle Devonian
Middle Ramparts Mar.&Sh. (<u>L. castanea</u>)	Shales (<u>L. castanea</u>)	
Lower Ramparts Ls.	Ramparts Ls.	Lower Devonian
Bear Rock Formation	Bear Rock Formation	

The Fort Creek formation consists of black shales, and in some areas cherty and siliceous shales. In the western part of the map area sandy lenses are not uncommon. In places some shale members were so bituminous

that they have been burnt brick-red by fires. Within the map area the shales vary in thickness from approximately 1000 feet in the east to 1400 feet in the west and northwest.

The Imperial formation lies, with a gradational contact, immediately over the Fort Creek shales in the area east of the Hume River. To the west, the contact is difficult to determine. The Imperial formation is a succession of marine sands, silts and shales approximately 1000 feet thick to the east. As you go west the beds decrease first then increase in thickness and become increasingly less marine and more continental in nature. Little or no porosity was found in any of the sections measured.

CRETACEOUS:

For the convenience of mapping the Cretaceous sediments were divided into two units; an upper sandy unit, and a lower shaly unit. The upper unit, actually 5 or 6 sandstone members with interbedded shaly members, has a calculated thickness of 4400 feet. Because it is the plateau-forming sand and therefore was found to be breached on all of the structures where it was present, very little time was spent in mapping this unit.

The lower shaly unit has, at least in the Hume River-Sans Sault area, a basal sandstone member which rests unconformably on Upper Devonian strata. In this area the thickness of the lower unit was calculated (from air photographs) to be 4600 feet thick. It forms the surface formations in most of the remaining area away from the mountain front.

STRUCTURAL GEOLOGY

The area worked may be divided into three structural provinces; the Peel Plateau to the north, the Mackenzie Mountains to the south and west and the Mackenzie foreland to the east. The Peel Plateau is structurally one

large syncline running east-west, with smaller folds developed on either limb of the syncline. South of the Peel Plateau and west of the Mackenzie foreland large open folds make up the Mackenzie Mountains. Large scale faulting typical of the Rocky Mountains was not observed. The Mackenzie Mountains have no foothills comparable with the Rockies. However in the east there is a foreland area in which narrow mountain ridges are separated by wide flat area for the most part covered by muskeg. The Franklin Mountains are one example of such a mountain ridge on the Mackenzie Plain. Some folding of the sediments has taken place between these mountain ridges and may be an indirect result of basement faulting whereas folding on the Peel Plateau was a direct result of the mountain building to the south and west, giving relatively simple and large folds with minor drag and cross folds.

BIBLIOGRAPHY

BOSTOCK, H.S. (1948): Physiography of the Canadian Cordillera, with special reference to the area north of the fifty-fifth parallel; Geological Survey of Canada, Memoir 247

GABRIELSE, H. (1957): Geological Reconnaissance in Northern Richardson Mountains, Yukon and Northwest Territories; Geological Survey of Canada, Paper 56-6.

G.S.C. Summary Report, 1921 Part B:
Hay and Buffalo Rivers, Great Slave Lake and Adjacent country; A.E. Cameron.

Mackenzie River District between Great Slave Lake and Simpson; E.J. Whittaker

Expl. East of Mackenzie River between Simpson and Wrigley; M.J. Williams.

North Nahanni and Root Rivers Area and Caribou Island Mackenzie River District; G.S. Hume

Geological Structure of the Mackenzie River Region; D.B. Dowling.

HUME, G.S. (1954): The Lower Mackenzie River Area, N.W.T. and Y.T.; G.S.C. Memoir. 273.

WARREN, P.S. and STELCK, C.R. (1950): Succession of Devonian Faunas in Western Canada; Trans. Royal. Soc. Can. (June) P.61.

.....(1950): The Late Middle Devonian Unconformity in Northwestern Canada; illud. P. 139

.....(1956): Devonian faunas of Western Canada; Geol. Assoc. Canada, Special Paper #1.

Respectfully submitted,

PAN AMERICAN PETROLEUM CORPORATION

By: G.F. Stansberry
G. F. Stansberry, P. Eng. (Alta)
(Surface Geologist)

GFS:trc

February 16, 1959
Edmonton, Alberta

APPENDIX

List of fossils collected - Mackenzie River - Peel Plateau Area.

Cambrian

No fossils collected.

Ordovician

Paleophyllum halysitoides
Bighornia sp.
Catenipora acquavalis
Oxopcecia
Strophomenids
Endoceratid
Plasmapora
Paleofavosites asfer.
Catenipora cf. acquavalis
Macleurites type
Manipora - regularis
Paleophyllum halistoides
Streptelasma trilobatum
Catenipora gracilis
Halystoid coral
Actinoceras
Cycloceras
Heleolites
Parastrophia

Silurian

Halysites magnituba
Diplophyllum verneialian
Paleophyllum
Halysites catenularia
Favosites favosus
Lyellia cf. americana
Labechia
Camarotoechia cf. indianensis
Stromatoporoids
Synaptophyllum sp.
Zaphrentis
Pasceolus
Parastrophia
Homospira
Favosites niagarensis
Favosites cf. tyrrelli
Plectambonites
Conchidium
Paleophyllum halysitoides

Lower Devonian

Fenestella lindneri
Fenestella cf. alpenensis
Grypheophyllum
Hertelia cf. occidentalis
Hertelia richardsoni
Hertelia n. sp.
Hypothyridina n. sp.
Tentaculites

Middle Devonian

Bentonella sp.
Grypheophyllum rectum
Hertelia sp.
Hertelia cf. haldemani
Productella
Fenestella
Fenestella lindneri
Atrypa
Goniatites
Goniatites cf. mcfarleni
Tentaculites
Hertelia cf. franklini
Hertelia kirkii var.
Hinea
Pugnides cf. sandersoni
Hertelia aff. occidentalis
Atrypa cf. sandersonensis
Productella
Heteropora
Hertelia cf. richardsoni
Atrypa aff. clarkei
Goniatites
Bentonella aff. flexuosa
Comites
Pugnides sp.
Atrypa
Grypheophyllum
Goniatites
Atrypa
Atrypa sandersonensis var.
Atrypa invaginatus
Leiorhynchus castanea var.
Leiorhynchus castanea
Hertelia richardsoni
Atrypa gigantea
Grypheophyllum sp.
Fenestella alpenensis
Bentonella
Atrypa

Atrypa cf. *borealis*
Actinostroma
Hederella
Atrypa cf. *arctica*
Actinoptera
Schuchertella *nevadensis*
Paracyclas *elliptica*
Cyathophyllum
Schizophoria
Ambocoelia *meristoides*
Combophyllum
Hexagonaria *arctica*
Atrypa *pechiensis*
Favosites *alpenensis*
Billingsastrea *nevadense*
Radiastrea *arachne*
Favosites *alpenensis* *valorum*
Phillipsastrea *verrilli*
Prismatophyllum *fisherae* Stumm
Hexagonaria cf. *kirki*.
Proetus cf. *mundulus*
Disphyllum *coespitosum*
Alveolites *vellorum*
Cystiphyllum *americanum*
Schuchertella *nevadensis* Merriam
Atrypa *arctica* Warren
Alveolites *avalorum* Meek
Prismatophyllum *arctica*
Martinia *sublineata*
Atrypa cf. *breverensis*
Syringopora
Elytha *undifera* (Roemer)
Lyathophyllum cf. *lonense* Stumm
Atrypa cf. *masula*
Papilcophyllum *elegantulum* Stumm
Aulophyllum sp.
Ractiastrea *arachne*
Microplasma sp.
Leptodema sp.
Doevillina

Upper Devonian

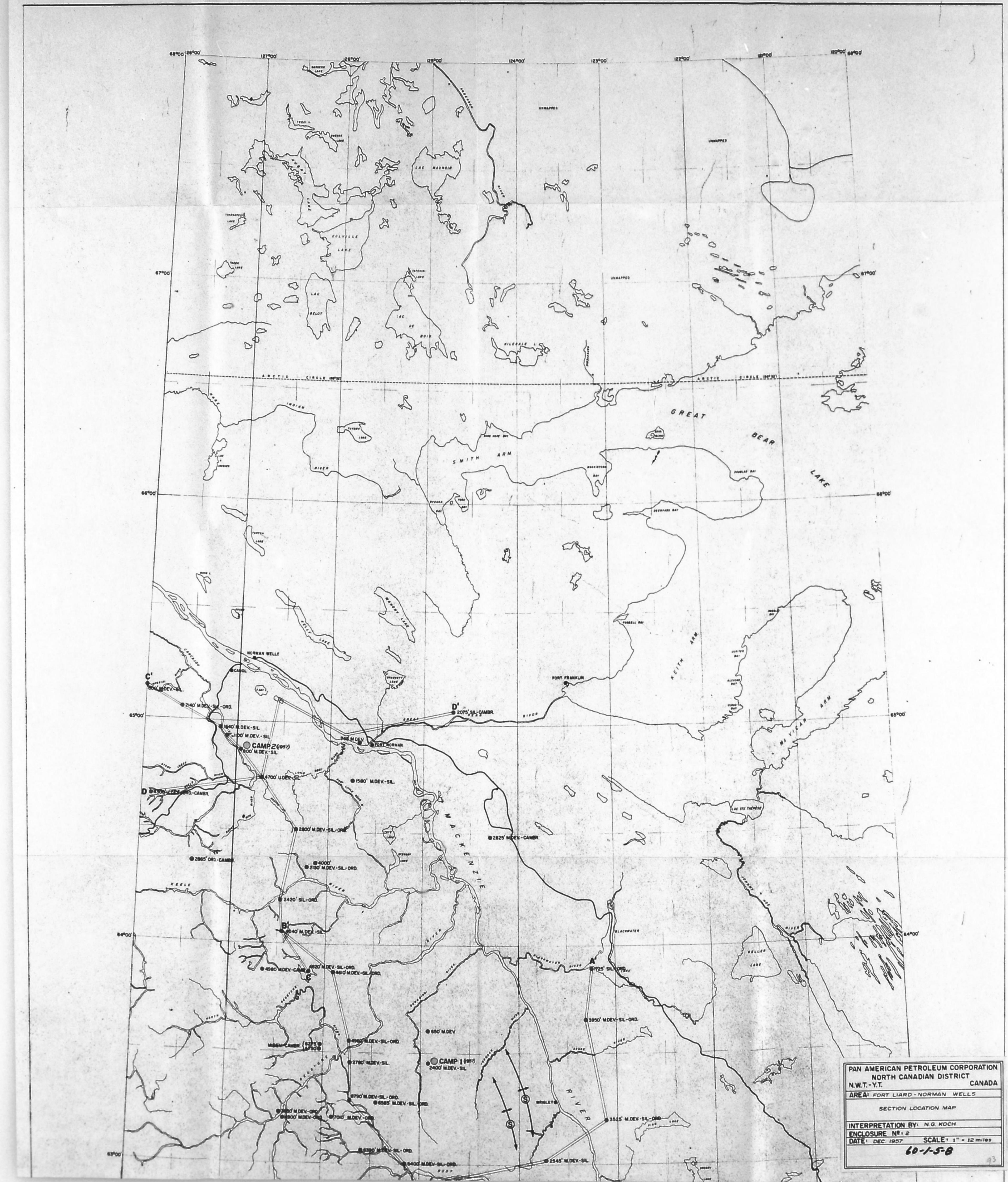
Camarotoechia cf. *contracta*
Cyrtospirifer *whitneyi*
Theodosia (*Vandergrachtella*)
Stropheodonta
Chonetes
Productella sp.
Nudirostra sp.
Nudirostra cf. *seversoni*
Proetus
Buchelia

Tentaculites
Coenites
Atrypa sp.
Nelroophyllum sp.

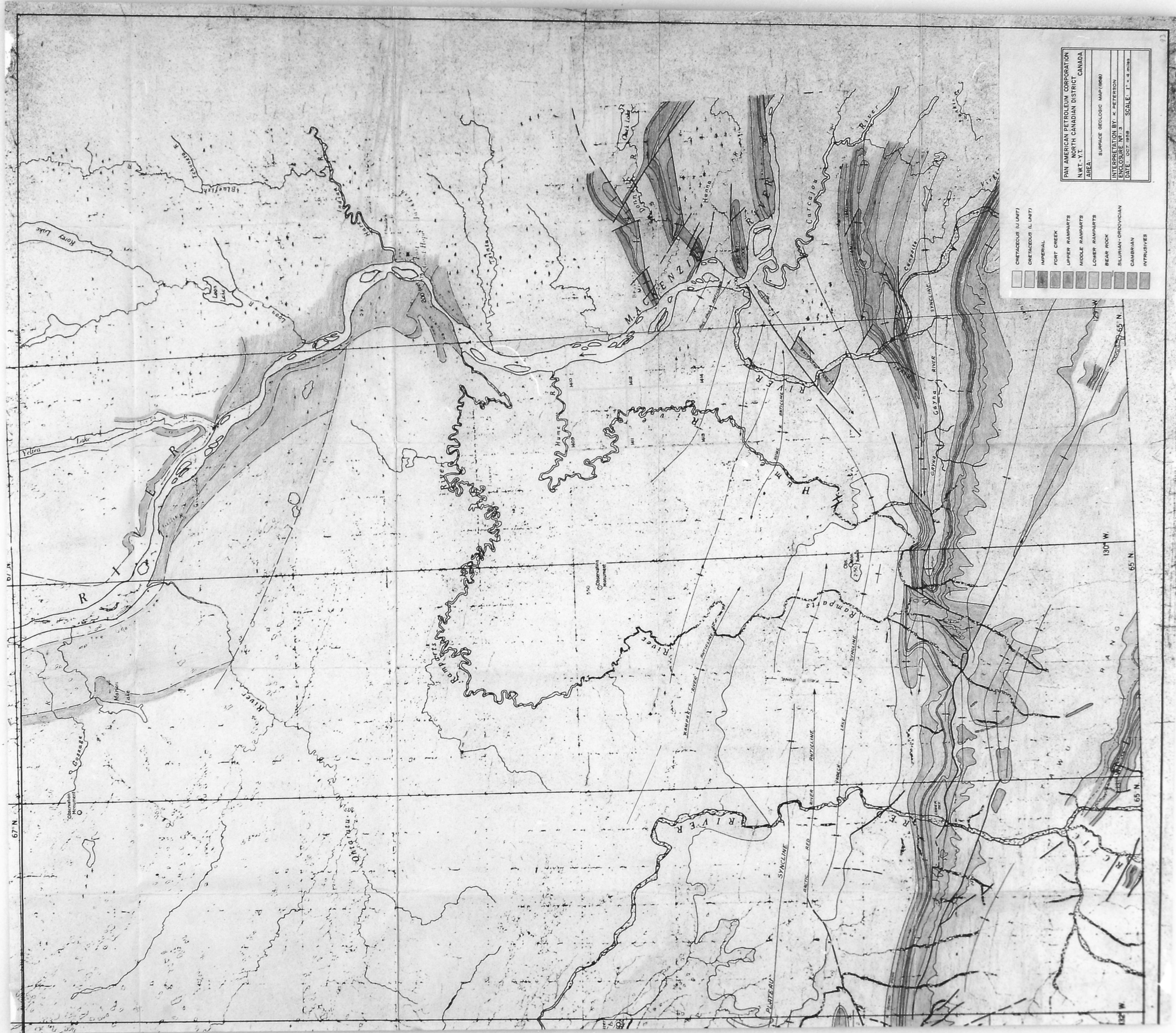
Cretaceous

Mytilus
Inoceramus aff. *cadottensis*
Inoceramus engr. *rutherfordi*
Ammonite

PAN AMERICAN PETROLEUM CORPORATION
NORTH CANADIAN DISTRICT
N.W.T.-Y.T. CANADA

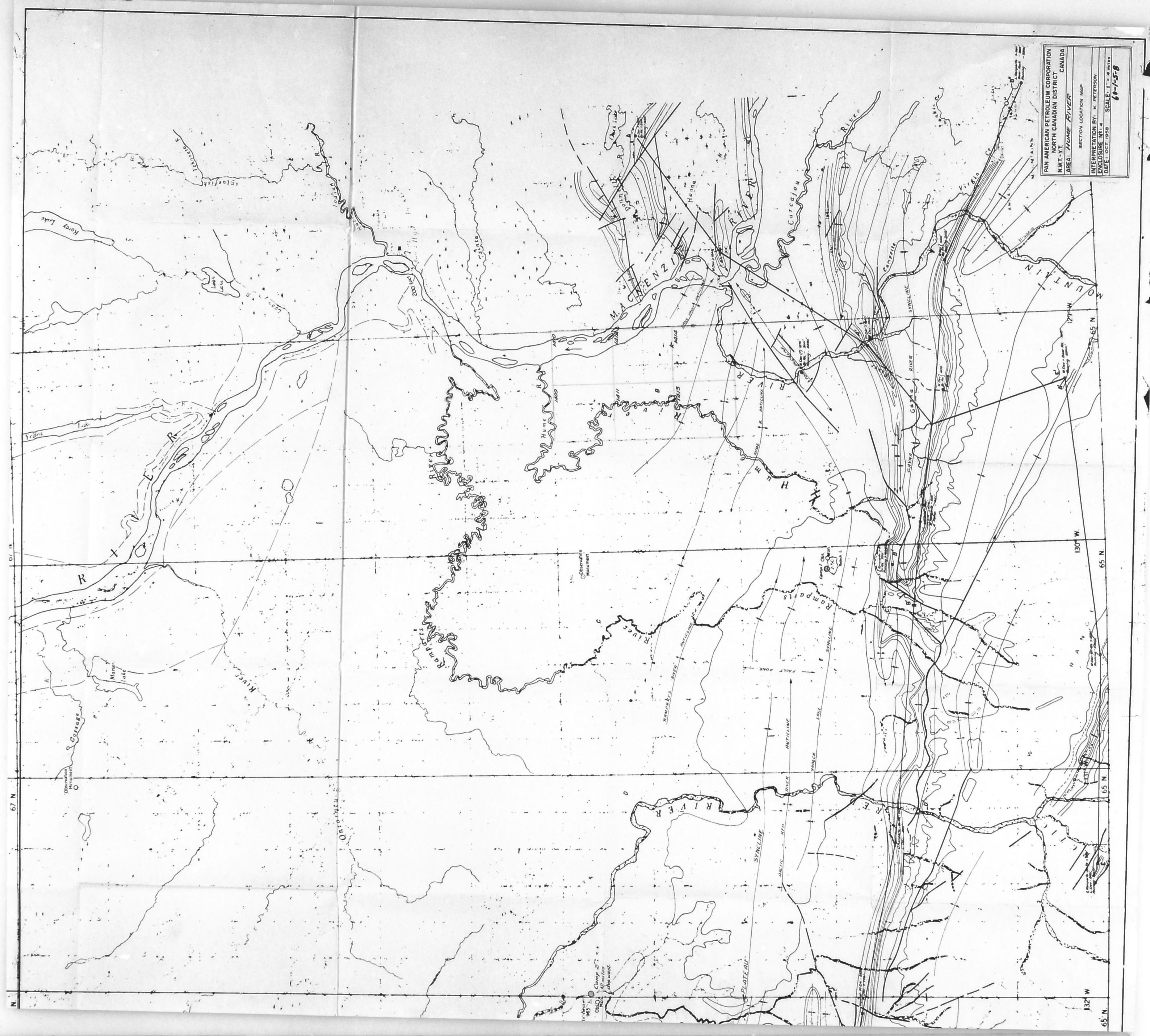

AREA: FORT LIARD - NORMAN WELLS

SURFACE GEOLOGIC MAP(1957)


INTERPRETATION BY: SANTONIUK - D MARTIN
ENCLOSURE N°: 1

DATE: SCALE: 1" = 8 miles

60-1-5-B



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
30x

30x

West Canadian Graphic Industries Ltd.

30x

West Canadian Graphic Industries Ltd.