

SEISMIC SURVEY

TROUT LAKE AREA, N.W.T.

For

UNION OIL COMPANY OF CANADA LIMITED

By
Independent Exploration Company

(18)

ON A
SEISMIC SURVEY
OF
THE TROUT LAKE AREA
NORTHWEST TERRITORIES
CANADA

60°40' to 61°00' LATITUDE
120°00' to 120°45' LONGITUDE

by
INDEPENDENT EXPLORATION COMPANY (CANADA) LTD.
PARTY 561

from
MARCH 2, 1966
to
MARCH 25, 1966

Submitted by:

James Barron - Party Chief

June 1966

i. Contents

	Page No.
Summary and Conclusions	1
Introduction	2
Geology	2
Attachments	3
Procedures	4
Discussion of Results	6
Recommendations	10

a. Appendix

Statistical Report	12
Field Equipment and Technique	14
Survey Procedure	15
Sub Contract Equipment and Services	16

ii. Illustrations

a. Maps

Redknife

1. Surface Topography
2. Top of Wabamun & First Limestone
3. Isochron - First Limestone to Utahn (Time Map)
4. Structure - Top of Carbonate (Time Map)
5. Isochron - Utahn to Top of Carbonate (Time Map)

Trout Lake

1. Surface Topography
2. Top of Wabamun & First Limestone
3. Isochron - First Limestone to Utahn (Time Map)
4. Structure - Top of Carbonate (Time Map)
5. Isochron - Utahn to Top of Carbonate (Time Map)

I. SUMMARY AND CONCLUSIONS

This survey has shown the location of the facies front of the Slave Point - Elk Point sequence quite definitely on the three lines which crossed over the front. Additional control may show local changes in the position of this facies front which may create favourable structural conditions.

The structural anomaly located in the southwestern part of Grid Area, North $61^{\circ}00'$, West $120^{\circ}15'$ appears quite significant at this time. The possibility

exists that this feature may be an expression of Presqu' ille development in the underlying formations. Multiple reflection interference with the Slave Point data obtained in this area is quite strong, and future seismic programs in this specific area should be planned in such a way that maximum attenuation of the multiple reflections can be achieved.

II. INTRODUCTION

The following is a final report on a seismic survey conducted in the Trout Lake Area, Northwest Territories, Canada, by Independent Exploration Company (Canada) Ltd. This area is located between $60^{\circ}40'$ and $61^{\circ}00'$ Latitude and $120^{\circ}00'$ and $120^{\circ}45'$ Longitude.

The crew and equipment was moved into the area through Fort Nelson, B.C. An access road cleared by other seismic crews was used part of the way, and bulldozers under contract to I.X. Co. opened up the remaining few miles and cleared a campsite and airstrip in the approximate center of Grid Area $61^{\circ}00'$, $120^{\circ}15'$.

The work was carried out during the period March 2, 1966 to March 25, 1966.

III. GEOLOGY

The area covered by this survey lies near the western edge of the Tathlina Pre-Cambrian high. The

shooting program was planned in such a way that several of the seismic lines passed over the edge of the facies front of the Slave Point - Elk Point sequence. At this front, the carbonates to the south pass fairly abruptly to shales to the north. There is much evidence that, on the carbonate side of the front, prolific organic growth occurred, which in places resulted in the formation of reef structures. The possibility also exists of Presqu'ile development in the older underlying formations.

IV. ATTACHMENTS

A. Structure Maps

1. Structure - Top of Carbonate - Trout Lake
2. Structure - Top of Carbonate - Redknife

B. Isopach Maps

1. Isochron - First Limestone to Utahn - Trout Lake
2. Isochron - First Limestone to Utahn - Redknife
3. Isochron - Utahn to Top of Carbonate - Trout Lake
4. Isochron - Utahn to Top of Carbonate - Redknife

C. Other Maps

1. Surface Topography - Trout Lake
2. Surface Topography - Redknife
3. Top of Wabamun and First Limestone - Trout Lake
4. Top of Wabamun and First Limestone - Redknife

V. PROCEDURES

A. Survey Objective

This survey was conducted in order to establish the precise location of the facies front of the Slave Point - Elk Point sequence, and to determine if any favourable drilling locations were present in the area. The presence of Presqu'ile development is suspected in the area, and the data should also be examined for this possibility.

B. Reflections Mapped

1. Top of Carbonate - from field records.
2. First Limestone - from stacked record sections.
3. Utahn - from stacked record sections.

C. Computing Procedures

Records were labelled in a standard manner. Refraction breaks were plotted to true horizontal scale on cross section paper. The thickness of drift was computed using a formula supplied by Union Oil.

$$d_2 = \frac{V_2}{2 \cos i_{23}} \left[t_2 - \frac{(d_1 - D_2) \cos i_{23}}{V_2} - \frac{d_1 \cos i_{13}}{V_1} \right]$$

$$\sin i_{23} = \frac{V_2}{V_3}$$

A standard uphole computation was made for every sixth shot point, with the additional L.V.L. corrections also being made where applicable.

$$T_r = \left[\begin{array}{l} -T_{int} \\ - (E_s - E_{d_2}) / V_2 \\ - (E_{d_2} - E_D) / V_3 \end{array} \right] - \left[\begin{array}{l} (E_s - E_{d_2}) / V_2 \\ + \\ (E_{d_2} - E_D) / V_3 \end{array} \right]$$

Records were counted in raw time with the total correction being applied to the reflections picked on the records.

D. Record Sectioning Procedure

A study of the field data obtained was made in order to develop a Normal Move-out curve for the area. Pen sections were made with the appropriate Normal Move-out corrections applied. Stacked record sections were then prepared from the pen sections. The only good consistent reflection apparent on the records was a reflection originating from the top of the Slave Point - Elk Point Carbonate sequence. This reflection was flattened to a time of .700 seconds on the stacked sections.

The Utahn reflection, the First Limestone reflection, and in some places the Wabamun reflection,

showed up quite well on the stacked record sections. Corrections were then made to the Utahn reflection (flattening it to a datum of .400 seconds) and another set of record sections was produced.

VI. DISCUSSION OF RESULTS

The Surface Topography map prepared for this area shows the surface rising to the southwest at a fairly uniform rate of 35 feet per mile.

The surface is drained to the northeast by a network of small creeks which are tributaries of the Trout River. Some patches of muskeg are present in the area, but no great difficulties were encountered due to the frozen condition of the ground.

Old lines cleaned out, new lines cut, and the locations of the campsite and air strip constructed are also shown on the Surface Topography map.

The Top of Wabamun and First Limestone map is based on refraction computations made from the record data obtained.

The first high velocity refractor encountered in the northeast part of the area surveyed tied very closely with the First Limestone marker indicated on the logs of the Briggs Trout River No's. 4, 2 and 6 wells. This refraction had a horizontal velocity of 17,000 feet per second.

Over the rest of the area surveyed, a shallower refractor with a horizontal velocity of 14,000 ft. per second was present. The depths computed for this layer tie very closely with the Top of Wabamun markers indicated on the logs of the Briggs Trout River No's 1 and 5 wells to the southwest.

The abrupt disappearance of this refractor in the northeast part of the area suggest the existence of a Wabamun escarpment approximately 250 feet high lying along a northwest - southeast line running through the approximate junction of the AL, AP and AM lines. Indications of buried low velocity material were noted on some of the refraction profiles plotted for the north end of the AL line, and also on the AM line northeast of the postulated Wabamun escarpment.

The First Limestone refractor was observed on the profiles obtained from S.P. AL-78 and AL-90 and a three layer method was used to determine the depth to this formation. Calculations show a Top of Wabamun to First Limestone thickness in excess of 300 at these locations.

The Tops of both the Wabamun and First Limestone have been contoured on the same map, with a broken contour line being used to show the probably First Limestone values where it is overlain by the Wabamun formation.

The Structure - Top of Carbonate map was prepared from data obtained from the field records. All times have been corrected to a datum of +1500 feet. A correctional velocity of 15,300 ft. per sec. was used for data obtained on the northeast side of the indicated Wabamun escarpment, and correctional velocity of 12,600 ft. per second was used for the remainder of the area. A contouring discrepancy occurred along the line where this change was effected. For this reason a break has been shown in the contouring on the map along the same line as the Wabamun escarpment as shown on the map previously discussed.

At the south end of the AJ line, the spread used ($\frac{1}{2}$ mile) was not long enough to accurately determine the thickness of drift for the last three miles surveyed. Time values showing south dip at a rate of .008 seconds per mile have been arbitrarily assigned to the control points involved. These values have been bracketed on the map.

The Structure - Top of Carbonate map shows fairly steep northeast dip coincident with the Slave Point - Elk Point facies change known to exist between the Briggs Trout River number 2 and number 6 wells located in Section 18 of Grid Area North $61^{\circ}90'$ West $120^{\circ}15'$.

Similar dip is shown on the north end of the AJ line occurring one half mile south of Briggs Trout River number 5 well which was drilled on the shale side of the

facies front. These anomalous areas are supported by a marked change in the Utahn to Top of Carbonate interval on the stacked record sections. A similar condition was noted on the record section for the AL line between shot points 36 and 42. This change occurs in the vicinity of the previously discussed near surface lithology change and no reliable time values could be assigned for these locations.

A shallow low trend is shown two miles south of and parallel to the facies front shown on the map.

High values are shown at shot points AJ 72 and AJ 78 located approximately North $60^{\circ}50'$ and West $120^{\circ}30'$. These values are as high as those shown along the high trend coincident with the limestone to shale facies front shown to the north, but since they are regionally downdip, a fairly prominent feature is indicated. Relatively high values on the AL line to the east suggest a probable east - west alignment of this feature.

The Isochron - Utahn to Top of Carbonate values were obtained from the record sections prepared for this area.

This Isochron shows abrupt thinning to the south coincident with the Slave Point - Elk Point facies front shown on the Structure - Top of Carbonate map.

Very marked thinning is shown over the structural feature located in the southwestern part of Grid Area North

61°00', West 120°15'. It should be noted however that the two thinnest contours shown are based on the value obtained for shot point AJ 72. Data in this area is influenced considerably by multiple reflections and this value is therefore somewhat unreliable.

The Isochron - First Limestone to Utahn was also prepared from record section data. This map shows a small amount of sectional thinning over the high feature coincident with the facies front shown on the Structure - Top of Carbonate. Little or no interval change is noted over the structural high located in the southwestern part of Grid Area North 61°00', West 120°15'.

VII. RECOMMENDATIONS

Structural highs along the edge of the Slave Point - Elk Point facies front have been tested by the Briggs Trout River number 1 and number 2 wells. Additional control along this facies change may reveal embayments in the alignment of front which may indicate structural and stratigraphic conditions favourable for hydrocarbon accumulation.

More work should be programmed over the anomaly shown in the southwestern part of the area surveyed to confirm its existence and magnitude. Some thought should

be given to a shooting procedure designed to attenuate multiple reflection interference which occurs at a time coincident with the Slave Point - Elk Point reflections in this area.

Respectfully submitted,

INDEPENDENT EXPLORATION COMPANY
(CANADA) LTD.

James Barron
Party Chief

VIII. APPENDIXStatistical Report:

1. Commencement Date of Work:	March 2, 1966
2. Date of Completion:	March 25, 1966
3. a. Field recording time:	248
b. Moving and holiday time:	112
c. Total crews hours a. and b.:	350
4. a. Number of locations recorded as split profiles:	510
b. Number of locations recorded as weathering profiles:	-
c. Number of locations recorded as single-end profiles other than weathering profiles:	-
5. a. Number of shots taken:	639
b. Average number of shots per location:	1.252
c. Total dynamite used:	2350 lb.
d. Average dynamite per shot:	3.68 lb.
* 6. Number of Locations Recorded Per Ten Hour Day:	20.6
7. Total Miles of Subsurface Coverage obtained:	43.2
8. Miles of Subsurface Coverage Per Ten Hour Day:	1.740
9. Drill # <u>Gyro (Auger)</u>	
a. Field Time:	567.5
b. Moving & holiday time:	130.0
c. Total time (a) & (b):	697.5
d. Total footage:	11,832
e. Footage per ten hour day:	209.0

Drill # Hayter
(Winterwiess)

a. Field Time:	<u>564.0</u>
b. Moving & holiday time:	<u>140.0</u>
c. Total time (a) & (b):	<u>713.0</u>
d. Total footage:	<u>7,303</u>
e. Footage per ten hour day:	<u>130.0</u>

Drill # Foothills
(Mayhew 1000)

a. Field time:	<u>419.5</u>
b. Moving and holiday time:	<u>68.5</u>
c. Total time (a) & (b):	<u>488.0</u>
d. Total footage:	<u>5180</u>
e. Footage per 10 hour day:	<u>124</u>

Drill # Shibley
(Mayhew 1000)

a. Field time:	<u>230.0</u>
b. Moving and holiday time:	<u>54.0</u>
c. Total time (a) & (b):	<u>294.0</u>
d. Total footage:	<u>2590</u>
e. Footage per 10 hour day:	<u>112.5</u>

10. Dozing:

a. Hours cutting	<u>464.5</u>	Miles	<u>37.5</u>
b. Hours cleaning	<u>271.0</u>	Miles	<u>25.5</u>
c. Total hours	<u>709.5</u>	Total Miles	<u>62.0</u>

11. a. Maximum surface elevation: +983.0
Minimum surface elevation: +1604.0

Field Equipment and Technique:

1. Type of instruments and Tape Used: Modified Century Instruments S.I.E MR-4 FM Tape Recorder
2. Geophones Type: HS-J 20 c.p.s.
3. Location to Location Distance: 220 feet
4. Offset to First Group: 110 feet
5. Group Interval: 120 feet
6. Number of Geophones Per Group: 9

Roll-Along Shooting method was used to obtain 600% Sub Surface Coverage
7. Geophone-In-Group Arrangement: 9 phones

15 feet apart in line
8. Number of Holes Per Location: 1
9. Hole Spacing: 440 feet
10. Average Hole Depth: 40 feet
11. Recording Procedure: (Recording tape-filter, A.G.C., etc.)
(Playback-filter, A.G.C., etc.)

Shots Recorded on tape with filter setting
20(1) - 120(1)
A.G.C. - Fast
Gain Setting - 18 db
No Amplified Playbacks made
Record Sections made on filter setting 27(1) - 65(1)

12. Survey Procedure: (Instrument used, take off control, etc.)

A. Wilde T1-A Theodolite was used.

Take off control was obtained from wellsite locations and elevations in area.

Azimuth was determined from polar observations.
(Latitude and departure sheets included).

SUB CONTRACTED EQUIPMENT AND SERVICES

<u>Services</u>	<u>Name</u>	<u>Address</u>	<u>Evaluation</u>
Drilling	Gyro Drilling	Calgary	Satisfactory
Drilling	Hayter Drilling	Estavan, Sask.	Unsatisfactory
Drilling	Foothills Drilling	Calgary	Unsatisfactory (low footage rate)
Drilling	Shibley Enterprises	Calgary	Unsatisfactory (low footage rate)
Water Truck	Ingram	Calgary	Satisfactory
Bulldozing	Brown Construction	Olds, Alberta	Satisfactory
Camp Catering	Fortier & Associates	Edmonton	Satisfactory
Camp Rental	Heiland and Texaco	Calgary	Satisfactory

Note: Long Water Haul for drills

DRILLERS LOG

LINE &
SHOT POINT NO.

AM

S.P.	1				
2	0 - 15	Muskeg	15 - 40	Clay & Boulders	
3	0 - 15	Muskeg	15 - 40	Clay & Boulders	
4	0 - 13	Muskeg	13 - 40	Clay & Boulders	
5	0 - 40	Clay & Boulders			
6		Boulders			
7	0 - 40	Clay & Boulders			
8	0 - 40	Clay & Boulders			
9	0 - 40	Clay & Boulders			
10	0 - 40	Clay & Boulders			
11	0 - 40	Clay & Boulders			
12	0 - 40	Clay & Boulders			
13	0 - 40	Clay & Boulders			
14	0 - 40	Clay & Boulders			
15	0 - 40	Clay & Boulders			
16	0 - 18	Gravel	18 - 40	Clay & Boulders	
17	0 - 15	Gravel	15 - 40	Clay & Boulders	
18	0 - 15	Brown Clay	15 - 25	Gravel & Boulders	
19	0 - 40	Clay & Boulders			
20	0 - 7	Muskeg	7 - 40	Clay & Boulders	
21	0 - 10	Muskeg	10 - 35	Clay & Boulders	
22	0 - 7	Muskeg	7 - 40	Clay & Boulders	
23	0 - 5	Muskeg	5 - 40	Clay & Boulders	
24	0 - 40	Clay & Boulders			
25	0 - 15	Boulders			
26	0 - 10	Boulders	10 - 15	Clay & Gravel	
			15 - 33	Blue Clay & Boulders	
27	0 - 20	Clay & Boulders		20 - 35	Sand
				35 - 40	Clay & Boulders
28	0 - 20	Clay & Boulders		20 - 40	Sand & Gravel
29	0 - 10	Clay & Boulders		10 - 40	Gravel
30	0 - 40	Clay & Boulders			
31	0 - 40	Clay & Boulders			
32	0 - 40	Clay & Boulders			
33	0 - 40	Clay & Boulders			
34	0 - 30	Clay & Boulders		30 - 35	Gravel
35	0 - 40	Clay & Boulders			
36	0 - 40	Clay & Boulders			
37	0 - 40	Clay & Boulders			
38	0 - 20	Gravel			
39	0 - 15	Clay	15 - 30	Gravel & Boulders	
40	0 - 40	Clay & Boulders			
41	0 - 5	Muskeg	5 - 40	Clay & Boulders	
42	0 - 5	Muskeg	5 - 40	Clay & Boulders	
43	0 - 20	Clay & Boulders		20 - 30	Sand
				30 - 40	Clay

S.P. 44	0 - 10	Muskeg	10 - 40	Clay & Boulders
45	0 - 40	Clay & Boulders		
46	0 - 40	Clay & Boulders		
47	0 - 40	Clay & Boulders		
48	0 - 40	Clay & Boulders & Small Rocks		
49	0 - 40	Clay & Boulders		
50	0 - 5	Clay	5 - 35	Sand Gravel & Rocks
51	0 - 10	Muskeg	10 - 25	Sand 25 - 40 Sand & Gravel
52	0 - 40	Sand & Gravel		
53	0 - 5	Muskeg	5 - 40	Clay & Boulders
54	0 - 12	Brown Clay	12 - 17	Rock
			17 - 42	Blue Clay & Boulders
55	0 - 15	Sand & Gravel	15 - 25	Clay & Boulders
56	0 - 40	Clay & Boulders		
57	0 - 10	Muskeg	10 - 40	Clay & Boulders
58	0 - 5	Muskeg	5 - 40	Clay & Boulders
59	0 - 3	Sand	3 - 25	Clay & Boulders
60	0 - 5	Clay	5 - 12	Sand 12 - 25 Clay & Rocks
61	0 - 25	Clay Rocks & Boulders		
62	0 - 8	Brown Clay	8 - 30	Dark Blue Clay
			30 - 105	Blue Clay & Boulders
63	0 - 25	Clay & Boulders		
64	0 - 10	Brown Clay	10 - 25	Blue Clay & Boulders
65	0 - 30	Clay & Boulders		
66	0 - 5	Muskeg	5 - 40	Clay & Boulders
67	0 - 40	Clay & Boulders		
68	0 - 50	Clay & Rocks		
69	0 - 40	Clay & Boulders		
70	0 - 40	Clay & Boulders		
71	0 - 10	Brown Clay	10 - 50	Blue Clay & Boulders

AL

S.P. 1	0 - 5	Muskeg	5 - 40	Clay & Boulders
2	0 - 5	Muskeg	5 - 40	Clay & Boulders
3	0 - 40	Clay & Boulders		
4	0 - 80	Clay & Boulders		
5	0 - 80	Rocks & Boulders		
6	0 - 15	Brown Clay	15 - 35	Blue Clay & Boulders
	35 - 40	Rock	40 - 80	Blue Clay
7	0 - 40	Clay & Gravel	40 - 80	Sandy Clay & Boulders
8	0 - 10	Boulders	10 - 80	Clay & Boulders
9	0 - 65	Clay & Boulders		
10	0 - 5	Muskeg, Clay & Rocks		
11	0 - 2	Muskeg	2 - 90	Clay & Rocks
12	0 - 40	Clay & Boulders		
13	0 - 15	Brown Clay	15 - 60	Blue Clay & Boulders
			60 - 80	Gravel

AL

S.P. 14	0 - 5	Muskeg	5 - 60	Clay & Rocks
			60 - 80	Sand & Gravel
15	0 - 18	Brown Clay	18 - 25	Gravel
	25 - 50	Blue Clay	50 - 80	Gravel
16	0 - 2	Ice	2 - 45	Clay & Rocks
	45 - 60	Gravel	60 - 80	Hard Sand
17	0 - 10	Muskeg	10 - 40	Sand & Gravel
			40 - 80	Gravel & Clay
18	0 - 40	Clay & Rocks	40 - 80	Gravel & Sand with Rocks
19	0 - 80	Clay & Boulders		
20	0 - 80	Clay & Boulders		
21	0 - 40	Clay & Boulders		
22	0 - 80	Clay, Rocks & Boulders		
23	0 - 40	Sandy Clay & Gravel		
24	0 - 40	Clay & Boulders		
25	0 - 10	Muskeg	10 - 30	Clay & Boulders
	30 - 50	Gravel	50 - 80	Clay & Boulders
26	0 - 20	Brown Clay	20 - 45	Blue Clay & Boulders
	45 - 80	Gravel		
27	0 - 80	Clay, Rocks & Boulders		
28	0 - 35	Clay & Boulders	35 - 40	Gravel
29	0 - 20	Gravel	20 - 60	Gravel & Clay
			60 - 75	Clay & Boulders
30	0 - 15	Brown Clay	15 - 60	Blue Clay & Boulders
31	0 - 40	Boulders		
32	0 - 40	Clay & Boulders		
33	0 - 12	Brown Clay	12 - 60	Blue Clay & Boulders
34	0 - 60	Clay & Boulders		
35	0 - 60	Clay Rocks & Boulders		
36	0 - 10	Sand	10 - 15	Gravel
37	0 - 40	Sandy Clay & Gravel		
38	0 - 20	Clay & Boulders	20 - 30	Gravel
			30 - 40	Clay & Boulders
39	0 - 25	Clay	25 - 30	Cement Gravel
	30 - 48	Clay	48 - 60	Sand
40	0 - 40	Clay & Boulders		
41	0 - 5	Muskeg	5 - 40	Clay & Boulders
42	0 - 5	Muskeg	5 - 40	Clay & Boulders
43	0 - 60	Clay & Boulders		
44	0 - 4	Muskeg	4 - 44	Clay
	44 - 50	Course Gravel & Rocks	50 - 60	Clay
45	0 - 60	Clay, Rocks & Boulders		
46	0 - 12	Muskeg		
47	0 - 30	Clay	30 - 45	Boulders
48	0 - 12	Muskeg		
49	0 - 15	Brown Clay	15 - 40	Blue Clay
50	0 - 12	Brown Clay	12 - 40	Blue Clay
51	0 - 45	Clay & Boulders		
52	0 - 40	Clay & Rocks		
53	0 - 45	Clay & Boulders		
54	0 - 45	Clay & Boulders		

AL

S.P. 55	0 - 30	Clay & Boulders	30 - 45	Gravel & Clay
56	0 - 40	Clay & Boulders		
57	0 - 40	Sandy Clay & Gravel		
58	0 - 40	Sandy Clay & Gravel		
59	0 - 40	Clay & Boulders		
60	0 - 2	Muskeg	2 - 40	Clay & Rocks
61	0 - 40	Clay & Boulders		
62	0 - 3	Muskeg	3 - 40	Clay & Rocks
63	0 - 45	Clay & Boulders		
64	0 - 10	Brown Clay	10 - 40	Blue Clay & Boulders
65	0 - 5	Muskeg	5 - 45	Clay & Rocks
66	0 - 5	Muskeg	5 - 45	Clay & Rocks
67	0 - 5	Muskeg	5 - 15	Brown Clay
			15 - 40	Blue Clay
68	0 - 5	Muskeg	5 - 45	Clay & Rocks
69	0 - 40	Clay & Boulders		
70	0 - 12	Brown Clay & Boulders		
	12 - 40	Blue Clay & Boulders		
71	0 - 2	Muskeg	2 - 45	Clay & Rocks
72	0 - 40	Clay & Gravel		
73	0 - 45	Clay Rocks & Gravel		
74	0 - 40	Clay & Boulders		
75	0 - 45	Clay & Boulders		
76	0 - 45	Clay & Boulders		
77	0 - 40	Clay, Rocks & Boulders		
78	0 - 45	Clay & Boulders		
79	0 - 40	Sandy Clay & Gravel		
80	0 - 40	Clay & Rocks		
81	0 - 40	Clay & Boulders		
82	0 - 40	Clay & Boulders		
83	0 - 45	Clay & Boulders		
84	0 - 5	Muskeg	5 - 40	Clay, Rocks & Boulders
85	0 - 10	Muskeg	10 - 40	Clay & Boulders
86	0 - 45	Clay & Boulders		
87	0 - 7	Muskeg	7 - 15	Brown Clay & Boulders
			15 - 43	Blue Clay & Boulders
88	0 - 5	Muskeg	5 - 40	Clay & Boulders
89	0 - 3	Muskeg	3 - 12	Brown Clay & Boulders
			12 - 40	Blue Clay & Boulders
90	0 - 3	Muskeg	3 - 12	Clay & Boulders
			12 - 40	Blue Clay & Boulders
91	0 - 3	Muskeg	5 - 12	Brown Clay & Boulders
			12 - 40	Blue Clay & Boulders
92	0 - 5	Muskeg	5 - 12	Brown Clay & Boulders
			12 - 43	Blue Clay & Boulders
93	0 - 5	Muskeg	5 - 12	Brown Clay & Boulders
			12 - 43	Blue Clay & Boulders
94	0 - 5	Muskeg	5 - 12	Brown Clay & Boulders
			12 - 43	Blue Clay & Boulders
95	0 - 8	Muskeg	8 - 40	Clay, Boulders & Gravel

AL

S.P. 96	0 - 20	Boulders			
97	0 - 3	Muskeg	3 - 18	Clay & Rocks	
	18 - 21	Gravel & Rocks	21 - 40	Clay, Rocks & Boulders	
98	0 - 45	Clay Rocks & Gravel			
99	0 - 38	Sandy Clay & Gravel			
100	0 - 38	Sandy Clay & Gravel			
101	0 - 40	Sandy Clay & Gravel			
102	0 - 40	Sandy Clay & Gravel			
103	0 - 40	Clay & Boulders			
104	0 - 40	Clay & Boulders			
105	0 - 5	Muskeg	5 - 40	Clay & Boulders	
106	0 - 12	Brown Clay	12 - 20	Gravel	
			20 - 25	Blue Clay	
107	0 - 40	Sandy Clay & Boulders			
108	0 - 15	Very Hard Boulders	15 - 45	Clay & Very Hard Boulders	
109	0 - 15	Very Hard Boulders	15 - 45	Clay & Very Hard Boulders	
110	0 - 20	Sandy Clay	20 - 40	Clay & Boulders	
111	0 - 16	Gravel			
112	0 - 16	Gravel			
113	0 - 2	Muskeg	2 - 45	Clay & Rocks. Layers of Sand	
114	0 - 10	Brown Clay	10 - 43	Blue Clay & Boulders	
115	0 - 40	Clay & Boulders			
116	0 - 1	Muskeg	1 - 40	Clay & Boulders	
			40 - 45	Gravel	
117	0 - 10	Brown Clay	10 - 30	Blue Clay & Boulders	
			30 - 40	Gravel	
118	0 - 40	Clay & Boulders			
119	0 - 20	Clay & Boulders	20 - 24	Gravel	
120	0 - 40	Clay & Rocks			
121	0 - 40	Clay & Rocks			
122	0 - 40	Sandy Clay & Gravel			
123	0 - 10	Boulders	10 - 30	Gravel	
			30 - 40	Clay & Boulders	
124	0 - 10	Boulders	10 - 30	Gravel	
			30 - 40	Clay & Boulders	
125	0 - 40	Clay & Boulders			
126	0 - 40	Clay & Rocks			
127	0 - 40	Clay & Boulders			
128	0 - 40	Clay & Boulders			
129	0 - 40	Clay & Boulders			

AP

S.P. 1	0 - 45	Clay & Rocks		
2	0 - 45	Clay & Very Hard Boulders		
3	0 - 45	Clay & Boulders		
4	0 - 45	Clay & Boulders		
5	0 - 40	Clay & Boulders		

AP

S.P.	6	0 - 35	Clay & Boulders		
	7	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Boulders
	8	0 - 45	Clay & Boulders		
	9	0 - 20	Muskeg	20 - 40	Clay & Boulders
	10	0 - 20	Muskeg	20 - 40	Clay & Boulders
	11	0 - 10	Muskeg	10 - 15	Brown Clay
				15 - 43	Blue Clay & Boulders
	12	0 - 10	Muskeg	10 - 45	Clay & Rocks
	13	0 - 10	Muskeg	10 - 40	Clay & Boulders
	14	0 - 8	Muskeg	8 - 15	Brown Clay
				15 - 43	Blue Clay
	15	0 - 5	Muskeg	5 - 45	Rocks
	16	0 - 8	Muskeg	8 - 40	Clay & Boulders
	17	0 - 40	Clay & Boulders		
	18	0 - 45	Clay & Boulders		
	19	0 - 45	Clay & Boulders		
	20	0 - 40	Clay & Boulders		
	21	0 - 20	Sand & Gravel		
	22	0 - 2	Muskeg	2 - 40	Clay & Boulders
	23	0 - 20	Gravel	20 - 35	Boulders
	24	0 - 20	Gravel	20 - 40	Clay & Gravel
	25	0 - 3	Muskeg	3 - 40	Clay & Boulders
	26	0 - 3	Muskeg	3 - 40	Clay & Boulders
	27	0 - 15	Brown Clay	15 - 43	Blue Clay & Boulders
	28	0 - 45	Sandy Clay & Boulders		
	29	0 - 2	Muskeg	2 - 45	Clay Rocks & Boulders
	30	0 - 40	Clay & Boulders		
	31	0 - 4	Rock	4 - 9	Clay & Boulders
				9 - 30	Blue Clay & Boulders
	32	0 - 18	Boulders	18 - 45	Clay & Rocks
	33	0 - 10	Boulders	10 - 20	Blue Clay & Boulders
		20 - 30	Gravel & Boulders		
		32 - 43	Blue Clay & Boulders		
	34	0 - 12	Brown Clay & Boulders		
		12 - 40	Blue Clay & Boulders		
	35	0 - 20	Clay, Rocks & Hard Boulders		
		20 - 45	Gravel		
	36	0 - 6	Muskeg	6 - 40	Clay & Rock
	37	0 - 40	Clay & Boulders		
	38	0 - 40	Clay & Boulders		
	39	0 - 8	Clay & Boulders	8- 25	Cemented Gravel
				25- 45	Clay & Boulders
	40	0 - 40	Clay & Boulders		
	41	0 - 40	Clay & Boulders		
	42	0 - 40	Clay & Boulders		
	43	0 - 20	Clay & Boulders		
	44	0 - 40	Clay & Boulders		
	45	0 - 40	Sandy Clay & Gravel		
	46	0 - 40	Sandy Clay & Gravel		
	47	0 - 8	Muskeg	8 - 40	Clay & Boulders

AP

S.P. 48	0 - 10	Muskeg & Sand	10 - 30	Cemented Gravel
49	0 - 3	Muskeg	30 - 45	Clay & Boulders
			3 - 6	Gravel
50	0 - 3	Muskeg	6 - 40	Clay & Rock
			3 - 6	Gravel
51	0 - 45	Clay & Boulders	6 - 40	Clay & Rock
52	0 - 10	Brown Clay	10 - 13	Rock
			13 - 43	Blue Clay
53	0 - 40	Clay & Boulders		
54	0 - 40	Clay & Boulders		
55	0 - 45	Clay & Boulders		
56	0 - 40	Clay & Boulders		
57	0 - 12	Brown Clay	12 - 43	Blue Clay
58	0 - 45	Clay & Boulders		
59	0 - 40	Clay & Boulders		
60	0 - 40	Clay & Boulders		
61	0 - 40	Clay & Boulders		
62	0 - 40	Clay & Boulders		
63	0 - 10	Gravel	10 - 43	Blue Clay & Boulders
64	0 - 15	Sandy Clay & Gravel		
	15 - 45	Clay & Rocks		
65	0 - 40	Clay & Boulders		
66	0 - 40	Clay & Boulders		
67	0 - 10	Brown Clay	10 - 43	Blue Clay & Boulders
68	0 - 40	Clay Gravel & Boulders		
69	0 - 40	Clay & Boulders		
70	0 - 45	Clay & Boulders		
71	0 - 20	Clay & Boulders		
72	0 - 2	Muskeg	2 - 40	Clay & Rock & Boulders
				3 feet thick
73	0 - 40	Sandy Clay & Boulders		
74	0 - 40	Sandy Clay & Gravel		
75	0 - 40	Sandy Clay & Gravel		
76	0 - 40	Sand & Gravel		
77	0 - 40	Sand & Gravel		
78	0 - 40	Clay & Rock		
79	0 - 10	Sand	10 - 25	Clay & Boulders
			25 - 45	Layers of Limestone & Clay
80	0 - 24	Muskeg	24 - 29	Boulders
			29 - 40	Clay & Rocks
81	0 - 40	Clay Gravel & Boulders		
82	0 - 40	Clay & Boulders		
83	0 - 40	Clay Gravel & Boulders		
84	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Boulders
85	0 - 40	Clay & Boulders		
86	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Boulders
87	0 - 45	Clay & Boulders		
88	0 - 5	Muskeg	5 - 40	Clay & Boulders
89	0 - 40	Gravel Clay & Boulders		
00	0 - 40	Clay & Boulders		

AP

S.P. 01	0 - 40	Clay & Boulders		
02	0 - 45	Clay & Boulders		
03	0 - 5	Muskeg	5 - 40	Clay & Boulders
04	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Boulders
05	0 - 2	Muskeg	2 - 20	Clay & Rocks
06	20 - 30	Gravel	30 - 45	Clay & Rocks
	0 - 7	Muskeg	7 - 40	Clay & Boulders & Streaks of Gravel
07	0 - 10	Brown Clay & Boulders	10 - 43	Blue Clay & Boulders
08	0 - 40	Gravel Clay & Boulders		
09	0 - 2	Muskeg	2 - 45	Clay & Layers of Gravel
100	0 - 15	Gravel	15 - 40	Sand & Gravel
101	0 - 40	Clay & Boulders		
102	0 - 40	Clay & Boulders		
103	0 - 40	Clay & Boulders		
104	0 - 15	Sand & Muskeg		
105	0 - 40	Clay & Boulders		
106	0 - 40	Clay & Boulders		
107	0 - 10	Muskeg	10 - 30	Sand & Pea Gravel
108	0 - 15	Clay & Boulders	15 - 45	Sandy Clay
109	0 - 40	Clay & Boulders		
110	0 - 12	Clay	12 - 40	Gravel
111	0 - 6	Muskeg	6 - 15	Gravel
			15 - 40	Clay Rocks & Gravel
112	0 - 40	Clay & Boulders		
113	0 - 4	Muskeg	4 - 45	Sand, Water & Gravel
114	0 - 4	Muskeg	4 - 45	Sand, Water & Gravel
115	0 - 40	Clay Gravel & Boulders		
116	0 - 10	Brown Clay & Boulders	10 - 43	Blue Clay & Boulders
117	0 - 40	Clay & Boulders		
118	0 - 3	Muskeg	3 - 12	Brown Clay & Boulders
			12 - 43	Blue Clay & Boulders
119	0 - 40	Clay & Boulders		
120	0 - 40	Clay & Boulders		
121	0 - 5	Muskeg	5 - 40	Clay & Boulders
122	0 - 10	Brown Clay	10 - 43	Blue Clay & Rock
123	0 - 15	Rocks & Gravel	15 - 40	Clay & Boulders
124	0 - 7	Muskeg	7 - 40	Clay & Boulders
125	0 - 5	Muskeg	5 - 40	Clay & Boulders
126	0 - 40	Clay & Boulders		
127	0 - 40	Clay & Boulders		
128	0 - 2	Muskeg	2 - 45	Clay & Rocks
129	0 - 2	Muskeg	2 - 45	Clay & Rocks

AJ

S.P. 1	0 - 40	Clay Gravel & Boulders		
2	0 - 30	Clay & Gravel	30 - 45	Clay & Boulders
3	0 - 40	Clay & Rock		
4	0 - 40	Clay & Rock		
5	0 - 15	Gravel	15 - 40	Sandy Clay & Gravel
6	0 - 20	Sand & Gravel	20 - 40	Sandy Clay & Gravel

AJ

S.P.	7	0 - 10	Gravel	10 - 40	Sandy Clay & Boulders
	8	0 - 40	Clay & Rocks		
	9	0 - 40	Clay Gravel & Boulders		
	10	0 - 40	Clay & Boulders		
	11	0 - 40	Clay & Boulders		
	12	0 - 40	Clay & Boulders		
	13	0 - 40	Clay & Boulders		
	14	0 - 40	Clay & Boulders		
	15	0 - 40	Clay Gravel & Boulders		
	16	0 - 10	Brown Clay & Boulders	10 - 40	Blue Clay & Boulders
	17	0 - 45	Clay & Rocks		
	18	0 - 40	Sand & Rocks		
	19	0 - 45	Clay & Rocks & Layers of Gravel		
	20	0 - 15	Brown Clay	15 - 20	Hard Rock
		20 - 30	Gravel	30 - 43	Blue Clay & Boulders
	21	0 - 40	Clay & Rock		
	22	0 - 40	Gravel & Boulders		
	23	0 - 40	Clay Boulders & Streaks of Gravel		
	24	0 - 45	Clay & Boulders & Layers of Gravel		
	25	0 - 12	Brown Clay	12 - 17	Rock
				17 - 43	Blue Clay & Boulders
	26	0 - 40	Clay & Boulders		
	27	0 - 40	Clay & Boulders & Sand at 15'		
	28				
	29	0 - 20	Gravel	25 - 40	Boulders
	30	0 - 45	Clay & Boulders		
	31	0 - 40	Clay & Rocks		
	32	0 - 40	Sandy Clay & Boulders		
	33	0 - 40	Sandy Clay & Gravel		
	34	0 - 45	Clay & Boulders		
	35	0 - 25	Gravel	25 - 40	Sandy Clay & Boulders
	36	0 - 40	Clay, Gravel & Boulders		
	37	0 - 5	Muskeg	5 - 10	Pea Gravel
				10 - 45	Clay & Boulders
	38	0 - 40	Sandy Clay & Boulders		
	39	0 - 40	Clay, Gravel & Boulders		
	40	0 - 45	Clay, Rocks & Layers of Gravel		
	41	0 - 25	Clay & Boulders	25 - 35	Gravel
	42	0 - 40	Boulders & Clay		
	43	0 - 4	Muskeg	4 - 33	Clay & Rock
				33 - 37	Gravel
					37 - 40 Clay
	44	0 - 12	Brown Clay	12 - 43	Blue Clay & Boulders
	45	0 - 45	Clay, Boulders & Layers of Gravel		
	46	0 - 12	Brown Clay	12 - 43	Gravel, Layers of Clay & Boulders
	47	0 - 40	Rocks & Clay		
	48	0 - 10	Skid	10 - 20	
				20 - 43	Gravel & Boulders
	49	0 - 40	Clay & Boulders		
	50	0 - 40	Sandy Clay, Boulders & Gravel		

AJ

S.P.	51	0 - 40	Sandy Clay, Boulders & Gravel
	52	0 - 30	Clay & Rocks 30 - 40 Gravel
	53	0 - 10	Muskeg 10 - 40 Clay & Boulders
	54	0 - 10	Muskeg 10 - 40 Clay, Boulders & Gravel
	55	0 - 4	Muskeg 4 - 30 Clay & Rocks
			30 - 45 Sand & Gravel
	56	0 - 12	Brown Clay 12 - 30 Blue Clay & Boulders
			30 - 43 Sand & Gravel
	57	0 - 1	Ice 1 - 45 Clay & Rock
	58	0 - 40	Sand & Boulders
	59	0 - 15	Muskeg 15 - 40 Sandy Clay & Gravel
	60	0 - 40	Clay & Boulders
	61	0 - 15	Muskeg 15 - 40 Sandy Clay & Gravel
	62	0 - 10	Muskeg 10 - 40 Clay & Boulders
	63	0 - 10	Muskeg 10 - 20 Sand, Pea Gravel
			20 - 45 Clay & Boulders
	64	0 - 12	Muskeg 12 - 40 Clay, Rock and Boulders
	65	0 - 15	Muskeg 15 - 30 Clay & Boulders
			30 - 45 Sand & Hard Layers
	66	0 - 15	Muskeg 15 - 40 Clay, Gravel & Boulders
	67	0 - 15	Muskeg 15 - 40 Clay & Boulders
	68	0 - 10	Muskeg 10 - 40 Sandy Clay & Gravel
	69	0 - 40	Muskeg Clay Gravel Boulders & Sand
	70	0 - 40	Muskeg Clay Gravel Boulders & Sand
	71	0 - 3	Muskeg 3 - 40 Clay & Rocks
	72	0 - 40	Clay & Boulders
	73	0 - 10	Brown Clay & Boulders 0 - 43 Blue Clay & Boulders
	74	0 - 45	Clay & Rocks
	75	0 - 40	Clay & Boulders
	76	0 - 10	Brown Clay 10 - 43 Blue Clay & Boulders
	77	0 - 10	Brown Clay 10 - 43 Blue Clay & Boulders
	78	0 - 45	Clay Rocks & Boulders
	79	0 - 45	Clay Rocks & Boulders
	80	0 - 12	Brown Clay 12 - 20 Blue Clay & Boulders
			20 - 43 Sand & Layers of Rock
	81	0 - 12	Brown Clay 12 - 20 Blue Clay & Boulders
			20 - 43 Sand & Layers of Rock
	82	0 - 12	Brown Clay 12 - 20 Blue Clay & Boulders
			20 - 43 Sand & Layers of Rock
	83	0 - 40	Clay & Boulders
	84	0 - 40	Clay & Boulders
	85	0 - 45	Clay & Rocks
	86	0 - 45	Clay & Rocks
	87	0 - 40	Clay & Boulders
	88	0 - 45	Clay & Rocks
	89	0 - 40	Clay, Gravel, Boulders & Sand
	90	0 - 20	Sand & Gravel 20 - 40 Sand & Gravel
	91	0 - 12	Muskeg 12 - 40 Sand & Gravel
	92	0 - 10	Muskeg 10 - 30 Gravel 30 - 45 Sand
	93	0 - 3	Muskeg 3 - 40 Clay
	94	0 - 3	Muskeg 3 - 40 Clay
	95	0 - 40	Sand
	96	0 - 10	Brown Clay & Boulders 10 - 43 Blue Clay & Boulders
	97	0 - 10	Muskeg 10 - 35 Clay & Boulders
			35 - 45 Sand

AJ

S.P. 98	0 - 40	Clay & Rocks		
00	0 - 5	Muskeg	5 - 40	Sandy Clay & Boulders
100	0 - 45	Clay & Rocks		
101	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Boulders
102	0 - 45	Clay & Boulders		
103	0 - 40	Clay & Rocks		
104	0 - 45	Clay & Boulders		
105	0 - 10	Brown Clay & Boulders	10 - 43	Blue Clay & Layers of Rock
106	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Layers of Rock
107	0 - 40	Quick Sand		
108	0 - 10	Muskeg	10 - 40	Clay & Boulders
109	0 - 6	Muskeg	6 - 40	Sandy Clay & Boulders
110	0 - 40	Clay & Rocks		
111	0 - 45	Clay & Boulders		
112	0 - 5	Muskeg	5 - 40	Clay & Boulders
113	0 - 8	Muskeg	8 - 40	Sand Clay & Boulders
114	0 - 5	Muskeg	5 - 40	Clay & Boulders
115	0 - 40	Clay, Gravel & Boulders		
116	0 - 3	Muskeg	3 - 12	Gravel
	12 - 20	Clay & Rocks	20 - 40	Gravel & Boulders
117	0 - 10	Gravel	10 - 40	Clay & Boulders
118	0 - 10	Gravel	10 - 40	Clay & Boulders
119	0 - 12	Clay & Gravel	12 - 40	Clay Rocks & Boulders
120	0 - 20	Clay, Boulders, Sand & Gravel		
121	0 - 40	Clay & Boulders		
122	0 - 45	Clay Rocks & Layers of Gravel		
123	0 - 12	Brown Clay & Boulders		
	12 - 43	Blue Clay & Layers of Gravel		
124	0 - 5	Muskeg	5 - 45	Sand & Gravel
125	0 - 10	Gravel (Blind)	10 - 40	Clay & Boulders
126	0 - 5	Gravel	5 - 40	Sandy Clay & Boulders
127	0 - 30	Sandy Clay & Boulders	30 - 40	Sand & Gravel
128	0 - 45	Clay, Boulders, Layers of Gravel		
129				
130	0 - 40	Clay & Boulders		
131	0 - 12	Brown Clay	12 - 22	Gravel
	22 - 43	Blue Clay & Layers of Rock		
132	0 - 40	Gravel & Rocks		
133	0 - 12	Brown Clay, Layers of Gravel		
	12 - 20	Blue Clay, Boulders		
134	0 - 13	Brown Clay & Boulders		
	13 - 43	Blue Clay, Layers of Gravel		
135	0 - 2	Muskeg	2 - 45	Clay & Boulders
136	0 - 10	Muskeg	10 - 30	Sandy Clay & Boulders
			30 - 40	Gravel
137	0 - 12	Brown Clay & Boulders		
	12 - 43	Blue Clay & Layers of Rock		
138	0 - 12	Brown Clay & Boulders		
	12 - 43	Blue Clay & Layers of Gravel		
139	0 - 10	Muskeg	10 - 30	Sandy Clay & Boulders
			30 - 40	Gravel

AJ

S.P. 140	0 - 4	Muskeg	4 - 40	Clay, Rock & Boulders
141	0 - 45	Clay, Boulders & Layers of Gravel		
142	0 - 10	Brown Clay & Layers of Gravel		
	10 - 20	Blue Clay & Boulders	20 - 30	Gravel
	30 - 43	Blue Clay		
143	0 - 12	Brown Clay & Layers of Gravel		
	12 - 43	Blue Clay & Boulders		
144	0 - 4	Muskeg	4 - 40	Clay, Rock & Boulders
145	0 - 6	Muskeg	6 - 40	Clay & Rocks
146	0 - 40	Clay, Gravel, Sand & Boulders		
147	0 - 40	Clay & Boulders		
148	0 - 40	Clay & Boulders		
149	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Layers of Gravel
150	0 - 45	Clay, Rocks & Layers of Gravel		
151	0 - 40	Clay & Boulders		
152	0 - 45	Clay, Rocks & Layers of Gravel		
153	0 - 45	Clay, Rocks & Layers of Gravel		
154	0 - 5	Muskeg	5 - 40	Clay & Boulders
155	0 - 5	Muskeg	5 - 40	Clay & a Ledge of Rock
156	0 - 40	Clay & Boulders		
157	0 - 12	Brown Clay & Boulders	12 - 20	Rock & Clay
			20 - 30	Gravel
158	0 - 40	Clay & Boulders		
159	0 - 40	Clay & Boulders		
160	0 - 40	Clay & Boulders		
161	0 - 5	Muskeg	5 - 43	Blue Clay & Layers of Gravel
162	0 - 45	Clay & Boulders		
163	0 - 45	Clay & Boulders		

AK

129	0 - 35	Sandy Clay & Boulders	35 - 40	Gravel
130	0 - 45	Clay & Boulders		
131	0 - 40	Clay & Boulders		
132	0 - 40	Clay & Boulders		
133	0 - 5	Muskeg	5 - 40	Clay & Boulders
134	0 - 5	Muskeg	5 - 20	Sandy Clay & Boulders
			20 - 25	Gravel
135	0 - 5	Clay	5 - 45	Sand & Gravel
136	0 - 40	Clay & Boulders		
137	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Layers of Rock
138	0 - 12	Brown Clay & Boulders	12 - 43	Blue Clay & Layers of Gravel
139	0 - 5	Muskeg	5 - 40	Clay & Boulders
140	0 - 30	Clay & Boulders	30 - 40	Gravel
141	0 - 45	Clay, Boulders & Layers of Gravel		
142	0 - 10	Brown Clay & Layers of Gravel		
	10 - 20	Blue Clay & Boulders	20 - 30	Gravel
	30 - 43	Blue Clay		

AK

S.P. 143	0 - 12	Brown Clay & Layers of Gravel
	12 - 43	Blue Clay & Boulders
144	0 - 35	Clay & Boulders
145	0 - 40	Clay & Boulders
146	0 - 45	Clay, Rocks & Layers of Gravel
147	0 - 40	Clay, Gravel, Boulders
148	0 - 40	Clay, Gravel & Boulders
149	0 - 5	Muskeg
		5 - 40 Clay & Boulders
150	0 - 15	Gravel
		15 - 40 Clay & Boulders
151	0 - 20	Clay & Boulders
152	0 - 45	Clay, Rocks & Layers of Gravel
153	0 - 40	Clay, Boulders & Gravel
154	0 - 40	Gravel & Boulders

SEISMIC SURVEY

TROUT LAKE AREA, N.W.T.

UNION OIL COMPANY OF CANADA LTD.

1 95-196

TROUT LAKE AREA

Northwest Territories

111 95-186

Submitted to

UNION OIL COMPANY OF CANADA, LIMITED

By

NATIONAL GEOPHYSICAL COMPANY OF CANADA, LIMITED

SUMMARY AND CONCLUSIONS

The seismic survey in the Trout Lake Area was intended as added detail and confirmation of existing seismic control. As such, the survey will furnish a substantial amount of usable data.

Several interesting leads of structural anomalies are uncovered. Further investigation is definitely indicated which, if not resolved by the integration of all the available seismic data, should be augmented with additional seismic surveys.

Except in the southern part of the area, record quality is poor. Any further seismic work should be accompanied by a serious attempt to improve record quality. Even a slight improvement in the field data would considerably raise the quality of the final interpretation.

INTRODUCTION

The Trout Lake Prospect lies within the Northwest Territories approximately 140 miles north and east of Fort Nelson, B.C. The area is accessible by road and bulldozed trails from Fort Nelson.

Seismic personnel were housed in a field camp which was supplied by road and air from Fort Nelson. Communication to the outside was maintained by radio telephone.

The terrain is quite flat with very little drainage. Vegetation consists primarily of scrub evergreens. Small lakes and muskegs are numerous throughout the area.

The seismic program consisted of 5 lines for a total of approximately 46 miles covering an area of approximately 270 square miles.

GEOLOGY

The Trout Lake prospect is located geologically over the Pathlina Uplift on the east flank of the Northern Alberta Basin.

In Middle Devonian time during Upper Elk Point sedimentation the Presqu'ile reef complex was developed on the Keg River carbonate in the area. The reef is typically 600 to 700 feet thick. As yet no production from the reef in the immediate area has been established.

The overlying Middle Devonian Slave Point formation has produced substantial quantities of gas in Northeastern British Columbia and the Northwest Territories. Most of the production is found in barrier reef edges along the facies front between the carbonate shelf and the shale basin.

ENCLOSURES

Included with the report are copies of the following seismic maps.

1. Devonian Structure
2. Utahn Structure
3. Slave Point Structure
4. Utahn to Slave Point Isochron

PROCEDURES

OBJECTIVE:

The object of the survey was to provide additional seismic control in the areas of interest established in previous surveys.

REFLECTIONS MAPPED:

Seismic events believed to correspond to the Devonian, Utahn and Slave Point formations were mapped. Identification of the events was made by correlation to records from previous surveys which had been continuously correlated and tied to available well control.

COMPUTING PROCEDURE:

The seismic records were computed to a 1500 feet datum plane supplied by the Client. The computation procedure involves the plotting of refraction "breaks" at each shot point and the computing of each trace of each record to compensate for weathering, drift and correction to

datum with one single computation. All correctional velocities were taken from the refraction plots.

RECORD SECTIONING PROCEDURE:

Individual corrections were applied to each trace on every record which effectively corrected for elevation, weathering and drift variations. The six traces from different shot points and receiving stations corresponding to the same sub-surface point were then "stacked" to give one single trace on the final record section. Each trace then represents the summation of the reflection at one sub-surface point as recorded from six different surface locations.

DISCUSSION OF RESULTS

Record quality in the Trout Lake Area ranges from good to poor with the majority of records in the fair to poor range. The AA line, the most southerly line is of good quality. The remainder of the lines are fair to poor in quality.

Seismic events corresponding to the Devonian, Utahn and Slave Point formations were mapped. All three reflectors are of equal quality and intensity. Where general record quality is good, reflections from these markers are distinctive and easily correlatable. Their reliability is directly proportional to the overall record quality.

Structure at both Devonian and Utahn levels is similar, exhibiting a uniform, almost due south dip.

The Slave Point structure, in contrast, shows dip generally to the southwest. Much more local relief is present. Anomalous structural features are shown in two separate localities in the area.

A definite high at the extreme southwest end of line AA shows at least .040 seconds of northwest dip into a saddle separating the feature from the remainder of the area. Coupled with this dip reversal is the appearance of the record section showing the east flank of the structure. Although the quality of section along the whole of the line is good, the Slave Point reflection is highly disturbed from S.P. 54A to 51A. Reflections within .100 seconds of the major event appear smooth and consistent. The conclusion that an irregular reef mass lies in this zone is almost unavoidable.

To the northwest, line AG is isolated from the remainder of the program. Correlation of the seismic section across the gap appears fairly reliable. There is apparently a considerable flattening or reversal of dip between lines AB and AG. Without control, further postulation is not possible.

The effect of this change in dip is shown on the Utahn to Slave Point isochron map as an extensive thin, covering the complete area between the two lines.

To the southwest, structure on the Slave Point is reflected on the isochron map by the major thickening of the Utahn-Slave Point interval from the southwest end of line AA, almost to the centre of the line. Some .070 seconds of thickening occurs within this six miles.

RECOMMENDATIONS

Two significant seismic anomalies have been uncovered. To the southwest of the area, additional control using the present technique, should result in definite isolation and analysis of the anomaly.

To the northwest, in addition to more control, some improvement in field record quality is necessary.

The area south and east of the Briggs Trout Lake well appears of more interest than the actual well location. If the existing control here is not conclusive, more detail should certainly be added.

Respectfully submitted,

NATIONAL GEOPHYSICAL COMPANY
OF CANADA LIMITED

A.P. Seifert - Party Chief

C.L. Hart - Supervisor

STATISTICAL REPORT

1. Commencement Date of Work: February 21, 1966
2. Date of Completion: March 31, 1966
3. a. Field recording time: 237.8 hours
b. Moving and holiday time 131.2 hours
c. Total crew hours a. and b.: 369.0 hours
4. a. Number of locations recorded as split profiles: 543
b. Number of locations recorded as weathering profiles: -
c. Number of locations recorded as single-end profiles other than weathering profiles: -
5. a. Number of shots taken: 565
b. Average number of shots per locations: 1.04
c. Total dynamite used: 4084.75 lbs.
d. Average dynamite per shot: 7.2 lbs.
- *6. Number of Locations Recorded per Ten Hour Day: 22.8
7. Total miles of Subsurface coverage obtained: 46.46 mi.
8. Miles of Subsurface coverage per Ten hour day: 1.95 mi.
9. Drill #D-285 (a) Field time:
1st Tour 200.8 hrs.
(b) Moving & holiday time: 159.0 hrs.
(c) Total time (a) & (b): 359.8 hrs.
(d) Total footage: 5,790 ft.
(e) Footage per ten hour day: 288.3 ft.

STATISTICAL REPORT (Continued)

Drill #D-285 2nd Tour	(a) Field time:	<u>196.0 hrs.</u>
	(b) Moving & holiday time:	<u>79.0 hrs.</u>
	(c) Total time (a) & (b):	<u>275.0 hrs.</u>
	(d) Total footage:	<u>4,010 ft.</u>
	(e) Footage per ten hour day:	<u>204.6 ft.</u>
Drill #D-6 (Gyro) 1st Tour	(a) Field time:	<u>269.2 hrs.</u>
	(b) Moving and holiday time:	<u>143.3 hrs.</u>
	(c) Total time (a) & (b):	<u>412.5 hrs.</u>
	(d) Total footage:	<u>13,050 ft.</u>
	(e) Footage per 10 hour day:	<u>484.4 ft.</u>
Drill #D-6 (Gyro) 2nd Tour	(a) Field time:	<u>238.5 hrs.</u>
	(b) Moving and holiday time:	<u>113.5 hrs.</u>
	(c) Total time (a) and (b):	<u>352.0 hrs.</u>
	(d) Total footage:	<u>14,770 ft.</u>
	(e) Footage per 10 hour day:	<u>619.3 ft.</u>
Drill #D-3 (Gyro) 1st Tour	(a) Field time:	<u>265.7 hrs.</u>
	(b) Moving and holiday time:	<u>138.3 hrs.</u>
	(c) Total time (a) & (b):	<u>404.0 hrs.</u>
	(d) Total footage:	<u>12,640 ft.</u>
	(e) Footage per 10 hour day:	<u>472.0 ft.</u>

STATISTICAL REPORT (continued)

Drill #D-3 (Gyro)	(a) Field time:	<u>239.5 hrs.</u>		
2nd Tour	(b) Moving and holiday time:	<u>113.5 hrs.</u>		
	(c) Total time (a) and (b):	<u>353.0 hrs.</u>		
	(d) Total footage:	<u>13,255 ft.</u>		
	(e) Footage per 10 hour day:	<u>553.4 ft.</u>		
10. Dozing:	(a) Hours cutting	<u>242.0</u>	Miles	<u>53.0</u>
Dozer # RM-5	(b) Hours cleaning	<u>-</u>	Miles	<u>-</u>
1st Tour	(c) Total hours	<u>242.0</u>	Total Miles	<u>53.0</u>
Dozer # RM-5	(a) Hours cutting	<u>-</u>	Miles	<u>-</u>
2nd Tour	(b) Hours cleaning	<u>242.0</u>	Miles	<u>53.0</u>
	(c) Total hours	<u>242.0</u>	Total Miles	<u>53.0</u>
Dozer # RM-3	(a) Hours cutting	<u>66.0</u>	Miles	<u>12.0</u>
1st Tour	(b) Hours cleaning	<u>-</u>	Miles	<u>-</u>
	(c) Total hours	<u>66.0</u>	Total miles	<u>12.0</u>
Dozer # RM-3	(a) Hours cutting	<u>-</u>	Miles	<u>-</u>
2nd Tour	(b) Hours cleaning	<u>66.0</u>	Miles	<u>12.0</u>
	(c) Total hours	<u>66.0</u>	Total Miles	<u>12.0</u>
11. (a) Maximum surface elevation:	<u>1910.3 @ AB-49F</u>			
Minimum surface elevation:	<u>1255.0 @ AG-30A</u>			

* Definition of location: A shot is credited as a location whenever new subsurface coverage is obtained and/or whenever the movement of one or more cables is involved.

FIELD EQUIPMENT AND TECHNIQUE

1. Type of instruments and Tape used: _____

Amplifiers - National Geophysical Company 26A

Techno Tape

2. Geophone Type: Geo Space - Hall-Sears 14 cycle

3. Location to Location Distance: 440'

4. Offset to First Group: 110'

5. Group Interval: 220'

6. Number of Geophones per Group: 9

7. Geophone-In-Group- Arrangement: In Line 17' interval between geophones

8. Number of Holes per Location: 3 hole patterns

9. Hole Spacing: 75' between holes

10. Average Hole Depth: 40'

11. Recording Procedure: (Recording tape-filter, A.G.C., etc.)
(Playback-filter, A.G.C., etc.)

Monitor - BHMI Filter (19-125) AGC-48 Straight (I)

Playback - CHEI Filter (26-76) AGC-36 Straight (I)

SEISMIC SURVEY

ISLAND RIVER) N.W.T.
TRAINOR LAKE)

UNION OIL COMPANY OF CANADA LIMITED

POOR COPY

(16)

ISLAND RIVER AREA

Northwest Territories

Submitted to

TON OIL COMPANY OF CANADA, LIMITED

By

NATIONAL GEOPHYSICAL COMPANY OF CANADA, LIMITED

SUMMARY AND CONCLUSIONS

The seismic survey in the Island River Area is considered to be successful. Although the amount and location of the lines shot precludes mapping in detail, the individual record sections indicate substantial structural anomalies. If the existing seismic control is of similar quality there should be little difficulty in evaluating the prospect.

The present field technique appears to be adequate to assure reasonably reliable information in future seismic surveys.

INTRODUCTION

The Island River prospect lies within the Northwest Territories approximately 130 miles northeast of Fort Nelson, B.C. The area is accessible by road and bulldozed trails from Fort Nelson.

The seismic camp was supplied by road and by air from Fort Nelson. Communication to the outside was maintained by radio telephone.

The terrain is generally flat, lightly forested and cut by many small creeks and streams. Numerous small lakes and muskegs dot the area.

The seismic program consisted of two separate surveys approximately eight miles apart. Each survey was comprised of three lines; the southern segment containing approximately 15 miles and that to the north approximately 21 miles.

GEOLOGY

The Island River prospect is located geologically over the Tathlina Uplift on the east flank of the Northern Alberta Basin.

In Middle Devonian time during upper Elk Point sedimentation the Presqu'ile reef complex was developed on the Keg River carbonate in the area. The reef is typically 600 to 700 feet thick. As yet no production from the reef in the immediate area has been established.

The overlying Middle Devonian Slave Point formation has produced substantial quantities of gas in northeastern British Columbia and the Northwest Territories. Most of the production is found in barrier reef ridges along the facies front between the carbonate shelf and the shale basin.

ENCLOSURES

Included with the report are prints of the following seismic maps.

1. Mississippian Structure
2. Devonian Structure
3. Utahn Structure
4. Slave Point Structure
5. Utahn to Slave Point Isochron

PROCEDURES

OBJECTIVE:

The object of the survey was to provide additional seismic control in areas of interest noted from previous surveys.

REFLECTIONS MAPPED:

Seismic events believed to correspond to the Mississippian, Devonian, Utahn and Slave Point formations were mapped. Identification of the events was taken from times established from previous surveys which had been carried throughout the area and tied to available well control.

COMPUTING PROCEDURE:

The seismic records were computed to a "floating" datum plane supplied by the client. The computation procedure involved the plotting of the refraction "breaks" at each shot point and the computing of each trace of each record to compensate for weathering, drift and correction to datum with one single computation. All correctional velocities were taken from the refraction plots.

RECORD SECTIONING PROCEDURE:

Individual corrections were applied to each trace on every record which effectively corrected for elevation, weathering and drift variations. The six traces from different shot points and receiving stations corresponding to the same sub-surface point were then "stacked" to give one

single trace on the final record section. Each trace then represents the summation of the reflection at one sub-surface point as recorded from six different locations.

DISCUSSION OF RESULTS

Record quality in the Island River area ranges from good to poor with the majority of records in the good to fair range.

Seismic events corresponding to the Mississippian, Devonian, Utahn and Slave Point formations were mapped. All four reflectors are of equal quality and intensity. Where general record quality is good, reflections from these markers are distinctive and easily correlatable. Their reliability is directly proportional to the overall record quality.

The main Mississippian structural feature in the south Island River prospect is the high nose extending into the area from the east. Dip to the east from the high is slight and might be questioned. The Mississippian in the north Island River prospect features a northwest-southeast high through the middle of the area. Dip to the southeast and northeast from the ridge is fairly well established.

The Devonian structure conforms quite closely to that at Mississippian level. In the south Island River area, the dip is primarily due west

with some indication of the high nose projecting into the area from the southeast. In the north Island River area, the northwest-southeast ridge noted on the Mississippian is even more prominent. More than .020 seconds of northeast dip is quite well established.

The Utahn structure in the Island River area shows an almost due west dip. The same indication of the nose shown higher in the section is present, but is less pronounced. In the north Island River area the Utahn structure conforms to the overlying formations showing the northwest-southeast ridge.

The Slave Point structure is by far the most interesting with much more relief than any of the higher formations. Particularly noticeable is the abrupt change in dip which occurs in both north and south prospects. on the west part of the surveyed areas. In each case poor reflections on this horizon interrupt the continuous correlation but is believed that the correlation across these poorer zones is essentially correct.

It would appear that the prospects straddle the hinge line separating the Slave Point shale basin to the west and the carbonate bank to the east.

In the south Island River prospect there is no definite indication of east dip or closure. North Island River however does show .020 seconds of closure.

The Utahn to Slave Point isochron shows thinning between the two horizons corresponding to the highs on the Slave Point structure map.

Both north and south prospects appear to contain structural anomalies which certainly bear additional investigation.

RECOMMENDATION

The present survey clearly indicates the sharp west flank of the Slave Point reef or carbonate bank in both the north and south Island River prospects.

More control however is necessary to the east to investigate the possibility of east dip and possible structural closure.

The north Island River structure shows east dip to the end of the present survey in the northeast. If additional closure is present to the southeast this structure could be particularly interesting.

The "roll-a-long" seismic technique used in the present survey is producing good data of reliable interpretation.

Respectfully submitted,

NATIONAL GEOPHYSICAL COMPANY
OF CANADA LIMITED

A.P. Seifert - Party Chief

C.L. Hart - Supervisor

STATISTICAL REPORT

1. Commencement Date of Work:	<u>January 13, 1966</u>
2. Date of Completion:	<u>February 21, 1966</u>
3. a. Field recording time:	<u>2333.3 hrs.</u>
b. Moving and holiday time:	<u>66.6 hrs.</u>
c. Total crew hours a. and b.	<u>299.9 hrs.</u>
4. a. Number of locations recorded as split profiles:	<u>436</u>
b. Number of locations recorded as weathering profiles:	<u> </u>
c. Number of locations recorded as single-end profiles other than weathering profiles:	<u> </u>
5. a. Number of shots taken:	<u>460</u>
b. Average number of shots per locations:	<u>1.06</u>
c. Total dynamite used:	<u>2,368.0 lbs.</u>
d. Average dynamite per shot:	<u>6.2 lbs.</u>
*6. Number of Locations Recorded per Ten Hour day:	<u>18.3</u>
7. Total miles of Subsurface coverage obtained:	<u>36.33 mi.</u>
8. Miles of Subsurface Coverage per Ten Hour day:	<u>1.56 mi.</u>
9. Drill # 285 1st Tour	(a) Field time: <u>109.3 hrs.</u>
	(b) Moving & holiday time: <u>69.4 hrs.</u>
	(c) Total time (a) & (b): <u>178.7 hrs.</u>
	(d) Total footage: <u>2,110 ft.</u>
	(e) Footage per ten hour day: <u>190.3 ft.</u>

STATISTICAL REPORT (continued)

Drill # <u>285</u> <u>2nd Tour</u>	(a) Field time: <u>72.5 hrs.</u>
	(b) Moving & holiday time: <u>14.1 hrs.</u>
	(c) Total time (a) & (b): <u>86.6 hrs.</u>
	(d) Total footage <u>1,385 ft.</u>
	(e) Footage per ten hour day: <u>191.0 ft.</u>
10. Drill # <u>D-6 Gyro</u> <u>1st Tour</u>	(a) Field time: <u>303.2 hrs.</u>
	(b) Moving and holiday time: <u>115.8 hrs.</u>
	(c) Total time (a) & (b) <u>419.0 hrs.</u>
	(d) Total footage: <u>17,135 ft.</u>
	(e) Footage per 10 hour day: <u>565.1 ft.</u>
Drill # <u>D-6 (Gyro)</u>	(a) Field time: <u>314.3 hrs.</u>
	(b) Moving and holiday time: <u>67.7 hrs.</u>
	(c) Total time (a) & (b): <u>382.0 hrs.</u>
	(d) Total footage: <u>14,565 ft.</u>
	(e) Footage per 10 hour day: <u>463.4 ft.</u>
Drill # <u>D-3 Gyro</u> <u>1st Tour</u>	(a) Field time: <u>262.9 hrs.</u>
	(b) Moving and holiday time: <u>104.6 hrs.</u>
	(c) Total time (a) & (b): <u>367.5 hrs.</u>
	(d) Total footage: <u>14,970 ft.</u>
	(e) Footage per 10 hour day: <u>476.3 ft.</u>

Drill # D-3 Gyro 2nd Tour (a) Field time: 273.5 hrs.

(b) Moving and Holiday time: 61.0 hrs.

(c) Total time (a) & (b): 334.5 hrs.

(d) Total footage: 12,066 ft.

(e) Footage per 10 hour day: 441.2 ft.

10. Dozing: (a) Hours cutting _____ Miles _____

Dozer # _____ (b) Hours cleaning _____ Miles _____

(c) Total hours _____ Total Miles _____

Dozer # _____ (a) Hours cutting _____ Miles _____

(b) Hours cleaning _____ Miles _____

(c) Total hours _____ Total miles _____

Dozer # _____ (a) Hours cutting _____ Miles _____

(b) Hours cleaning _____ Miles _____

(c) Total hours _____ Total miles _____

Dozer # _____ (a) Hours cutting _____ Miles _____

(b) Hours cleaning _____ Miles _____

(c) Total hours _____ Total Miles _____

* Definition of "location": A shot is credited as a location whenever new subsurface coverage is obtained and/or whenever the movement of one or more cables is involved.

11. (a) Maximum surface elevation: 2594.3 @ BD-35F

Above sea level

Minimum surface elevation: 1806.4 @ BC-37F

FIELD EQUIPMENT AND TECHNIQUE

1. Type of instruments and Tape used: _____
Amplifiers - National Geophysical Company 26A
Techno Tape
2. Geophone Type: Geo Space - Hall-Sears 14 cycle
3. Location to Location Distance: 440'
4. Offset to First Group: 110'
5. Group Interval: 220'
6. Number of Geophones per group: 9
7. Geophone-in-group Arrangement: In Line 17' interval between geophones
8. Number of holes per location: 3 hole patterns
9. Hole spacing: 75' between holes
10. Average hole depth: 40'
11. Recording Procedure: (Recording tape-filter, A.G.C., etc.)
(Playback filter, A.G.C., etc.)

Monitor - BIIIII filter (19-125) AGC-48 Straight (I)

Playback CHEII filter (26-76) AGC-36 Straight (I)

12. Survey Procedure: (Instrument used, take off control, etc.)

Transit Survey Take-off Well site K.70 (coordinates 0 0)

Vertical Control - Hanging lines tied back

Horizontal Control - Tied in field to existing control

