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1) Probabilistic Seismic Hazard Analysis (PSHA).

e Ground Motions Parameters

« Earthquake Catalogues & Recurrence Relations
e GMPEs

e« Hazard Calculation

« Deaggregation

2) Shortcomings of PSHA for IS & workarounds.
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Probabilistic Seismic Hazard Analysis (PSHA)




Probabilistic Seismic Hazard Analysis

» Requires much input data:
*  Ground Motion Parameters
e Recurrence Relationships
* Rate & Location Models
e GMPEs
» Means to make best-guesses
at the likelihood of future

earthquakes & their anticipated

ground motion.

> Also allows user to see what's

contributing most to the hazard.

Probabilistic Seismic Hazard Analysis
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Probabilistic Seismic Hazard Analysis
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Recurrence Relations & Rate/Location Models

> Examine GR-FMD, fit for a- and b-

values.

» Function that describes the expectation
value for the number and frequency of

earthquake at a given magnitude.

» Assumes enough information for a
location, and a stationary Poisson

process in time.
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Ground Motion Parameters

Collected in real-time from seismic

stations.

Multiple variants & data sources:

« PGA, PGV, PSA(f), MMI, IM, DYFI

Ground motion results from multiple

effects: source, propagation path, and

site effects.
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Site Amplification & Vs30

SHALLOW SEISMIC REFRACTION

>  Site conditions can affect the resultant = i I
First refracted signal ix, :":, l
amplitudes of ground motion. e Y
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» Near-surface soil shear-velocity

conditions at seismic stations are often

quantified.

Example Sites
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site-specific conditions from GM
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Case Study: Frasier River Delta
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Ground Motion Predication Equations (GMPES)
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» GMPEs provide a means to interpolate

ground motions to regions without
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Ground Motion Predication Equations (GMPES)

GMPEs provide a means to
interpolate ground motions to

regions without sensors.

Uncertainties in GMPEs are on a

log scale. Caused by both

epistemic error (systematic)

caused by biased modelling, and

aleatory error (random).
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Figure 2. Regression results for peak ground acceleration
(PGA). The lines show the ground-motion prediction equation
(GMPE) for M 3.5, 4.5, and 5.5. The circles show PGA values used
in the regression (cormrected to B/C site conditions), shaded and
sized by magnitude. The color version of this figure is available
only in the electronic edition.
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Figure 3.  PGA residuals (log[observed/predicted]) versus hypo-
central distance for regression to equation (1), shown for M 3.5-4.5
(large dots) and M 4.5-5.5 (small dots). The squares with error bars
show the means and standard deviations of residuals in four distance
bins (0-10, 10-20, 20-30, and 30-40 km). The color version of this
figure is available only in the electronic edition.
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Seismic Hazard Curve
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Figure 2. Regression results for peak ground acceleration
(PGA). The lines show the ground-motion prediction equation
(GMPE) for M 3.5, 4.5, and 5.5. The circles show PGA values used
in the regression (comrected to B/C site conditions), shaded and
sized by magnitude. The color version of this figure is available
only in the electronic edition.
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Figure 3.  PGA residuals (log[observed/predicted]) versus hypo-
central distance for regression to equation (1), shown for M 3.5-4.5
(large dots) and M 4.5-5.5 (small dots). The squares with error bars
show the means and standard deviations of residuals in four distance
bins (0-10, 10-20, 20-30, and 30-40 km). The color version of this
figure is available only in the electronic edition.




Seismic Hazard Curve

» Translation of multiple factors related to
earthquakes into a simple relationship
between probability (over a time interval)
and ground motion (PGA, PGV, PSA,

MMI, etc.).

» Variability from models and uncertainties

can be propagated into hazard curve.

» Structural engineering and building

codes based off of expected tolerances.

> See also USGS website.
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Deaggregation

Deaggregation is a method to
separate individual components

contributing to hazard.

Allows for the quantification of
contribution to hazard for each
variable, to see which affects the
resultant hazard curves the

most.
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PSH Deaggregation on NEHRP D soil

Wells, NV 114.947° W, 41.109 N.
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Problems for IS-PSHA?

Rate models: PSHA assumes stationary Poisson “'i"“"»“

process in time, IS rates are variable with time.

Location models: PSHA needs to characterize

locations, IS pops up unexpectedly.

EXPLANATION

Puak accoleration, exprossed as
o tractoa of standard raviy g)

Maximum magnitude: PSHA uses tectonic caps

to magnitudes, does IS have operational-related

Two-percent probability of exceedance in 50 years map of peak ground acceleration

maximums? After USGS

USGS workaround is to use smaller time scales

and assume conditions still hold.
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The Rate Problem

> Examine GR-FMD, missing time N., = 1 Oa 10 —bM

dependence of induced seismicity. .

— ] T T T T ]
3 “"""'*'-’-"" ; b 0.90+0.03
o Me 1.30]
- N N 1080
> Modifications to a value suggested based on 5 | R R?0.990 |
107k 3
. . .
solutions to pore-pressure diffusion equation é
[Shapiro et al., 2010]. 10" k
10°
0 1
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https://dx.doi.org/10.1190/1.3353727

The Rate Problem

Examine GR-FMD, missing time

dependence of induced seismicity.

Modifications to a value suggested based on
solutions to pore-pressure diffusion equation

[Shapiro et al., 2010].

Seismogenic Index: a = X + logo(V (t))
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https://dx.doi.org/10.1190/1.3353727

Rate via HF Stimulation Volume?

Examine GR-FMD, missing time

dependence of induced seismicity.

Modifications to a value suggested based
on solutions to pore-pressure diffusion

eqguation [Shapiro et al., 2010].

Seismogenic Index: a = X + logo(V (t))
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The Location Problem
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Pad Count Frequency

Fraction of Seismogenic Pads

Location Models: Geological Susceptibility
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Induced earthquakes locations in central
Alberta have shown a spatial correspondence

with carbonate reef margins.
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Induced earthquake locations have shown a

spatial correspondence with relatively higher

Duvernay formation overpressure.
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Maximum Magnitude?
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Send your questions or comments to:
Ryan Schultz, Seismologist
Alberta Geological Survey
(780) 644 5530

Ryan.Schultz@aer.ca
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